Convolutions with Hypergeometric Functions

M. AnBu Durai and R. Parvatham
The Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India

Abstract. In this paper we study the behaviour of $\left[I_{a, b, c}(f)\right](z)=z F(a, b, c, z) * f(z)$ where $F(a, b, c, z)$ is the Gaussian Hypergeometric function and the $*$ is usual Hadamard product. In the main result, we find conditions on a, b, c, A, B and β so that $\left[I_{a, b, c}(f)\right](z)$ belong to $S^{*}[A, B]$ whenever $f(z) \in R(\beta), \beta<1$.

1. Introduction

Let A denote the family of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ that are analytic in the interior of unit disk $\Delta=\{z \in C:|z|<1\}$. Let g be analytic and univalent in Δ and f be analytic in Δ then $f(z)$ is said to be subordinate to $g(z)$, written $f \prec g$ if $f(0)=g(0)$ and $f(\Delta) \subset g(\Delta)$.
For $-1 \leq B<A \leq 1$, let

$$
S^{*}[A, B]=\left\{f \in \mathrm{~A} \left\lvert\, \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}\right., \quad z \in \Delta\right\}
$$

For $A=1, B=-1$ we get the well known family S^{*} of starlike functions. We further get $S[1-2 \gamma,-1]=S^{*}(\gamma)$ and $S^{*}(\lambda, 0)=S_{\lambda}^{*}$. For $\beta<1$, define

$$
R(\beta)=\left\{f \in \mathrm{~A} \left\lvert\, \exists \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) / \operatorname{Re}\left[e^{i \theta}\left(f^{\prime}(z)-\beta\right)\right]>0\right., z \in \Delta\right\}
$$

Note that when $\beta \geq 0$, we have $R(\beta) \subset S$, the class of univalent functions in A. For each $\beta<0, R(\beta)$ contains also nonunivalent functions.

For any complex number ' a ' we define the ascending factorial notation $(a, n)=a(a+1) \cdots(a+n-1)$ for $n \geq 1$ and $(a, 0)=1$ for $a \neq 0$. The triangle inequality for (a, n) is $|(a, n)| \leq(|a|, n))$. When ' a ' is neither zero nor a negative integer, we can write $(a, n)=\Gamma(n+a) / \Gamma(a)$.

The Gaussian hypergeometric function is defined as

$$
F(a, b, c, z)=\sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n)(1, n)} z^{n}, \quad a, b, c \in C
$$

where c is neither zero nor a negative integer. The following well known formula

$$
\begin{equation*}
F(a, b, c, 1)=\frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)}, \quad \operatorname{Re}(c-a-b)>0 \tag{1.1}
\end{equation*}
$$

will be used frequently. Univalence, starlikeness and convexity properties of $z F(a, b, c, z)$ have been studied in [6] and [8].

For $f \in \mathrm{~A}$, we consider the Hohlov convolution operator [2] $I_{a, b, c}(f)$ given by

$$
\left[I_{a, b, c}(f)\right](z)=z F(a, b, c, z) * f(z)
$$

where * stands for the usual Hadamard product of power series.
For $\operatorname{Re} c>\operatorname{Re} b>0$, it is known that

$$
F(a, b, c, z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1} \frac{d t}{(1-t z)^{a}} .
$$

We can write

$$
\left[I_{a, b, c}(f)\right](z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1} \frac{f(t z)}{t} d t * \frac{z}{(1-z)^{a}}
$$

This operator reduces to Bernardi operator

$$
B_{f}(z)=(1+\gamma) \int_{0}^{1} t^{\gamma-1} f(t z) d t
$$

for $a=1, b=1+\gamma$ and $c=2+\gamma$ with $\operatorname{Re} \gamma>-1$. For $\gamma=1$ and 2 , respectively we get Alexander transform and Libera transform. These three operators are all examples of the situation where $c=a+b$ in $I_{a, b, c}(f)$. Also we have
$\frac{z}{(1-z)^{n+1}} * f(z)=\left[I_{1, n+1,1}(f)\right](z), n>-1$ which is known as Ruscheweyh differential, studied in [7]. It represents the case $c<a+b$ with $a=1, b=n+1$ and $c=1$. Some more special cases of the operator $I_{a, b, c}(f)$ can be found in [10].
P.T. Mocanu [3] obtained the range for γ so that the Bernardi operator $B_{f} \in S^{*}$ whenever $f \in R(0)$. As a natural extension, here we determine conditions on A, B, a, b, c and β, the transform by the hypergeometric function $F(a, b, c, z)$ on the class $R(\beta)$ so that $I_{a, b, c}(f) \in S^{*}[A, B]$.

