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Abstract.  In this paper we introduce the concept of P(r, m) near-rings where r, m are positive 
integers.  Under certain conditions, we (i) obtain a complete characterization of such near-rings            
(ii) discuss their properties vis-a-vis subdirect irreducibility, semiprimeness etc. and (iii) obtain a 
structure theorem for such near-rings. 

1.   Introduction

A right near-ring ),,( N is an algebraic system with  two binary  operations  such  that  
(i) ),(N  is  a  group-not necessarily abelian-with 0 as its  identity  element,  (ii)  ),( N
is a semigroup (we write xy  for yx  for all yx,  in N) and (iii)  yzxzzyx )(  for 
all zyx ,,  in N.  Because of (iii)  00n for all n in N.  As we do not stipulate the left 
distributive law,  "00"n  need not hold good for all n in N.   We say that N is zero-
symmetric if  00n  for all n in N.   N is called an S-near-ring or an  S'-near-ring  
according as Nxx  or  xNx  for all .Nx   A subgroup M of N is called an N-
subgroup if  MNM  and an invariant N-subgroup if, in addition, .MMN
 An ideal  I of N is called a semiprime ideal  if  for  all ideals J of N,

.2 IJIJ  If {0} is a semiprime ideal, then N is  called a semiprime near-ring.  
An ideal I of N is called completely  semiprime  if  Ix  whenever  .2 Ix N is called  
a strictly prime near-ring if {0} is a strictly prime ideal i.e.  if A  and  B  are N-subgroups 
of N such that },0{AB  then  either  }0{A  or }.0{B
 The  concept of a mate function in N has been introduced  in [4] with a view to 
handle the regularity structure in a near-ring with  considerable ease.  A map m from N
into N is called a  mate function  for N, if xxxmx )(  for all x in N.   )(xm  is  called  a 
mate of x.
 Basic concepts and terms used but not defined in this paper can  be found in Pilz [3].  
Throughout this paper N stands for a near-ring – more precisely a right near-ring – with at  
least two  elements. 
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 As in p.249 Pilz [3], “if N is a near-field then either N is isomorphic to )( 2ZM c  or 
N is zero-symmetric” (For the concept of )( 2ZM c one may refer to Example 1.4(a), p.8 
and 1.15, p.12 of Pilz [3].  Obviously )( 2ZM c  is a near-field of order 2 and is not            
zero-symmetric).  All  the  near-fields in  this  paper  are  zero-symmetric. 

1.2.   Notations 

(a) E denotes the set of all idempotents of  N.
(b)  L is the set of all nilpotent elements of N.
(c) NyxnynxyxnNnN d ,allfor,)(/ – the set of all distributive 

elements of N.
(d)  00/0 nNnN – the zero-symmetric part of N  (It is worth noting that N is 

zero-symmetric if 0NN ).
(e) .allfor/)( NxxnnxNnNC

1.3.  Preliminary results 

We freely make use of the following results from  [4], [3] and [2] and designate them as 
K(1), K(2) etc.  (K for ‘known results’). 

K(1):   If N has a mate function m, then for every ExxmxxmNx )(),(,  and 
xxNmNx )( and .)( NxxmxN   (Lemma 3.2 of [4]). 

K(2):  If }0{L and ,0NN  then (i) 00 yxxy  (for yx,  in  N) and (ii) N has 
"Insertion of Factors Property" – IFP  for short – i.e. for yx, in N,

00 xnyxy  for all n in N.  (In this paper we write that N has (*, IFP) if N
has both (i) and (ii)) (Lemma 2.3 of [4]). 

K(3):  A  zero-symmetric near-ring N has IFP if and only  if ):0( S  is  an  ideal, where 
S is any non-empty  subset  of  N. (9.3, p.289 of [3]). 

K(4):  A near-ring N has no non-zero nilpotent elements if and only if 002 xx
for all x in N (Prob. 14 , p.9 of [2]). 

