P(r, m) Near-Rings

¹R. BALAKRISHNAN AND ²S. SURYANARAYANAN ¹Department of Mathematics, V.O.C College, Tuticorin, India ²Department of Mathematics, St. John's College, Palayamkottai, India

Abstract. In this paper we introduce the concept of P(r, m) near-rings where r, m are positive integers. Under certain conditions, we (i) obtain a complete characterization of such near-rings (ii) discuss their properties vis-a-vis subdirect irreducibility, semiprimeness etc. and (iii) obtain a structure theorem for such near-rings.

1. Introduction

A right near-ring $(N, +, \cdot)$ is an algebraic system with two binary operations such that (i) (N, +) is a group-not necessarily abelian-with 0 as its identity element, (ii) (N, \cdot) is a semigroup (we write xy for $x \cdot y$ for all x, y in N) and (iii) (x + y)z = xz + yz for all x, y, z in N. Because of (iii) 0n = 0 for all n in N. As we do not stipulate the left distributive law, "n0 = 0" need not hold good for all n in N. We say that N is zerosymmetric if n0 = 0 for all n in N. N is called an S-near-ring or an S-near-ring according as $x \in Nx$ or $x \in xN$ for all $x \in N$. A subgroup M of N is called an Nsubgroup if $NM \subset M$ and an invariant N-subgroup if, in addition, $MN \subset M$.

An ideal I of N is called a semiprime ideal if for all ideals J of N, $J^2 \subset I \Rightarrow J \subset I$. If $\{0\}$ is a semiprime ideal, then N is called a semiprime near-ring. An ideal I of N is called completely semiprime if $x \in I$ whenever $x^2 \in I$. N is called a strictly prime near-ring if $\{0\}$ is a strictly prime ideal i.e. if A and B are N-subgroups of N such that $AB = \{0\}$, then either $A = \{0\}$ or $B = \{0\}$.

The concept of a mate function in N has been introduced in [4] with a view to handle the regularity structure in a near-ring with considerable ease. A map m from N into N is called a mate function for N, if x = xm(x)x for all x in N. m(x) is called a mate of x.

Basic concepts and terms used but not defined in this paper can be found in Pilz [3]. Throughout this paper N stands for a near-ring – more precisely a right near-ring – with at least two elements.

As in p.249 Pilz [3], "if N is a near-field then either N is isomorphic to $M_c(Z_2)$ or N is zero-symmetric" (For the concept of $M_c(Z_2)$ one may refer to Example 1.4(a), p.8 and 1.15, p.12 of Pilz [3]. Obviously $M_c(Z_2)$ is a near-field of order 2 and is not zero-symmetric). All the near-fields in this paper are zero-symmetric.

1.2. Notations

- (a) E denotes the set of all idempotents of N.
- (b) L is the set of all nilpotent elements of N.
- (c) $N_d = \{n \in N / n(x+y) = nx + ny, \text{ for all } x, y \in N \}$ the set of all distributive elements of N.
- (d) $N_0 = \{n \in N / n0 = 0\}$ the zero-symmetric part of N (It is worth noting that N is zero-symmetric if $N = N_0$).
- (e) $C(N) = \{ n \in N / nx = xn \text{ for all } x \in N \}.$

1.3. Preliminary results

We freely make use of the following results from [4], [3] and [2] and designate them as K(1), K(2) etc. (*K* for 'known results').

- *K*(1): If *N* has a mate function m, then for every $x \in N$, xm(x), $m(x)x \in E$ and Nx = Nm(x)x and xN = xm(x)N. (Lemma 3.2 of [4]).
- *K*(2): If $L = \{0\}$ and $N = N_0$, then (i) $xy = 0 \Rightarrow yx = 0$ (for x, y in N) and (ii) N has "Insertion of Factors Property" – IFP for short – i.e. for x, y in N, $xy = 0 \Rightarrow xny = 0$ for all n in N. (In this paper we write that N has (*, IFP) if Nhas both (i) and (ii)) (Lemma 2.3 of [4]).
- K(3): A zero-symmetric near-ring N has IFP if and only if (0:S) is an ideal, where S is any non-empty subset of N. (9.3, p.289 of [3]).
- *K*(4): A near-ring *N* has no non-zero nilpotent elements if and only if $x^2 = 0 \Rightarrow x = 0$ for all *x* in *N* (Prob. 14, p.9 of [2]).