2. Auxiliary lemmas

We shall state the following Lemmas [4] which may be used in proving the main theorems.
Lemma 2.1. Let $a, b, c>0$. Then
(i) for $c>a+b+1$,

$$
\sum_{n=0}^{\infty} \frac{(n+1)(a, n)(b, n)}{(c, n)(1, n)}=\frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)}\left[\frac{a b}{c-1-a-b}+1\right]
$$

(ii) for $c>a+b+2$,

$$
\sum_{n=0}^{\infty} \frac{(n+1)^{2}(a, n)(b, n)}{(c, n)(1, n)}=\frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)}\left[1+\frac{(a, 2)(b, 2)}{(c-2-a-b, 2)}+\frac{3 a b}{c-1-a-b}\right]
$$

Lemma 2.2. Let $a, b, c>0$ and for $a \neq 1, b \neq 1, c \neq 1$ with $c>\max \{0, a+b-1\}$,

$$
\sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n)(1, n+1)}=\frac{1}{(a-1)(b-1)}\left[\frac{\Gamma(c+1-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)}-(c-1)\right] .
$$

Lemma 2.3. Let $a, b, c>0$. For $b \neq 1$ and $c>1+b$,

$$
\sum_{n=0}^{\infty} \frac{(b, n)}{(c, n)} \frac{1}{(n+1)}=\frac{c-1}{(b-1)}(\psi(c-1)-\psi(c-b))
$$

where $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$.

3. Main theorems

Now let us study the action of the hypergeometric function on the classes $R(\beta)$ and S.

Theorem 3.1. Let $a, b \in C \backslash\{0\},|a| \neq 1,|b| \neq 1, c \neq 1$ and $c>|a|+|b|$.
For $-1 \leq B<A \leq 1$, assume that

$$
\begin{align*}
\frac{\Gamma(c-|a|-|b|) \Gamma(c)}{\Gamma(c-|a|) \Gamma(c-|b|)}\{(1-B) & \left.-\frac{(1-A)(c-|a|-|b|)}{(|a|-1)(|b|-1)}\right\} \\
& \leq(A-B)\left\{1+\frac{1}{2(1-\beta)}\right\}-\frac{(1-A)(c-1)}{(|a|-1)(|b|-1)} \tag{3.1}
\end{align*}
$$

Then the operator $I_{a, b, c}(f)$ maps $R(\beta)$ into $S^{*}[A, B]$.
Proof. Let $a, b \in C \backslash\{0\}$ and $c>|a|+|b|,|a| \neq 1,|b| \neq 1$ and $c \neq 1$. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be a function in $R(\beta)$. Then, it is well-known that $\left|a_{n}\right| \leq \frac{2(1-\beta)}{n}$.
Consider $z F(a, b, c, z) * f(z)=z+\sum_{n=2}^{\infty} B_{n} z^{n}$ where $B_{1}=1$ and for $n \geq 1$,

$$
B_{n}=\frac{(a, n-1)(b, n-1)}{(c, n-1)(1, n-1)} a_{n}
$$

A special case of Theorem 3 in [1] gives a sufficient condition for $f \in S^{*}[A, B]$ is that $\sum_{n=2}^{\infty}\{n(1-B)-(1-A)\}\left|a_{n}\right| \leq A-B$. Then we have to show that

$$
T=\sum_{n=2}^{\infty}\{n(1-B)-(1-A)\}\left|B_{n}\right| \leq A-B .
$$

We have

$$
\begin{gather*}
T \leq \sum_{n=2}^{\infty}\{n(1-B)-(1-A)\} \frac{(|a|, n-1)(|b|, n-1)}{(c, n-1)(1, n-1)} \frac{2(1-\beta)}{n} \\
=2(1-\beta)\left\{(1-B) \sum_{n=1}^{\infty} \frac{(|a|, n)(|b|, n)}{(c, n)(1, n)}-(1-A) \sum_{n=1}^{\infty} \frac{(|a|, n)(|b|, n)}{(c, n)(1, n+1)}\right\}:=T_{1} \tag{3.2}
\end{gather*}
$$

