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Abstract.   In this paper we study the behaviour of  where 

 is the Gaussian Hypergeometric function and the  *  is usual Hadamard product.  In the 

main result, we find conditions on  and  so that belong to 
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Note that when ,0  we have ,)( SR  the class of univalent functions in A .  For 
each )(,0 R   contains also nonunivalent functions. 



For any complex number ‘a’ we define the ascending factorial notation 
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The Gaussian hypergeometric function is defined as 
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where c is neither zero nor a negative integer.   The following well known formula 
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will be used frequently.  Univalence, starlikeness and convexity properties of 
have been studied in [6] and [8]. 
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where *  stands for the usual Hadamard product of power series. 
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This operator reduces to Bernardi operator 
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for 1,1 ba  and 2c  with .1Re   For 1  and 2, respectively                   
we get Alexander transform and Libera transform. These three operators are                               
all examples of the situation where bac  in .  Also we have )(,, fI cba
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 which is known as Ruscheweyh differential, 

studied in [7].   It represents the case  with bac 1,1 nba  and .1c   Some more 
special cases of the operator can be found in [10]. )(,, fI cba

 P.T. Mocanu [3] obtained the range for  so that the Bernardi operator 

whenever .   As a natural extension, here we determine conditions on 
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2. Auxiliary lemmas 

We shall state the following Lemmas [4] which may be used in proving the main theorems. 
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3. Main theorems 

Now let us study the action of the hypergeometric function on the classes )(R and S.

Theorem 3.1.    Let 1,1||,1||,}0{\, cbaCba and .|||| bac
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Then the operator  maps)(,, fI cba )(R into  .],[* BAS
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Using the formula (1.1) and Lemma 2.2. we observe that 
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Then under the hypothesis (3.1) of the theorem we get 
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Note.  For 0, BA we get, as a special case, Theorem 2.1 of [4]. 

Theorem 3.2.   Let 1||,0,}0{\ bcCb and .||1 bc For ,11 AB
assume that 

)(
)1(2

))()1((
1
1)1(

)1(
)1()1(

BABAbcc
b
cA

bc
cB

 (3.3) 

where ).(/)()( xxx   Then the operator maps)(,,1 fI cb )(R into .],[* BAS
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Thus under the hypothesis (3.3) of the theorem we get ,)(1 BATT  there by showing 

that the operator  maps )(,,1 fI cb )(R  into  .],[* BAS

Note.   For ,0, BA  we get as a special case, Theorem 2.2. of [4]. 

From the proof  of Theorems 3.1 and 3.2, we observe that for ,1A .0B   We need not 
treat the case  separately neither we need the aestrictions 1a 1b   and .1c   In this 
case, we have the following result. 
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An application of Theorem 2.1 in [5] gives the following result.
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It is enough to show that  
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Then, under the hypothesis (3.4) of the theorem we get .2 BATT  Therefore the 

operator maps S into .)(,, fI cba ],[* BAS

Note.   When ,0, BA  this reduces to Theorem 2.6. in [4]. 
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