2. P(r, m) near-rings

We shall start with the following.

Definition 2.1. A near-ring N is said to have the property P(r,m) if $x^r N = Nx^m$ for all x in N where r and m are positive integers.

Examples 2.2.

- (a) The direct product of any two near fields is a P(r, m) near-ring for all positive integers r and m.
- (b) A Boolean P(1, 1) near-ring is a P(r, m) near-ring for all positive integers r and m.
- (c) Let N be an arbitrary near-ring and let I be the ideal generated by $\{a^r n ba^m / a, n, b \text{ are in } N \text{ and } r, m \text{ are fixed positive integers}\}$. Obviously then the factor near-ring $\overline{N} = N / I$ is a P(r, m) near-ring. (This incidentally serves as a device for manufacturing P(r, m) near-rings for all positive integers r, m from an arbitrary near-ring.)
- (d) Let (N,+) be the Klein's four group with $N = \{0, a, b, c\}$. The near-ring $(N,+,\cdot)$ where '.' is defined as (per scheme (12) p. 408 of Pilz [3] which forms part of Clay [1])

•	0	а	b	с
0	0	0	0	0
а	0	а	0	а
b	0	0	0	0
c	0	а	0	а

is a P(r, m) near-ring for all positive integers r, m.

(e) Let (N,+) be the group of integers modulo 8. We define '.' as per scheme (48) p. 413 of Pilz [3] as follows:

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	2	4	2	0	2	4	6
2	0	4	0	4	0	4	0	4
3	0	6	4	6	0	6	4	2
4	0	0	0	0	0	0	0	0
5	0	2	4	2	0	2	4	6
6	0	4	0	4	0	4	0	4
7	0	6	4	6	0	6	4	2

 $(N, +, \cdot)$ is a P(1, 1) near-ring but is neither P(1, 2) nor P(2, 1). It is worth noting that this near-ring does not admit mate functions.

(f) Consider $(N, +, \cdot)$ where (N, +) is the Klein's four group and '.' is defined as per scheme (4) p.408 of Pilz [3] as follows:

R. Balakrishnan and S. Suryanarayanan

•	0	а	b	с
0	0	0	0	0
а	0	0	а	а
b	0	а	с	b
с	0	а	b	с

This near-ring (actually a Commutative Ring)is obviously P(1,1). But it is neither P(1,2) nor P(2,1). Thus "P(1,1)" need not imply "P(1,2)" or "P(2,1)" even in the Ring Theory. (Incidentally this near-ring has the property P(r,r) i.e. $x^r N = Nx^r$ for any positive integer r).

Remark 2.3. It is easy to see that a P(r, m) near-ring is zero-symmetric.

Properties of P(1, 2) and P(2, 1) near-rings

We shall obtain a complete characterization for P(1, 2) and P(2, 1) near-rings and obtain structure theorems for such near-rings – under certain conditions.

Proposition 2.4. Let N be a P(1,2) near-ring.

(i) If N has no non-zero nilpotent elements then N is an S-near-ring.

(ii) If N is an S'-near-ring then N has no non-zero nilpotent elements.

Proof.

- (i) Since $xN = Nx^2$ and $x^2 \in xN$ for all x in N, we have $x^2 = yx^2$ for some y in N. Therefore (x - yx)x = 0. By K(2), this implies that x(x - yx) = 0 and yx(x - yx) = 0. Consequently $(x - yx)^2 = 0$. Since $L = \{0\}, x - yx = 0$, forcing x = yx. Thus $x \in Nx$ i.e. N is an S-near-ring.
- (ii) If N is an S'-near-ring then $x \in xN$ and since $xN = Nx^2$ we get $x = nx^2$ for some $n \in N$. Therefore $x^2 = 0 \Rightarrow x = 0$. \therefore N has no non-zero nilpotent elements, from K(4).