2. P(r, m) near-rings 

We shall start with the following. 

Definition 2.1. A near-ring N is said to have the property ),( mrP  if mr NxNx  for 
all x in N where r and m are positive integers. 
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Examples 2.2.  

(a)  The direct product of any two near fields is a  ),( mrP  near-ring for all positive 
integers r and m.

(b)  A Boolean )1,1(P near-ring is a ),( mrP near-ring  for all positive integers r and m.
(c)  Let N be an arbitrary near-ring and let I be the ideal generated by 

{ bnabana mr ,,/ are in N and r, m are fixed positive  integers}.  Obviously then 
the factor near-ring INN /  is a ),( mrP near-ring.  (This incidentally serves as 
a device for manufacturing ),( mrP near-rings for all positive  integers mr,  from 
an arbitrary near-ring.) 

(d)  Let ),(N be the Klein's four group with }.,,,0{ cbaN   The near-ring  ),,(N
where ‘.’ is defined as (per  scheme  (12) p. 408 of Pilz [3] which forms part of 
Clay [1]) 

. 0 a b c 
0 0 0 0 0 
a 0 a 0 a 
b 0 0 0 0 
c 0 a 0 a 

    is a ),( mrP near-ring for all positive integers r,m.
 (e)  Let ),(N  be the group of integers modulo 8.  We define ‘.’ as per scheme         

(48) p. 413 of Pilz [3] as follows: 

. 0 1 2 3 4 5 6 7 
0 0 0 0 0 0 0 0 0 
1 0 2 4 2 0 2 4 6 
2 0 4 0 4 0 4 0 4 
3 0 6 4 6 0 6 4 2 
4 0 0 0 0 0 0 0 0 
5 0 2 4 2 0 2 4 6 
6 0 4 0 4 0 4 0 4 
7 0 6 4 6 0 6 4 2 

),,(N  is a )1,1(P  near-ring but is neither )2,1(P  nor ).1,2(P   It is worth noting 
that this near-ring does not admit mate functions. 

(f)  Consider ),,(N  where ),(N  is the Klein's four group and ‘.’ is defined as per 
scheme (4) p.408 of Pilz [3] as follows: 
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. 0 a b c 
0 0 0 0 0 
a 0 0 a a 
b 0 a c b 
c 0 a b c 

This near-ring (actually a Commutative Ring)is obviously ).1,1(P  But it is neither 
)2,1(P  nor ).1,2(P  Thus )"1,1(" P need not  imply  )"2,1(" P  or  )"1,2(" P  even  in  the  

Ring  Theory.  (Incidentally this near-ring has the property ),( rrP i.e. rr NxNx for 
any positive integer r).

Remark 2.3.   It is easy to see that a ),( mrP  near-ring is  zero-symmetric. 

Properties of  P(1, 2) and P(2, 1) near-rings 

We shall obtain a complete characterization for )2,1(P and )1,2(P near-rings and  obtain    
structure  theorems  for  such near-rings – under certain conditions. 

Proposition 2.4.   Let N be a P(1,2) near-ring. 
 (i)  If N has no non-zero nilpotent elements  then  N  is  an S-near-ring. 
(ii)  If N is an S'-near-ring then N has no non-zero nilpotent elements. 

Proof.
(i)  Since 2NxxN and xNx 2  for all x in N, we have 22 yxx  for some y in N.

Therefore .0)( xyxx   By K(2), this implies that 0)( yxxx and

.0)( yxxyx  Consequently .0)( 2yxx   Since ,0},0{ yxxL forcing 
.yxx   Thus Nxx  i.e. N is an S-near-ring. 

(ii)  If N is an S'-near-ring then xNx and since 2NxxN  we get 2nxx  for some 
.Nn   Therefore .002 xx N has no non-zero nilpotent elements, from 

K(4). 