Using the formula (1.1) and Lemma 2.2. we observe that

$$
\begin{aligned}
T_{1}= & 2(1-\beta)\left\{(1-B) \frac{\Gamma(c-|a|-|b|) \Gamma(c)}{\Gamma(c-|a|) \Gamma(c-|b|)}-(1-B)\right. \\
& \left.-(1-A) \frac{\Gamma(c-|a|-|b|) \Gamma(c)(c-|a|-|b|)}{\Gamma(c-|a|) \Gamma(c-|b|)(|a|-1)(|b|-1)}+\frac{(1-A)(c-1)}{(|a|-1)(|b|-1)}+(1-A)\right\} \\
= & 2(1-\beta)\left\{\frac{\Gamma(c-|a|-|b|) \Gamma(c)}{\Gamma(c-|a|) \Gamma(c-|b|)}\left[(1-B)-\frac{(1-A)(c-|a|-|b|)}{(|a|-1)(|b|-1)}\right]\right. \\
& \left.+\frac{(1-A)(c-1)}{(|a|-1)(|b|-1)}-(A-B)\right\} .
\end{aligned}
$$

Then under the hypothesis (3.1) of the theorem we get

$$
T \leq T_{1} \leq 2(1-\beta) \frac{(A-B)}{2(1-\beta)}=A-B
$$

thereby showing that $f \in S^{*}[A, B]$.

Note. For $A=\lambda, B=0$ we get, as a special case, Theorem 2.1 of [4].

Theorem 3.2. Let $b \in C \backslash\{0\}, c>0,|b| \neq 1$ and $c>1+|b|$. For $-1 \leq B<A \leq 1$, assume that

$$
\begin{equation*}
\frac{(1-B)(c-1)}{(c-|b|-1)}-(1-A)\left(\frac{c-1}{b-1}\right)(\psi(c-1)-\psi(c-|b|)) \leq \frac{A-B}{2(1-\beta)}+(A-B) \tag{3.3}
\end{equation*}
$$

where $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$. Then the operator $I_{1, b, c}(f)$ maps $R(\beta)$ into $S^{*}[A, B]$.
Proof. Putting $a=1$ in (3.2) we get

$$
T_{1}=2(1-\beta)\left\{(1-B) \sum_{n=1}^{\infty} \frac{(|b|, n)}{(c, n)}-(1-A) \sum_{n=1}^{\infty} \frac{(|b|, n)}{(c, n)(n+1)}\right\}
$$

Using (1.1) and Lemma 2.3. we get

$$
T_{1}=2(1-\beta)\left\{\frac{(1-B)(c-1)}{(c-|b|-1)}-(1-A)\left(\frac{c-1}{b-1}\right)(\psi(c-1)-\psi(c-|b|))-(A-B)\right\} .
$$

Thus under the hypothesis (3.3) of the theorem we get $T \leq T_{1} \leq(A-B)$, there by showing that the operator $I_{1, b, c}(f)$ maps $R(\beta)$ into $S^{*}[A, B]$.

Note. For $A=\lambda, B=0$, we get as a special case, Theorem 2.2. of [4].
From the proof of Theorems 3.1 and 3.2, we observe that for $A=1, B=0$. We need not treat the case $a=1$ separately neither we need the aestrictions $|b| \neq 1$ and $c \neq 1$. In this case, we have the following result.