Corollary 2.5. If N is a P(1, 2) near-ring without non-zero nilpotent elements, then from K(2), we see that N has (*, IFP).

It is obvious that the property P(r, m) is preserved by near-ring homomorphisms. Consequently, we have

Proposition 2.6. Any homomorphic image of a P(1,2) (P(2,1)) near-ring is P(1,2) (P(2,1)).

As an immediate consequence of Proposition 2.6 we have the following theorem:

Theorem 2.7. Every P(1,2) (P(2,1)) near-ring N is isomorphic to a subdirect product of subdirectly irreducible P(1,2) (P(2,1)) near-rings.

Proof. By Theorem 1.62, p.26 of Pilz [3], N is isomorphic to a subdirect product of subdirectly irreducible near-rings N_i 's, say, and each N_i is a homomorphic image of N under the projection map π_i . The desired result now follows from Proposition 2.6.

We shall now discuss the behaviour of *N*-subgroups and ideals of P(1,2) nearrings. To start with we have the following:

Proposition 2.8. Let N be a P(1,2) near-ring. Then every N-subgroup of N is invariant.

Proof. If A is an N-subgroup of N, then $NA \subset A$. Whenever $an \in AN$, we have $an \in aN = Na^2 \Rightarrow an = n'a^2$ for some $n' \in N$. This forces $an \in NA \subset A \Rightarrow AN \subset A$. Hence A is an invariant N-subgroup.

Proposition 2.9. Let N be a P(1,2) near-ring. Then every left ideal of N is an ideal.

Proof. Let A be a left ideal of N. Since N is zero-symmetric, $NA \subset A$ i.e. A is an N-subgroup of N. Proceeding as in Proposition 2.8 we get $AN \subset A$. Hence A becomes an ideal.

It is easy to observe the following:

Corollary 2.10. Every left ideal (and therefore every ideal) of a P(1,2) near-ring N is an invariant N-subgroup of N.

Proposition 2.11. If N is a P(1,2) or a P(2,1) near-ring then N has strong IFP.

Proof. Let *N* be a *P*(1, 2) near-ring. In view of Proposition 9.2 Pilz [3], we need only to establish that for all ideals *I* of *N* and for all $a, b, n \in N$, $ab \in I \Rightarrow anb \in I$. Since *I* is an ideal, $IN \subset I$ and since *N* is zero-symmetric, *I* is an *N*-subgroup of *N* i.e. $NI \subset I$. Now $an \in aN = Na^2 \Rightarrow an = n'a^2$ for some $n' \in N \Rightarrow anb = (n'a^2)b = (n'a)(ab) \in NI \Rightarrow anb \in I$.

When N is a P(2,1) near-ring we observe that $nb \in Nb = b^2N \Rightarrow nb = b^2n'$ for some $n' \in N \Rightarrow anb = a(b^2n') = (ab)(bn') \in IN \Rightarrow anb \in I$.

Notation 2.12. If a P(r,m) near-ring N is an S (or S')-near-ring then we write that N is an S - P(r,m) near-ring (or S'-P(r,m) near-ring).

Remark 2.13. For an S - P(2, 1) near-ring, we see that for all x in N, $x \in Nx = x^2 N$ $\Rightarrow x = x^2 n$ for some $n \in N$. Hence $x^2 = 0 \Rightarrow x = 0$ and K(4) demands that $L = \{0\}$.

Proposition 2.14. *In a* P(1, 2) (P(2, 1)) *near-ring,* $E \subset C(N)$.

Proof. For $e \in E$, $eN = Ne^2(e^2N = Ne) \Rightarrow eN = Ne \Rightarrow Ne = eNe = eN$. It follows that en = (ene =)ne for all $n \in N$ i.e. $E \subset C(N)$.