Corollary 2.5.  If N is a )2,1(P  near-ring  without  non-zero nilpotent elements, then 
from )2(K , we see that N has .)(*, IFP

 It is obvious that the property ),( mrP   is  preserved  by  near-ring homomorphisms. 
Consequently, we have 

Proposition 2.6. Any homomorphic image of a )2,1(P ))1,2((P  near-ring is )2,1(P
))1,2((P .
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 As an immediate consequence of Proposition 2.6 we have the following theorem: 

Theorem 2.7. Every ))1,2(()2,1( PP  near-ring N  is isomorphic to a subdirect product 
of subdirectly irreducible ))1,2(()2,1( PP  near-rings.   

Proof. By Theorem 1.62, p.26 of Pilz [3], N is isomorphic to a subdirect product  of 
subdirectly irreducible  near-rings  ,' sNi say, and each iN  is a homomorphic image of N
under the projection map i .   The desired result now follows from Proposition 2.6. 

 We shall now discuss the behaviour of N-subgroups and ideals  of  )2,1(P  near-
rings.  To start  with  we have  the following: 

Proposition 2.8. Let N be a )2,1(P near-ring.  Then every N-subgroup of N is invariant.

Proof. If A is an N-subgroup of N, then .ANA   Whenever ,ANan  we have 
22 ' ananNaaNan  for some .' Nn   This forces .AANANAan

Hence A  is  an invariant  N-subgroup. 

Proposition 2.9. Let N be a )2,1(P near-ring.  Then every left ideal of N is an ideal . 

Proof.  Let A be a left ideal of N.  Since N is zero-symmetric, ANA  i.e. A is an             
N-subgroup  of  N.   Proceeding as  in Proposition 2.8 we get .AAN   Hence A
becomes an ideal. 

 It is easy to observe the following: 

Corollary 2.10.  Every left ideal (and therefore every  ideal) of a )2,1(P  near-ring N is 
an invariant N-subgroup of N.

Proposition 2.11. If N is a )2,1(P  or a )1,2(P  near-ring then N has strong IFP. 

Proof.  Let N be a )2,1(P  near-ring.  In view of Proposition 9.2 Pilz [3], we need only 
to establish that for all ideals I of N and  for all ,,, Nnba .IanbIab   Since              
I is  an ideal,  IIN  and since N is zero-symmetric, I is  an  N-subgroup of  N                   
i.e. .INI   Now  22 ' ananNaaNan  for some bananbNn )'(' 2

.))('( IanbNIaban

 When N is a )1,2(P  near-ring we observe that  '22 nbnbNbNbnb  for 

some .)')(()'(' 2 IanbINbnabnbaanbNn

Notation 2.12.   If a ),( mrP  near-ring N is an S (or  S')-near-ring then we write that N is 
an ),( mrPS near-ring (or ),(' mrPS near-ring).
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Remark 2.13.   For an )1,2(PS near-ring, we see that for all x in N, NxNxx 2

nxx 2  for some .Nn    Hence 002 xx  and K(4) demands that }.0{L

Proposition 2.14.   In a )2,1(P )1,2(P  near-ring, ).(NCE

Proof.  For  .)(, 22 eNeNeNeNeeNNeNeNeeNEe   It follows that   
neeneen )(  for all Nn   i.e. ).(NCE

Remark 2.15.   It is worth noting that we do not stipulate that  N admits mate functions 
for the validity of the above results. 

Proposition 2.16. 

(i)  Let N be a )2,1(P near-ring.  Then N has a mate function if and only if N is an            
S'-near-ring. 

(ii)  Let N be a )1,2(P  near-ring with .dNN   Then N has a mate function if and 
only if N is an S-near-ring. 

Proof.

(i)  When N has a mate function `m' for all  xNxxxmxNx )(,  and obviously N
is an S'-near-ring. 
Conversely let N be an S' near-ring.  2NxxNx

2nxx  for some Nn                                              (1) 

.0)(22 xxnxxxnxx  Using Proposition 2.4(ii)  and Corollary 2.5 we 

get 0)( xnxxx and 0)( xnxxxnx and  consequently .0)( 2xnxx   Since 
}0{L  we get  0xnxx  i.e. xxxmx )(  where  we set .)( nxm   This 

guarantees that NNm :  is a mate function for N.

