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Abstract. In this paper we introduce the concept of P(r, m) near-rings where », m are positive
integers. Under certain conditions, we (i) obtain a complete characterization of such near-rings
(i) discuss their properties vis-a-vis subdirect irreducibility, semiprimeness etc. and (iii) obtain a
structure theorem for such near-rings.

1. Introduction

A right near-ring (N, +,-)is an algebraic system with two binary operations such that
(1) (N,+) is a group-not necessarily abelian-with 0 as its identity element, (ii)) (N,)
is a semigroup (we write xy for x-y for all x,y in N) and (iii)) (x+ y)z=xz+ yz for
all x,y,z in N. Because of (iii) On=0for all » in N. As we do not stipulate the left

distributive law, "n0=0" need not hold good for all » in N.  We say that N is zero-
symmetric if #0=0 for all » in N. N is called an S-near-ring or an S'-near-ring
according as x€ Nx or xexN for all xe N. A subgroup M of N is called an N-
subgroup if NM c M and an invariant N-subgroup if, in addition, MN < M.

An ideal [ of N is called a semiprime ideal if for all ideals J of N,
JiclI=Jcl If {0} is a semiprime ideal, then N is called a semiprime near-ring.

An ideal J of N is called completely semiprime if x e/ whenever x* el. Nis called
a strictly prime near-ring if {0} is a strictly prime ideal i.e. if 4 and B are N-subgroups
of N such that 4B = {0}, then either 4={0} or B ={0}.

The concept of a mate function in N has been introduced in [4] with a view to
handle the regularity structure in a near-ring with considerable ease. A map m from N
into N is called a mate function for N, if x = xm(x)x forall x in N. m(x) is called a

mate of x.

Basic concepts and terms used but not defined in this paper can be found in Pilz [3].
Throughout this paper N stands for a near-ring — more precisely a right near-ring — with at
least two elements.
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As in p.249 Pilz [3], “if N is a near-field then either N is isomorphic to M, (Z,) or
N is zero-symmetric” (For the concept of M_(Z,) one may refer to Example 1.4(a), p.8
and 1.15, p.12 of Pilz [3]. Obviously M_.(Z,) is a near-field of order 2 and is not
zero-symmetric). All the near-fields in this paper are zero-symmetric.

1.2. Notations

(a)  E denotes the set of all idempotents of N.
(b) L is the set of all nilpotent elements of V.
(©) N, = {n e N/n(x+y)=nx+ny, forall x,ye N }f the set of all distributive

elements of V.
d Ny = {n eN/n0=0 }— the zero-symmetric part of N (It is worth noting that NV is

zero-symmetric if N = N,).
(e) C(N):{neN/nx:xn forallxeN}.

1.3. Preliminary results

We freely make use of the following results from [4], [3] and [2] and designate them as
K(1), K(2) etc. (K for ‘known results’).

K(1): If N has a mate function m, then for everyxe N,xm(x),m(x)x € E and
Nx = Nm(x)xand xN =xm(x)N. (Lemma 3.2 of [4]).

K(2): If L={0}and N=N,, then (i) xy=0= yx=0 (for x,y in N) and (ii) N has
"Insertion of Factors Property" — IFP  for short — ie. for x,yin N,
xy=0= xny =0 for all » in N. (In this paper we write that N has (*, IFP) if N

has both (i) and (ii)) (Lemma 2.3 of [4]).
K@3): A zero-symmetric near-ring N has IFP if and only if (0:S) is an ideal, where

S is any non-empty subset of N. (9.3, p.289 of [3]).
K(4): A near-ring N has no non-zero nilpotent elements if and only if x2=0=x=0

for all x in N (Prob. 14, p.9 of [2]).
2. P(r, m) near-rings
We shall start with the following.

Definition 2.1. A near-ring N is said to have the property P(r,m) if x"N = Nx" for
all x in N where r and m are positive integers.
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Examples 2.2.

(a)

(b)
©

(d)

(e)

®

The direct product of any two near fields is a P(r, m) near-ring for all positive

integers r and m.
A Boolean P(1,1) near-ring is a P(r,m)near-ring for all positive integers » and m.

Let N be an arbitrary near-ring and let / be the ideal generated by
{a"n—ba™ | a,n,bare in N and r, m are fixed positive integers}. Obviously then
the factor near-ring N = N /I is a P(r,m)near-ring. (This incidentally serves as
a device for manufacturing P(r,m)near-rings for all positive integers »,m from
an arbitrary near-ring.)