Remark 2.15. It is worth noting that we do not stipulate that N admits mate functions for the validity of the above results.

Proposition 2.16.

- Let N be a P(1,2) near-ring. Then N has a mate function if and only if N is an (i) S'-near-ring.
- Let N be a P(2,1) near-ring with $N = N_d$. Then N has a mate function if and (ii) only if N is an S-near-ring.

Proof.

(i) When N has a mate function 'm' for all $x \in N$, $x = xm(x)x \in xN$ and obviously N is an S'-near-ring. Conversely let *N* be an *S'* near-ring. $x \in xN = Nx^2$

$$x = nx^2 \text{ for some } n \in N \tag{1}$$

 $\Rightarrow x^2 = xnx^2 \Rightarrow (x - xnx)x = 0$. Using Proposition 2.4(ii) and Corollary 2.5 we get x(x - xnx) = 0 and xnx(x - xnx) = 0 and consequently $(x - xnx)^2 = 0$. Since $L = \{0\}$ we get x - xnx = 0 i.e. x = xm(x)x where we set m(x) = n. This guarantees that $m: N \rightarrow N$ is a mate function for N.

When N has a mate function, it is obvious that N is an S-near-ring. (ii) Conversely if N is an S - P(2,1) near-ring with $N = N_d, x \in Nx = x^2 N$

$$x = x^2 n \quad \text{for some } n \text{ in } N \tag{2}$$

 $\Rightarrow x^2 = x^2 nx = x(x - xnx) = 0 \Rightarrow xnx(x - xnx) = 0$. Rest of the proof is as in (i).

Remarks 2.17.

- (a) If N has property P(2,1) and a mate function 'm', then $L = \{0\}$. This is obvious from Remark 2.13 and the fact that when N has a mate function 'm' it is an S-near-ring.
- (b) As in Corollary 2.5, K(2) yields that a P(2,1) near-ring with a mate function possesses (*, *IFP*).
- (c) A P(2,1) Ring has a mate function if and only if it is an S-Ring.

Proposition 2.18. Let N be an S' - P(1,2) near-ring (or an S - P(2,1) near-ring with $N = N_d$). Then N has a P_3 mate function [5].

Proof. When N is an S'-P(1,2) near-ring it admits a mate function 'm'. From stage (1) of Proposition 2.16 we have $x = m(x)x^2 \Rightarrow (xm(x) - m(x)x)x = 0$ $\Rightarrow (xm(x) - m(x)x)^2 = 0$ (since N has (*, *IFP*) $\Rightarrow xm(x) - m(x)x = 0 \Rightarrow xm(x) = m(x)x$ i.e. $m(x) \in C(x)$ i.e. 'm' is a P₃ mate function.

(When N is an S - P(2, 1) near-ring starting with stage (2) of Proposition 2.16 (ii) we can show that $m(x) \in C(x)$).

Propositions 2.16(i), 2.4 and Corollary 2.5 readily yield the following:

Proposition 2.19. If N has property P(1, 2) and a mate function 'm' then $L = \{0\}$ and N has (*, *IFP*).

We now give a complete characterization of P(1,2) and P(2,1) near-rings when they admit mate functions.

Theorem 2.20. Let N be a near-ring with a mate function 'm'. Then the following statements are equivalent:

- (i) N is P(1,2)
- (ii) $E \subset C(N)$
- (*iii*) N is P(2,1).
- Proof. (ii) \Rightarrow (i)

For $a \in N$, $an \in aN$ for all $n \in N$ and since $E \subset C(N)$,

$$an = a(m(a)an)$$

= $an(m(a)a)$
= $an[m(a)am(a)a]$ (since $m(a)a \in E$)
= $anm(a)(m(a)a)a$
= $anm(a)^2 a^2$
 $\in Na^2$
 $\therefore aN \subset Na^2$ (A)

Also $na^2 \in Na^2$

$$\Rightarrow na^{2} = na(am(a)a)$$
$$= (am(a))na^{2}$$
$$= a(m(a)na^{2})$$
$$\in aN$$
$$\therefore Na^{2} \subset aN$$

From (A) and (B) we get $aN = Na^2$ for all a in N and (i) follows. Proof of '(i) \Rightarrow (ii)' and that of '(iii) \Rightarrow (ii)' are taken care of by Proposition 2.14. Proof of '(ii) \Rightarrow (iii)' runs parallel to that of '(ii) \Rightarrow (i)' and the theorem follows.