 (ii)  When N has a mate function, it is obvious  that  N  is  an S-near-ring. 
Conversely if N is an PS (2,1) near-ring with  NxNxxNN d

2,

nxx 2   for some n in N                                            (2) 

.0)(0)(22 xnxxxnxxnxxxnxxx  Rest of the proof is as in (i). 
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Remarks 2.17.

(a)  If N has property )1,2(P  and a mate function ‘m’, then }.0{L   This is obvious 
from Remark 2.13 and the fact that when N has a mate function ‘m’ it is an                 
S-near-ring. 

(b)  As in Corollary 2.5, K(2) yields that a )1,2(P near-ring with a mate function 
possesses   (*, IFP).  

(c)  A )1,2(P Ring has a mate function if and only if it is  an S-Ring. 

Proposition 2.18. Let N be an )2,1(PS near-ring  (or an )1,2(PS  near-ring with 

dNN ).   Then N  has  a  3P  mate function [5]. 

Proof.   When N is an )2,1(' PS  near-ring it admits  a  mate function ‘m’.  From              

stage (1) of Proposition 2.16  we  have 0))()(()( 2 xxxmxxmxxmx

0))()(( 2xxmxxm (since N has xxmxxmxxmxxmIFP )()(0)()()(*,
i.e. )()( xCxm  i.e. ‘m’ is a 3P  mate function. 
 (When  N  is an )1,2(PS near-ring starting with stage (2) of Proposition 2.16 (ii) 
we can show that )()( xCxm ).

 Propositions 2.16(i),  2.4 and Corollary 2.5  readily  yield  the following: 

Proposition 2.19. If N has property )2,1(P and a mate function ‘m’ then }0{L  and N 
has  ).(*, IFP

 We now give a complete characterization of )2,1(P  and )1,2(P  near-rings when 
they admit mate functions. 

Theorem 2.20. Let N be a near-ring with a mate function ‘m’.  Then the following 
statements are equivalent: 

(i) N is P(1,2) 

(ii) )(NCE

(iii) N is )1,2(P .

Proof.   (ii)  (i) 

For ,Na aNan  for all Nn  and  since  ),(NCE
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 an  = a(m(a)an)
       = an(m(a)a)
     = an[m(a)am(a)a]    (since Eaam )( )
     = anm(a)(m(a)a)a
     = 22)( aaanm
      

2Na

     2NaaN (A) 

Also 22 Nana
))((2 aaamnana

            = 2))(( naaam

           = ))(( 2naama
          aN

aNNa 2  (B) 

From (A) and (B) we get 2NaaN  for all a in N and (i) follows. 
Proof of  ‘(i)  (ii)’ and that of  ‘(iii)  (ii)’ are taken care of by Proposition 2.14. 
Proof of ‘(ii)  (iii)’ runs parallel to that of ‘(ii)  (i)’ and the theorem follows. 

Remark 2.21.  Let N admit a mate function ‘m’ and let ).(NCE   It is easy to observe 

that for every x in N, .)()( 2xxmxxxxmx  Consequently Proposition 2.18 
guarantees that  m is  a 3P  mate function. 

 As a consequence of Theorem 2.20 and Remark 2.21 we have the following: 

Theorem 2.22:  Let N admit a mate function ‘f’.  Then N is a ),( mrP  near-ring for all 
positive integers mr,  if and only if N is a )2,1(P near-ring. 

Proof.   N is a )2,1(P -near-ring )(NCE (from Theorem 2.20) 

Let .Nxa r nxa r   for some n in N.
Now nxxxfnx rr ))((

             nxxfx rr ))((    (since ))()( NCExxf

))(( xnxfx r

             ))(( xxfnx r         (since ))(NCE

             mr xxfnx ))((  (since ))( Exxf
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            mmr xxfnx ))((  (since f is a 3P mate function from Propositions 2.16 
     and 2.18) 
            mmr xxfnx )))(((

           mNx
            mr NxNx .