Let (N,+)be the Klein's four group with N ={0,a,b,c}. The near-ring (N,+,)
where °.” is defined as (per scheme (12) p. 408 of Pilz [3] which forms part of
Clay [1])

O |T|e O

(=] =) [ [ fen)
oo (O
o|o|o|o|c
[ I Res) E- 0 el N o]

is a P(r,m)near-ring for all positive integers r,m.
Let (N,+) be the group of integers modulo 8. We define ‘.” as per scheme
(48) p. 413 of Pilz [3] as follows:
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(N,+,-) isa P(1,1) near-ring but is neither P(1,2) nor P(2,1). It is worth noting
that this near-ring does not admit mate functions.

Consider (N, +,-) where (N, +) is the Klein's four group and ‘.’ is defined as per
scheme (4) p.408 of Pilz [3] as follows:
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This near-ring (actually a Commutative Ring)is obviously P(1,1). But it is neither
P(1,2) nor P(2,1). Thus "P(1,1)"need not imply "P(1,2)" or "P(2,1)" even in the
Ring Theory. (Incidentally this near-ring has the property P(r,r)i.e. x"N = Nx" for
any positive integer 7).

Remark 2.3. It is easy to see that a P(r,m) near-ring is zero-symmetric.
Properties of P(1,2) and P(2, 1) near-rings

We shall obtain a complete characterization for P(1,2) and P(2,1) near-rings and obtain
structure theorems for such near-rings — under certain conditions.

Proposition 2.4. Let N be a P(1,2) near-ring.
(i) If N has no non-zero nilpotent elements then N is an S-near-ring.
(ii)  IfNis an S"-near-ring then N has no non-zero nilpotent elements.

Proof.

(i)  Since xN = Nx*and x? exN for all x in N, we have x? = yx* for some y in N.
Therefore (x— yx)x=0. By K(2), this implies that x(x—yx)=0and
yx(x—yx)=0. Consequently (x—yx)>=0. Since L =/{0},x— yx =0, forcing
x =yx. Thus x € Nx i.e. Nis an S-near-ring.

(i)  If Nis an S'-near-ring then x € xN and since xN = Nx? we get x = nx* for some

neN. Therefore x> =0= x=0. .. N has no non-zero nilpotent elements, from
K(4).

Corollary 2.5. [If Nis a P(l,2) near-ring without non-zero nilpotent elements, then
from K(2), we see that N has (*,IFP).

It is obvious that the property P(r,m) is preserved by near-ring homomorphisms.
Consequently, we have

Proposition 2.6. Any homomorphic image of a P(1,2) (P(2,1)) near-ring is P(1,2)
(P(2,1)).
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As an immediate consequence of Proposition 2.6 we have the following theorem:

Theorem 2.7. Every P(1,2) (P(2,1)) near-ring N is isomorphic to a subdirect product
of subdirectly irreducible P(1,2) (P(2,1)) near-rings.

Proof: By Theorem 1.62, p.26 of Pilz [3], N is isomorphic to a subdirect product of
subdirectly irreducible near-rings N,'s, say, and each N; is a homomorphic image of N

under the projection map ;. The desired result now follows from Proposition 2.6.

We shall now discuss the behaviour of N-subgroups and ideals of P(1,2) near-
rings. To start with we have the following:

Proposition 2.8. Let N be a P(1,2) near-ring. Then every N-subgroup of N is invariant.

Proof. 1If A is an N-subgroup of N, then NAc A. Whenever ane AN, we have

aneaN = Na*> = an=n'a® for some n'e N. This forces ane NAc A= AN c A.
Hence A is an invariant N-subgroup.

Proposition 2.9. Let N be a P(l,2) near-ring. Then every left ideal of N is an ideal .

Proof. Let A be a left ideal of N. Since N is zero-symmetric, NAc 4 i.e. 4 is an
N-subgroup of N. Proceeding as in Proposition 2.8 we get AN — A. Hence 4
becomes an ideal.

It is easy to observe the following:

Corollary 2.10. Every left ideal (and therefore every ideal) of a P(1,2) near-ring N is
an invariant N-subgroup of N.

Proposition 2.11. [fNisa P(1,2) ora P(2,1) near-ring then N has strong IFP.