(B)

Remark 2.21. Let *N* admit a mate function 'm' and let $E \subset C(N)$. It is easy to observe that for every x in N, $x = xm(x)x \Rightarrow x = m(x)x^2$. Consequently Proposition 2.18 guarantees that *m* is a P_3 mate function.

As a consequence of Theorem 2.20 and Remark 2.21 we have the following:

Theorem 2.22: Let N admit a mate function 'f'. Then N is a P(r, m) near-ring for all positive integers r, m if and only if N is a P(1, 2) near-ring.

Proof. N is a P(1,2)-near-ring $\Rightarrow E \subset C(N)$ (from Theorem 2.20) Let $a \in x^r N$. $\therefore a = x^r n$ for some n in N. Now $x^r n = (xf(x)x)^r n$ $= x^r (f(x)x)^r n$ (since $f(x)x \in E \subset C(N)$) $= x^r (f(x)xn)$ $= x^r n(f(x)x)$ (since $E \subset C(N)$) $x^r n(f(x)x)^m$ (since $f(x)x \in E$)

124

$$= x^{r} n(f(x))^{m} x^{m}$$
 (since *f* is a *P*₃ mate function from Propositions 2.16
and 2.18)
$$= (x^{r} n(f(x))^{m}) x^{m}$$

$$\in Nx^{m}$$

$$\therefore x^{r} N \subset Nx^{m}.$$

In a similar fashion, we get $Nx^m \subset x^r N$. Hence $x^r N = Nx^m$ and N is a P(r, m) near-ring for all positive integers r and m. The converse is obvious – it follows by taking r = 1 and m = 2.

As an immediate consequence, we have

Corollary 2.23. If N is a P(1,2) near-ring with a right identity, then it is a P(r,m) near-ring for all positive integers r, m.

Proof. N is a P(1,2) near-ring with a right identity $\Rightarrow N$ is an S'-P(1,2) near-ring $\Rightarrow N$ is a P(1,2) near-ring with a mate function (from Proposition 2.16 (i)) $\Rightarrow N$ is a P(r,m) near-ring for all positive integers r,m (from Theorem 2.22).

Remark 2.24. In view of Theorem 2.22, to discuss the properties of a P(r, m)-near-ring we need only to concentrate on P(1, 2) near-rings with mate functions.

To start with we have the following:

Theorem 2.25. Every N-subgroup of N is an ideal in an S' - P(1, 2) near-ring.

Proof: Since N is an S'-P(1,2) near-ring, it admits a mate function 'm' (from Proposition 2.16(i)) and $L = \{0\}$ (from Proposition 2.4(ii)). It is clear from K(2) that N has (*, *IFP*). Again for any non empty $S \subset N$, (0:S) is an ideal of N (by K(3)). If M is any N-subgroup of N, then $M = \sum_{x \in M} Nx$. We first show that each Nx is an ideal. Let S = (0:Nx). We claim that Nx = (0:S). Clearly

$$Nx \subset (0:S) \tag{3}$$

Now if $y \in (0:S)$ then $yS = \{0\}$. Also

$$(y - ym(x)x)m(x)x = 0 \tag{4}$$

 $\Rightarrow (y - ym(x)x)Nm(x)x = \{0\}$ $\Rightarrow (y - ym(x)x)Nx = \{0\} \text{ (using } K(1))$ $\Rightarrow (y - ym(x)x) \in (0: Nx) = S$ Since

$$yS = \{0\}, y(y - ym(x)x) = 0$$
(5)

Using the fact that N has (*, *IFP*), it is easy to get from (4) and (5), $(y - ym(x)x)^2 = 0$. Since $L = \{0\}$ we get $y - ym(x)x = 0 \Rightarrow y = ym(x)x \Rightarrow y = ym(x)x \Rightarrow y \in Nx$. Therefore

$$\therefore (0:S) \subset Nx \tag{6}$$

From (3) and (6) we get Nx = (0:S) and hence Nx is an ideal. The desired result now follows.