In a similar fashion, we get NxNx rm .  Hence mr NxNx and N  is a ),( mrP            
near-ring for all positive integers r and m.  The converse is obvious – it follows by taking 

1r  and .2m

 As an immediate consequence, we have  

Corollary 2.23.   If N is a )2,1(P  near-ring  with  a  right identity, then  it  is  a ),( mrP
near-ring  for  all  positive integers r, m.

Proof. N  is a )2,1(P  near-ring with a right identity N is an )2,1(' PS near-ring      
N is a )2,1(P  near-ring  with  a mate function (from Proposition 2.16 (i))                    

N is a ),( mrP  near-ring for all positive integers mr,  (from Theorem 2.22). 

Remark 2.24.   In view of  Theorem 2.22, to discuss the properties of a P(r, m)-near-ring 
we need only to concentrate on  )2,1(P  near-rings with mate functions. 

 To start with we have the following: 

Theorem 2.25. Every N-subgroup of N is an ideal in an )2,1(PS  near-ring. 

Proof: Since N is an )2,1(' PS near-ring, it admits a mate function ‘m’ (from           
Proposition 2.16(i)) and  }0{L (from Proposition 2.4(ii)).  It is clear from K(2) that N
has (*, IFP).  Again for any non empty ):0(, SNS  is an ideal of N (by K(3)). 
If M is any N-subgroup of N, then 

Mx
NxM .  We first show that each Nx is an ideal.  

Let ).:0( NxS   We claim that  ).:0( SNx
Clearly

):0( SNx                                                         (3) 

Now if ):0( Sy  then .}0{yS
Also

0)())(( xxmxxymy                                               (4) 
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}0{)())(( xxNmxxymy
}0{))(( Nxxxymy  (using K(1)) 

SNxxxymy ):0())((
Since

0))((},0{ xxymyyyS                                              (5) 

 Using the fact that N has (*, IFP), it is easy to get  from (4) and                                   
(5), .0))(( 2xxymy    Since }0{L  we get xxymyxxymy )(0)(

Nxyxxymyxxymy )()( .  Therefore 

NxS):0(                                                            (6) 

 From  (3)  and  (6) we get ):0( SNx and hence  Nx  is  an ideal.  The desired result 
now follows. 

Remarks 2.26.

(a) It is worth noting that in a )2,1(P near-ring with mate functions the  concepts  of          
N-subgroups,  left ideals, right ideals and ideals are equivalent. 

(b) Recall  that the nilradical of N is the greatest nil ideal of N.  Since },0{L  for an            
)2,1(PS  near-ring N, it follows that the nilradical of }.0{N

Proposition 2.27.  Let N be an )2,1(' PS  near-ring.  Then any N-subgroup of N is a 
completely semiprime ideal. 

Proof. Suppose I is an N-subgroup of N.  From Theorem 2.25  it follows  that I is an 
ideal.  Let .2 Ix   Since N has strong IFP, Ixxxm )(  i.e. .Ix   Hence I is a 
completely  semiprime ideal. 

 From p.289 of Pilz [3] we have the following: 

Definition 2.28.   A near-ring N has property 4P if  for all ideals I of N, .IyxIxy

Proposition 2.29.   An )2,1(PS  near-ring has property  .4P

Proof.  Let I be an ideal of N and let .Ixy   Now ))(()( 2 yxyxyx

ININxxyy )(  (using Remark 2.26 (a)) .)( 2 Iyx   Using Proposition 2.27 we 
get Iyx  i.e. N has property .4P
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Definition 2.30.  For any subset A of N we define AxNxA k/{  for some 
positive integer k}.

Proposition 2.31.  Let N be an )2,1(PS  near-ring.  Then AA   for any                       
N-subgroup A of N. 