Proof. Let Nbe a P(1,2) near-ring. In view of Proposition 9.2 Pilz [3], we need only
to establish that for all ideals / of N and for all a,b,ne N, abel = anbel. Since
Iis an ideal, IN c/ and since N is zero-symmetric, / is an N-subgroup of N

ie. NcI. Now aneaN=Na®>=an=n'a® for some n'e N=>anb=(n'a’)b
=(n'a)(ab) e NI => anbe I.

When N is a P(2,1) near-ring we observe that nbe Nb=b>N = nb=>b>n" for

some n'e N = anb = a(bzn’) =(ab)(bn') e IN = anb e I.

Notation 2.12. Ifa P(r,m) near-ring N is an S (or S’)-near-ring then we write that N is

an S — P(r,m)near-ring (or S'—P(r, m) near-ring).
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Remark 2.13. For an S - P(2,1) near-ring, we see that forallx in N, x € Nx = xiN

= x = x’n forsome ne N. Hence x> =0= x=0 and K(4) demands that L = {0}.
Proposition 2.14. na P(1,2) (P(Z,l)) near-ring, E < C(N).

Proof. For ecE,eN = Ne?(e*N = Ne) = eN = Ne = Ne =eNe =eN. It follows that
en=(ene=)ne forall ne N ie. Ec C(N).

Remark 2.15. It is worth noting that we do not stipulate that N admits mate functions
for the validity of the above results.
Proposition 2.16.

(i)  Let N be a P(1,2) near-ring. Then N has a mate function if and only if N is an
S'-near-ring.

(i)  Let N be a P(2,1) near-ring with N =N, . Then N has a mate function if and
only if N is an S-near-ring.

Proof.

(1) When N has a mate function 'm' for all x € N, x = xm(x)x € xN and obviously N
is an S™-near-ring.
Conversely let N be an S’ near-ring. x € xN = Nx?

x=nx’ for some ne N (1)

=>xt =’ = (x—xnx)x =0. Using Proposition 2.4(ii) and Corollary 2.5 we
get x(x—xnx)=0and xnx(x—xnx)=0and consequently (x—xnx)? =0. Since
L={0} we get x—xnx=0 ie. x=xm(x)x where we set m(x)=n. This
guarantees that m: N — N is a mate function for N.

(i) When N has a mate function, it is obvious that N is an S-near-ring.
Conversely if Nis an S —P (2,1) near-ring with N =N, ,xe Nx = x’N

x=x’n for some nin N 2)

= x? = x%nx = x(x —xnx) = 0 = xnx(x —xnx) = 0. Rest of the proof is as in (i).
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Remarks 2.17.

(a)  If N has property P(2,1) and a mate function ‘m’, then L ={0}. This is obvious

from Remark 2.13 and the fact that when N has a mate function ‘m’ it is an
S-near-ring.
(b) As in Corollary 2.5, K(2) yields that a P(2,1) near-ring with a mate function

possesses (¥, IFP).
(c) A P(2,]) Ring has a mate function if and only if it is an S-Ring.

Proposition 2.18. Let N be an S'— P(1,2) near-ring (or an S— P(2,1) near-ring with
N=N,). Then N has a Py mate function [5].

Proof:  When N is an S'-P(1,2) near-ring it admits a mate function ‘m’. From
stage (1) of Proposition 2.16 we have x= m()c)x2 = (xm(x)—m(x)x)x = 0
= (xm(x)—m(x)x)* =0 (since N has (*,IFP) = xm(x)—m(x)x = 0= xm(x) = m(x)x
1.e. m(x)e C(x) i.e. ‘m’ isa Py mate function.

(When N is an S—P(2,1) near-ring starting with stage (2) of Proposition 2.16 (ii)

we can show that m(x) € C(x) ).

Propositions 2.16(i), 2.4 and Corollary 2.5 readily yield the following:

Proposition 2.19. If' N has property P(1,2) and a mate function ‘m’ then L ={0} and N
has (*, IFP).

We now give a complete characterization of P(1,2) and P(2,1) near-rings when
they admit mate functions.