Remarks 2.26.

- (a) It is worth noting that in a P(1,2) near-ring with mate functions the concepts of N-subgroups, left ideals, right ideals and ideals are equivalent.
- (b) Recall that the nilradical of N is the greatest nil ideal of N. Since $L = \{0\}$, for an S' P(1, 2) near-ring N, it follows that the nilradical of $N = \{0\}$.

Proposition 2.27. Let N be an S'-P(1,2) near-ring. Then any N-subgroup of N is a completely semiprime ideal.

Proof. Suppose *I* is an *N*-subgroup of *N*. From Theorem 2.25 it follows that *I* is an ideal. Let $x^2 \in I$. Since *N* has strong *IFP*, $xm(x)x \in I$ i.e. $x \in I$. Hence *I* is a completely semiprime ideal.

From p.289 of Pilz [3] we have the following:

Definition 2.28. A near-ring N has property P_4 if for all ideals I of N, $xy \in I \Rightarrow yx \in I$.

Proposition 2.29. An S' - P(1, 2) near-ring has property P_4 .

Proof. Let *I* be an ideal of *N* and let $xy \in I$. Now $(yx)^2 = (yx)(yx)$ = $y(xy)x \in NIN \subset I$ (using Remark 2.26 (a)) $\Rightarrow (yx)^2 \in I$. Using Proposition 2.27 we get $yx \in I$ i.e. *N* has property P_4 .

126

P(r, m) Near-Rings

Definition 2.30. For any subset A of N we define $\sqrt{A} = \{x \in N \mid x^k \in A \text{ for some positive integer } k\}$.

Proposition 2.31. Let N be an S' - P(1, 2) near-ring. Then $A = \sqrt{A}$ for any N-subgroup A of N.

Proof. Let $x \in \sqrt{A}$. Then there exists some positive integer k such that $x^k \in A$. Since N is an S' - P(1, 2) near-ring, $x \in xN = Nx^2 \Rightarrow x = nx^2$ for some $n \in N \Rightarrow x = nx^2 = n^2x^3 = \dots = n^{k-1}x^k \in NA \subset$ i.e. $x \in A$. $\therefore \sqrt{A} \subset A$. But obviously $A \subset \sqrt{A}$ and hence the desired result.

Proposition 2.32. If N is an S' - P(1, 2) near-ring, then

- *(i) N is a semiprime near-ring*
- (ii) $A \cap B = AB$ for all N-subgroups A, B of N
- (iii) $Na \cap Nb = Nab \text{ for all } a, b \in N$
- (iv) every ideal I fulfills $I = I^2$.

Proof. Since N is an S' - P(1, 2) near-ring, it admits a mate function 'm'.

- (i) Let A be an N-subgroup of N. Then A is an ideal of N. Let I be any ideal of N such that I² ⊂ A. If a ∈ I, then a = a(m(a)a) ∈ I(NI) ⊂ I² ⊂ A ⇒ a ∈ A ⇒ I ⊂ A. Thus any N-subgroup A of N is a semiprime ideal. In particular {0} is a semiprime ideal and therefore N is a semiprime near-ring.
- (ii) Let *A* and *B* be two *N*-subgroups of *N*. By Proposition 2.8 both are invariant *N*-subgroups and consequently

$$AB \subset A \cap B \,. \tag{7}$$

To prove the reverse inclusion, we note that for any $x \in A \cap B$, $x = xm(x)x = xm(x)x = (m(x)x)x \in (NA)B \subset AB \implies x \in AB$, hence

$$A \cap B \subset AB \tag{8}$$

(1) and (2) yield (ii).