Proof.   Let .Ax   Then there exists some positive integer k such that  .Ax k .              

Since N is an )2,1(PS  near-ring, 22 nxxNxxNx  for some 

NAxnxnnxxNn kk 1322  i.e. .Ax .AA    But 

obviously AA  and hence the desired result. 

Proposition 2.32. If N is an )2,1(PS  near-ring, then

(i)  N is a semiprime near-ring 
(ii) ABBA   for all N-subgroups A,B of N 
(iii)  NabNbNa  for all  Nba,
(iv)  every ideal I fulfills .2II

Proof.  Since N is an )2,1(PS  near-ring, it admits  a  mate function ‘m’.

(i)  Let A be an N-subgroup of N.  Then A is an ideal of  N. Let I be any                          
ideal of N such that  .2 AI   If ,Ia  then AINIIaamaa 2)())((

AIAa .  Thus any N-subgroup A of N is a  semiprime ideal.  In 
particular {0} is a semiprime ideal and therefore N is a semiprime near-ring. 

(ii) Let A and B be two N-subgroups of N.  By Proposition 2.8 both are invariant              
N-subgroups and consequently  

BAAB .                                                       (7) 

To prove the reverse inclusion, we note that for any 
ABxABBNAxxxmxxxmxxxmxBAx )())(()()(, , hence 

ABBA                                                          (8) 

 (1) and (2) yield (ii). 

(iii)  Clearly Na and Nb are N-subgroups of N.  Now .)( baNNNbNa   From 
Theorem 2.22, N is )1,1(P also. Hence, .)( NabbNaNNaNbNbNa
Therefore (iii) follows. 

(iv)   Take IBA  in (i) and appeal to Remark 2.26 (a). 
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Definition 2.33. An N-subgroup }0{A of  N is called essential  if },0{BA where 
B is any   N-subgroup of N, implies .}0{B

Proposition 2.34. Let N be an )2,1(PS  near-ring. If N has no non-zero                     
zero-divisors, then  every N-subgroup  of  N  is essential.

Proof.  Let  }0{A  be an N-subgroup of  N.   Suppose  there exists  an N-subgroup B of 
N such that }.0{BA   This  implies  }0{AB (using Proposition 2.31 (i)).  Since N
has no  non-zero zero-divisors, we get }0{B and the result follows. 

3.

In  this section we obtain a structure theorem for )2,1(P near-rings.  Throughout this  
section N  denotes  an )2,1(PS  near-ring and m is a mate function for N.

Theorem 3.1. N is subdirectly irreducible if and only if N is a near-field.

Proof.  Suppose N is subdirectly irreducible.  First we claim that no non-zero idempotent 
of N is a zero-divisor.  Let J be the set of all non-zero idempotents which are                    
zero-divisors and let  .J   Let .):0( eI

Je
 Since N is subdirectly irreducible, 

}.0{I   Let }.0{Ia   Thus 

0ae  for all e in J .                                                 (9)   

This 0)(0)( aaemaeam  (using K(2)) .)( Jaam
 From  (9) we get .00)( aaaam   This contradiction implies that no non-zero   
idempotent  of N is a zero-divisor. 
       
 We shall now prove that N has no non-trivial N-Subgroups.  Let M be any                     
N-subgroup of N such that }0{M  and  let .)0( Mx   The fact that N is a ),( krP

near ring (from  Theorem 2.22)  for  all positive integers kr,  forces 2NxNx  for           
all x in N.  For any ,Nn  there exists 1n  in N such that 

0)( 1
2

1 xxnnxnnx .0)()( 1 mxmxnn
01xnn  (from (ii)) .1 MNMxnn .MN   i.e. .NM

Thus  N  has  no  non-trivial  N-subgroups.   Clearly for NnNn },0{  is an                      
N-subgroup of N.   Consequently NNn  for all   

}0{Nn                                                        (10) 
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Also, it is clear that  }0{dN  (as dNNCE )( .  This and (10) guarantee that N is 
a near-field.  (Theorem  8.3, Pilz [3]). 
 Converse is obvious. 