Theorem 2.20. Let N be a near-ring with a mate function ‘m’. Then the following
statements are equivalent:

(i) NisP(l,2)

(ii) EcC(N)

(iii)) Nis P(2,1).
Proof. (ii) = (i)

For ae N, aneaN forall ne N and since E c C(N),
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an = a(m(a)an)
= an(m(a)a)
= an[m(a)am(a)a] (since m(a)ac E)
= anm(a)(m(a)a)a
= anm(a) 2q?
€ Na*

. aN < Na* (A)

Also na® e Na*
= na’ = na(am(a)a)
=(am(a))na*

= a(m(a)naz)
eaN
.. Na* caN (B)

From (4) and (B) we get aN = Na* for all a in N and (i) follows.

Proof of ‘(i) = (ii)’ and that of ‘(iii) = (ii)’ are taken care of by Proposition 2.14.

Proof of “(ii) = (iii)’ runs parallel to that of ‘(ii) = (i)” and the theorem follows.
Remark 2.21. Let N admit a mate function ‘m’ and let £ < C(). It is easy to observe

that for every x in N, x = xm(x)x = x = m(x)x>. Consequently Proposition 2.18

guarantees that m is a P; mate function.

As a consequence of Theorem 2.20 and Remark 2.21 we have the following:

Theorem 2.22: Let N admit a mate function ‘. Then N is a P(r,m) near-ring for all
positive integers r,m if and only if Nis a P(l,2) near-ring.

Proof: Nisa P(1,2) -near-ring = E < C(N) (from Theorem 2.20)
Let aex"N. ..a=x"n forsomeninN.
Now  x"'n=(xf(x)x)"n
=x"(f(x)x)"n (since f(x)x e E = C(N))
=x"(f(x)xn)
=x"n(f(x)x) (since E < C(N))
x"n(f(x)x)" (since f(x)xe€E)



P(r, m) Near-Rings 125

=x"n(f(x))" x" (since f'is a P; mate function from Propositions 2.16
and 2.18)

=(x"n(f(x)")x"

e Nx"

Sx"Na Nx™.

In a similar fashion, we get Nx” cx"N. Hence x' N=Nx"and N is a P(r,m)

near-ring for all positive integers » and m. The converse is obvious — it follows by taking
r=1and m=2.

As an immediate consequence, we have

Corollary 2.23. IfNisa P(1,2) near-ring with a right identity, then it is a P(r,m)
near-ring for all positive integers r, m.

Proof. N is a P(1,2) near-ring with a right identity = N is an S'-P(l,2) near-ring
= N is a P(1,2) near-ring with a mate function (from Proposition 2.16 (i))

= Nis a P(r,m) near-ring for all positive integers »,m (from Theorem 2.22).

Remark 2.24. In view of Theorem 2.22, to discuss the properties of a P(r, m)-near-ring
we need only to concentrate on P(1,2) near-rings with mate functions.

To start with we have the following:

Theorem 2.25. Every N-subgroup of N is an ideal in an S'— P(1,2) near-ring.

Proof: Since N is an §'-P(1,2) near-ring, it admits a mate function ‘m’ (from
Proposition 2.16(i)) and L = {0} (from Proposition 2.4(ii)). It is clear from K(2) that N
has (*, IFP). Again for any non empty S < N,(0:S) is an ideal of N (by K(3)).

If M is any N-subgroup of N, then M = ZNx. We first show that each Nx is an ideal.

xeM
Let §=(0:Nx). Weclaimthat Nx=(0:S5).
Clearly
Nxc (0:5) 3)

Now if ye€(0:S) then yS={0}.
Also

(v = ym(x)x)m(x)x =0 4)
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= (y — ym(x)x)Nm(x)x = {0}

= (y—ym(x)x)Nx = {0} (using K(1))
= (y-ym(x)x)e(0: Nx)=S

Since

¥§ =10}, y(y —ym(x)x) =0 ®)

Using the fact that N has (*, IFP), it is easy to get from (4) and
(%), (y—ym(x)x)2 =0. Since L={0} we get y—ym(x)x = 0=y = ym(x)x
=y =ym(x)x =y = ym(x)x = y € Nx. Therefore

5(0:8)c Nx (6)

From (3) and (6) we get Nx =(0:S)and hence Nx is anideal. The desired result
now follows.

Remarks 2.26.

(a) It is worth noting that in a P(l,2) near-ring with mate functions the concepts of
N-subgroups, left ideals, right ideals and ideals are equivalent.

(b) Recall that the nilradical of N is the greatest nil ideal of N. Since L = {0}, for an
S'—P(1,2) near-ring N, it follows that the nilradical of N = {0}.