- (iii) Clearly Na and Nb are N-subgroups of N. Now $Na \cap Nb = N(aN)b$. From Theorem 2.22, N is P(1,1) also. Hence, $Na \cap Nb = NaNb = N(Na)b = Nab$. Therefore (iii) follows.
- (iv) Take A = B = I in (i) and appeal to Remark 2.26 (a).

Definition 2.33. An N-subgroup $A \neq \{0\}$ of N is called essential if $A \cap B = \{0\}$, where B is any N-subgroup of N, implies $B = \{0\}$.

Proposition 2.34. Let N be an S' - P(1,2) near-ring. If N has no non-zero zero-divisors, then every N-subgroup of N is essential.

Proof. Let $A \neq \{0\}$ be an *N*-subgroup of *N*. Suppose there exists an *N*-subgroup *B* of *N* such that $A \cap B = \{0\}$. This implies $AB = \{0\}$ (using Proposition 2.31 (i)). Since *N* has no non-zero zero-divisors, we get $B = \{0\}$ and the result follows.

3.

In this section we obtain a structure theorem for P(1, 2) near-rings. Throughout this section N denotes an S' - P(1, 2) near-ring and m is a mate function for N.

Theorem 3.1. *N* is subdirectly irreducible if and only if N is a near-field.

Proof. Suppose N is subdirectly irreducible. First we claim that no non-zero idempotent of N is a zero-divisor. Let J be the set of all non-zero idempotents which are zero-divisors and let $J \neq \phi$. Let $I = \bigcap_{e \in J} (0:e)$. Since N is subdirectly irreducible,

 $I \neq \{0\}$. Let $a \in I - \{0\}$. Thus

$$ae = 0$$
 for all e in J . (9)

This $\Rightarrow m(a)ae = 0 \Rightarrow em(a)a = 0$ (using K(2)) $\Rightarrow m(a)a \in J$.

From (9) we get $am(a)a = 0 \Rightarrow a = 0$. This contradiction implies that no non-zero idempotent of N is a zero-divisor.

We shall now prove that N has no non-trivial N-Subgroups. Let M be any N-subgroup of N such that $M \neq \{0\}$ and let $x(\neq 0) \in M$. The fact that N is a P(r,k) near ring (from Theorem 2.22) for all positive integers r,k forces $Nx = Nx^2$ for all x in N. For any $n \in N$, there exists n_1 in N such that $nx = n_1x^2 \Rightarrow (n - n_1x)x = 0 \Rightarrow (n - n_1x)xm(m) = 0$. $\Rightarrow n - n_1x = 0$ (from (ii)) $\Rightarrow n = n_1x \in NM \subset M$. $\therefore N \subset M$. i.e. M = N.

Thus *N* has no non-trivial *N*-subgroups. Clearly for $n \in N - \{0\}$, *Nn* is an *N*-subgroup of *N*. Consequently Nn = N for all

$$n \in N - \{0\} \tag{10}$$

P(r, m) Near-Rings

Also, it is clear that $N_d \neq \{0\}$ (as $(E \subset C(N) \subset N_d)$). This and (10) guarantee that N is a near-field. (Theorem 8.3, Pilz [3]).

Converse is obvious.

As an immediate consequence of Theorem 3.1, we have the following:

Corollary 3.2. N has no non-zero zero-divisors if and only if N is a near-field.

We are now in a position to give a structure theorem for N.

Theorem 3.3. N is isomorphic to a subdirect product of near-fields.

Proof. From Theorem 2.7, N is isomorphic to a subdirect product of subdirectly irreducible P(1, 2) near-rings, N_i 's, say. Obviously the existence of a mate function is preserved under homomorphisms. Hence each N_i admits a mate function. Appealing to Theorem 3.1 we get N is isomorphic to a subdirect product of near-fields.