 As  an  immediate  consequence of Theorem 3.1, we  have  the following: 

Corollary 3.2.  N has no non-zero zero-divisors if and only if  N is a near-field. 

 We are now in a position to give a structure theorem for N.

Theorem 3.3.  N is  isomorphic  to  a  subdirect  product   of near-fields.

Proof.  From Theorem 2.7, N is isomorphic to a  subdirect product of subdirectly 
irreducible )2,1(P  near-rings, s'iN , say.  Obviously the existence of a mate function is  
preserved  under homomorphisms.  Hence each iN  admits a mate function.  Appealing to 
Theorem 3.1 we get N is isomorphic to a subdirect product  of near-fields. 

Remark 3.4.   From 8.11 of [3],  the  additive  group  of   a near-field is abelian.              
It follows that for any   )2,1(P   near-ring N with mate functions, ),(N  is abelian. 

Proposition 3.5. Let N be a Boolean near-ring. Then N is )2,1(P  if and only if it is a 
commutative ring. 

Proof.  We observe that identity function is a  mate  function for N.  Appealing to       
Theorem 2.20 and Remark 3.4 we see that when N is a )2,1(P near-ring, )(NCEN
and ),(N  is abelian  and hence N is a commutative ring. 
 Conversely  N  is  Boolean and a commutative ring  N is )1,1(P       

.2NxNxxN   Hence the result. 

Proposition 3.6.  If  N is distributively generated and has  no non-zero zero-divisors 
then N is a division ring.

Proof.  Corollary 3.2 guarantees that N is a near-field.  Also ),(N  is abelian (by 
Remark 3.4).  Since N  is  distributively generated, we  see  that  N is a  ring (from  
Theorem  6.6(c)  of   Pilz [3]) and hence the result. 

Proposition 3.7. If N is strictly prime then N is subdirectly irreducible.  In fact N is a 
near-field.

Proof.  In view of Corollary 3.2 and Theorem 3.1, it is enough to show that N has no non-
zero zero-divisors.  Let  Nyx,  be such  that .0xy   Clearly Nx and Ny are                      
N-subgroups of N and }.0{0NNxyNxNy   Since N is strictly prime we have either 
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}0{Nx  or  }.0{Ny  This forces 0x or .0y   Hence N has no  non-zero zero-
divisors and the proof is complete. 

 Since  the  concepts of N-subgroups and ideals  coincide  in  )2,1(PS near-rings 
we have the following obvious result: 

Proposition 3.8.  N is strictly prime if and only if N  is  a prime near-ring. 

Proposition 3.9.  Any strictly prime ideal of N is maximal.

Proof.  Let M be a strictly prime ideal of N.  Then N/M is a strictly prime near-ring. 
Since N/M is the image of N under  the canonical homomorphism, it is also an 

)2,1(PS  near-ring i.e. a )2,1(P near-ring with a mate function.  Hence from 
Proposition 3.7, N/M is a near field.  i.e. M is maximal. 

 We  conclude our discussion of )2,1(PS  near-rings  with the following: 

Theorem 3.10. If N is 2 primitive then N is a near field.

Proof.  Since N is 2 primitive, from Corollary 4.4(c),  Pilz [3], there exists a left ideal             
I of N such that I is 2-modular and .}0{):( NI   By Corollary 3.24 Pilz [3], .):( INI
Since N is ),2,1(P I is an ideal.  .):( NIIIIN

From above, }.0{):( NII )( INN  is an N-group of Type 2.  N has no 
non-trivial N-subgroups.  From stages  (10) of Theorem 3.1 we get the desired result. 

Remark 3.11.  In  view  of Remark 2.24 we observe that  all  the results  we  have 
established for an )2,1(PS near-ring  are valid for a ),( mrP  near-ring with mate 
functions where r and  m are any two positive integers. 
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