Proposition 2.27. Let N be an S'-P(1,2) near-ring. Then any N-subgroup of N is a
completely semiprime ideal.

Proof. Suppose I is an N-subgroup of N. From Theorem 2.25 it follows that / is an
ideal. Let x*e/. Since N has strong IFP, xm(x)xel ie. xel. Hence I is a
completely semiprime ideal.

From p.289 of Pilz [3] we have the following:

Definition 2.28. A4 near-ring N has property P, if for all ideals I of N, xy e [ = yx € I.
Proposition 2.29. AnS'—P(1,2) near-ring has property P,.

Proof- Let /7 be an ideal of N and let xyel. Now (yx)2 = () (yx)

= y(xy)x € NIN c I (using Remark 2.26 (a)) = ( yx)2 e 1. Using Proposition 2.27 we
get yx el i.e. N hasproperty P,.
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Definition 2.30. For any subset A of N we define 4 = {xeN/x*e4 for some
positive integer k}.

Proposition 2.31. Let N be an S'—P(1,2) near-ring. Then A:JZ for any
N-subgroup A of N.

Proof. Let xe.A . Then there exists some positive integer k such that x* e 4..

2 for some

Since N is an S'-P(1,2) nearring, xexN =Nx? = x = nx
neN=x=nm’=n’x>=-=n""xFeNdc ie xed. .'.x/ZcA. But

obviously 4 VA and hence the desired result.
Proposition 2.32. IfNisan S'— P(1,2) near-ring, then

(i)  Nis a semiprime near-ring
(i)  ANB=AB for all N-subgroups A,B of N
(iii)  NaNb= Nab forall a,be N

(iv)  every ideal I fulfills I =1.
Proof. Since Nis an S'— P(1,2) near-ring, it admits a mate function ‘m’.

(i) Let A be an N-subgroup of N. Then A is an ideal of N. Let / be any
ideal of N such that 1> = A. If ael, then a=a(m(a)a) € I(NI) c I*> c 4

=>aeA=1c A. Thus any N-subgroup 4 of N is a semiprime ideal. In
particular {0} is a semiprime ideal and therefore N is a semiprime near-ring.

(il)) Let 4 and B be two N-subgroups of N. By Proposition 2.8 both are invariant
N-subgroups and consequently

AB c ANB. (7)

To  prove the reverse inclusion, we note that for any
x€ AN B, x =xm(x)x =xm(x)x = (m(x)x)x € (NA)Bc AB = x € AB, hence
ANBc AB (8)
(1) and (2) yield (ii).
(iii) Clearly Na and Nb are N-subgroups of N. Now NanNb=N(aN)b. From

Theorem 2.22, N is P(l,1)also. Hence, Nan Nb= NaNb= N(Na)b= Nab.
Therefore (iii) follows.

(iv) Take A= B =1 in (i) and appeal to Remark 2.26 (a).
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Definition 2.33. An N-subgroup A+ {0} of Nis called essential if AN B ={0}, where
Bis any N-subgroup of N, implies B ={0}.

Proposition 2.34. Let N be an S'—P(1,2) near-ring. If N has no non-zero

zero-divisors, then every N-subgroup of N is essential.

Proof. Let A=# {0} be an N-subgroup of N. Suppose there exists an N-subgroup B of
Nsuchthat A n B={0}. This implies AB = {0} (using Proposition 2.31 (i)). Since N
has no non-zero zero-divisors, we get B = {0} and the result follows.

3.

In this section we obtain a structure theorem for P(l,2) near-rings. Throughout this

section N denotes an S'— P(1,2) near-ring and m is a mate function for N.

Theorem 3.1. N is subdirectly irreducible if and only if N is a near-field.

Proof. Suppose N is subdirectly irreducible. First we claim that no non-zero idempotent

of N is a zero-divisor. Let J be the set of all non-zero idempotents which are

zero-divisors and let J#¢. Let /= N (0:e). Since N is subdirectly irreducible,
eeJ

1#{0}. Let ael—-{0}. Thus
ae=0 foralleinJ. 9)

This = m(a)ae =0= em(a)a =0 (using K(2)) = m(a)a e J.
From (9) we get am(a)a=0= a=0. This contradiction implies that no non-zero

idempotent of N is a zero-divisor.