Remark 3.4. From 8.11 of [3], the additive group of a near-field is abelian. It follows that for any P(1, 2) near-ring N with mate functions, (N, +) is abelian.

Proposition 3.5. Let N be a Boolean near-ring. Then N is P(1,2) if and only if it is a commutative ring.

Proof. We observe that identity function is a mate function for N. Appealing to Theorem 2.20 and Remark 3.4 we see that when N is a P(1, 2) near-ring, $N = E \subset C(N)$ and (N, +) is abelian and hence N is a commutative ring.

Conversely N is Boolean and a commutative ring \Rightarrow N is P(1,1)

 $\Rightarrow xN = Nx = Nx^2$. Hence the result.

Proposition 3.6. If N is distributively generated and has no non-zero zero-divisors then N is a division ring.

Proof. Corollary 3.2 guarantees that N is a near-field. Also (N, +) is abelian (by Remark 3.4). Since N is distributively generated, we see that N is a ring (from Theorem 6.6(c) of Pilz [3]) and hence the result.

Proposition 3.7. If N is strictly prime then N is subdirectly irreducible. In fact N is a near-field.

Proof. In view of Corollary 3.2 and Theorem 3.1, it is enough to show that N has no non-zero zero-divisors. Let $x, y \in N$ be such that xy = 0. Clearly Nx and Ny are N-subgroups of N and $NxNy = Nxy = N0 = \{0\}$. Since N is strictly prime we have either

 $Nx = \{0\}$ or $Ny = \{0\}$. This forces x = 0 or y = 0. Hence N has no non-zero zerodivisors and the proof is complete.

Since the concepts of N-subgroups and ideals coincide in S' - P(1, 2) near-rings we have the following obvious result:

Proposition 3.8. *N* is strictly prime if and only if *N* is a prime near-ring.

Proposition 3.9. Any strictly prime ideal of N is maximal.

Proof. Let *M* be a strictly prime ideal of *N*. Then *N*/*M* is a strictly prime near-ring. Since *N*/*M* is the image of *N* under the canonical homomorphism, it is also an S' - P(1, 2) near-ring i.e. a P(1, 2) near-ring with a mate function. Hence from Proposition 3.7, *N*/*M* is a near field. i.e. *M* is maximal.

We conclude our discussion of S' - P(1, 2) near-rings with the following:

Theorem 3.10. If N is 2 primitive then N is a near field.

Proof. Since N is 2 primitive, from Corollary 4.4(c), Pilz [3], there exists a left ideal I of N such that I is 2-modular and $(I:N) = \{0\}$. By Corollary 3.24 Pilz [3], $(I:N) \subset I$. Since N is P(1, 2), I is an ideal. $\therefore IN \subset I \Rightarrow I \subset (I:N)$.

From above, $I = (I : N) = \{0\}$. $\therefore N \cong N/I$ is an N-group of Type 2. $\therefore N$ has no non-trivial N-subgroups. From stages (10) of Theorem 3.1 we get the desired result.

Remark 3.11. In view of Remark 2.24 we observe that all the results we have established for an S' - P(1,2) near-ring are valid for a P(r,m) near-ring with mate functions where r and m are any two positive integers.

Acknowledgement. The authors wish to thank the referee for his valuable suggestions.

References

- 1. J.R. Clay, The near-rings on groups of low order, Math. Z. 104 (1968), 364-371.
- 2. N.H. McCoy, The Theory of Rings, MacMillan & Co., 1970.
- 3. G. Pilz, Near-rings, North Holland/American Elsevier, Amsterdam, 1983.
- 4. S. Suryanarayanan and N. Ganesan, Stable and Pseudo stable near-rings, *Indian J. Pure and Appl. Math* **19** (12) (December, 1988), 1206-1216.
- 5. S. Suryanarayanan, Near-rings with P₃-mate functions, *Bull. Malaysian Math. Soc. (Second Series)* **19** (1996), 17-24.