We shall now prove that N has no non-trivial N-Subgroups. Let M be any
N-subgroup of N such that M # {0} and let x(# 0)e M. The fact that N is a P(r,k)

near ring (from Theorem 2.22) for all positive integers r,k forces Nx = Nx> for
all x in N For any neN, there exists n, in N such that
nx = n1x2 = (n-nmx)x=0 = (n—n;x)xm(m) = 0.

=>n-mx=0 (from (ii))) > n=mxe NMcM. .. Nc M. ie. M =N.

Thus N has no non-trivial N-subgroups. Clearly for ne N—-{0}, Nn is an
N-subgroup of N. Consequently Nn=N for all

neN-1{0} (10)
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Also, it is clear that N, # {0} (as (E cC(N)c N, ) This and (10) guarantee that N is

a near-field. (Theorem 8.3, Pilz [3]).
Converse is obvious.

As an immediate consequence of Theorem 3.1, we have the following:
Corollary 3.2. N has no non-zero zero-divisors if and only if N is a near-field.
We are now in a position to give a structure theorem for N.
Theorem 3.3. N is isomorphic to a subdirect product of near-fields.

Proof.  From Theorem 2.7, N is isomorphic to a subdirect product of subdirectly
irreducible P(1,2) near-rings, N;'s, say. Obviously the existence of a mate function is

preserved under homomorphisms. Hence each N; admits a mate function. Appealing to
Theorem 3.1 we get N is isomorphic to a subdirect product of near-fields.

Remark 3.4. From 8.11 of [3], the additive group of a near-field is abelian.
It follows that for any P(1,2) near-ring N with mate functions, (N,+) is abelian.

Proposition 3.5. Let N be a Boolean near-ring. Then N is P(1,2) if and only if'it is a
commutative ring.

Proof. We observe that identity function is a mate function for N. Appealing to
Theorem 2.20 and Remark 3.4 we see that when N is a P(l,2) near-ring, N = E < C(N)

and (N,+) is abelian and hence N is a commutative ring.

Conversely N is Boolean and a commutative ring = Nis P(1,1)

= xN = Nx = Nx2. Hence the result.

Proposition 3.6. If N is distributively generated and has no non-zero zero-divisors
then N is a division ring.

Proof.  Corollary 3.2 guarantees that N is a near-field. Also (N,+) is abelian (by

Remark 3.4). Since N is distributively generated, we see that N is a ring (from
Theorem 6.6(c) of Pilz [3]) and hence the result.

Proposition 3.7. If N is strictly prime then N is subdirectly irreducible. In fact N is a
near-field.

Proof. In view of Corollary 3.2 and Theorem 3.1, it is enough to show that N has no non-
zero zero-divisors. Let x,ye€ N be such that xy=0. Clearly Nx and Ny are

N-subgroups of N and NxNy = Nxy = NO={0}. Since N is strictly prime we have either
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Nx={0} or Ny={0}. This forces x=00or y=0. Hence N has no non-zero zero-
divisors and the proof is complete.

Since the concepts of N-subgroups and ideals coincide in S'— P(l,2)near-rings
we have the following obvious result:

Proposition 3.8. N is strictly prime if and only if N is a prime near-ring.
Proposition 3.9. Any strictly prime ideal of N is maximal.
Proof. Let M be a strictly prime ideal of N. Then N/M is a strictly prime near-ring.

Since N/M is the image of N under the canonical homomorphism, it is also an
S'—P(1,2) near-ring i.e. aP(l,2)near-ring with a mate function. Hence from

Proposition 3.7, N/M is a near field. i.e. M is maximal.

We conclude our discussion of S'— P(1,2) near-rings with the following:

Theorem 3.10. If N is 2 primitive then N is a near field.

Proof-  Since N is 2 primitive, from Corollary 4.4(c), Pilz [3], there exists a left ideal
I of N such that / is 2-modular and (/ : N) ={0}. By Corollary 3.24 Pilz [3], (/: N)c 1.

Since Nis P(1,2), /isanideal. .. INcI=1c(/:N).

From above, / =(I:N)={0}. .. N(= N/I) is an N-group of Type 2. .. N has no
non-trivial N-subgroups. From stages (10) of Theorem 3.1 we get the desired result.

Remark 3.11. In view of Remark 2.24 we observe that all the results we have
established for an S'— P(1,2) near-ring are valid for a P(r,m) near-ring with mate

functions where » and m are any two positive integers.
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