Corollary 3.3. Let $a, b \in C \backslash\{0\}$ and $c>|a|+|b|$. Assume that

$$
\frac{\Gamma(c-|a|-|b|) \Gamma(c)}{\Gamma(c-|a|) \Gamma(c-|b|)} \leq 1+\frac{1}{2(1-\beta)}
$$

Then the operator $I_{a, b, c}(f)$ maps $R(\beta)$ into $S^{*}[1,0]$.
Let $\pi:[0,1] \rightarrow R$ be a nonnegative function normalized so that $\int_{0}^{1} \pi(t) d t=1$ and define

$$
\left[V_{\pi}(f)\right](z)=\int_{0}^{1} \pi(t) \frac{f(t z)}{t} d t, f \in \mathrm{~A}
$$

Let $\Pi(t)=\int_{0}^{1} \pi(s) \frac{d s}{s}$ and assume that $t \Pi(t) \rightarrow 0$ when $t \rightarrow 0+$. It is shown in [9] that the class $S^{*}[A, B],-1 \leq B<A \leq 1$ can be characterized interms of convolutions that

$$
f \in S^{*}[A, B] \Leftrightarrow \frac{f(z)}{z} * \frac{h_{(A, B)}(z)}{z} \neq 0
$$

where
$h_{(A, B)}(z)=\frac{z\left[1-\frac{A-x}{A-B} z\right]}{(1-z)^{2}} ;|x|=1$. Choose $G(t)=\frac{(A-B)-(1-A) t}{(A-B)(1+t)^{2}}$.
From $\operatorname{tg}^{\prime}(t)+g(t)+1=2 G(t)$, we get

$$
g(t)=\frac{2(1-B)-(A-B)(1+t)}{(A-B)(1+t)}-\frac{2(1-A)}{(A-B)} \frac{\log (1+t)}{t}
$$

An application of Theorem 2.1 in [5] gives the following result.

Theorem 3.4. Let β be given by

$$
\frac{\beta}{1-\beta}=-\int_{0}^{1} \pi(t)\left[\frac{2(1-B)-(A-B)(1+t)}{(A-B)(1+t)}-\frac{2(1-A)}{(A-B)} \frac{\log (1+t)}{t}\right] d t
$$

Then,

$$
V_{\pi}(R(\beta)) \subset S^{*}[A, B] \Leftrightarrow L_{\Pi}\left(e^{-i \theta} h_{(A, B)}\left(e^{i \theta} z\right)\right) \geq 0, \quad z \in \Delta
$$

Where

$$
L_{\Pi}(h)=\inf _{z \in \Delta} \int_{0}^{1} \Pi(t)\left[\operatorname{Re}\left(\frac{h(t z)}{t z}\right)-\frac{(A-B)+(A-1) t}{(A-B)(1+t)^{2}}\right] d t
$$

Note. The operator $I_{1, b, c}(f)$ corresponds to $V_{\pi}(f)$ with $\pi(t)=\pi_{b, c}(t)$ $=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} t^{b-1}(1-t)^{c-b-1}$ where $\int_{0}^{1} \pi_{b, c}(t) d t=1$. The cases $A=\lambda, B=0$ and $A=1-2 \gamma, B=-1$ were treated in [4] and [5] respectively.

Next we determine the condition on a, b, c and A, B when $f(z)$ is in S instead of $f(z) \in R(\beta)$.

Theorem 3.5. Let $a, b \in C \backslash\{0\}, c>2+|a|+|b|$. Suppose that a, b and $-1 \leq B<A \leq 1$ satisfy the condition that

$$
\begin{align*}
& \frac{\Gamma(c-|a|-|b|) \Gamma(c)}{\Gamma(c-|a|) \Gamma(c-|b|)}\left[\frac{(1-B)|a(a+1) b(b+1)|}{(c-2-|a|-|b|)(c-1-|a|-|b|)}\right. \\
& \left.\quad+(A+2-3 B) \frac{|a b|}{c-1-|a|-|b|}+(A-B)\right] \leq 2(A-B) \tag{3.4}
\end{align*}
$$

Then the operator $I_{a, b, c}(f)$ maps S into $S^{*}[A, B]$.

Proof. Let $a \in C|\{0\}, c>2+|a|+|b| \quad$ and $\quad-1 \leq B<A \leq 1$. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S$. Then we have that $\left|a_{n}\right| \leq n$. Consider $z F(a, b, c, z) * f(z)=z+\sum_{n=2}^{\infty} B_{n} z^{n}$ where

$$
B_{n}=\frac{(a, n-1)(b, n-1)}{(c, n-1)(1, n-1)} a_{n}
$$

It is enough to show that

$$
T=\sum_{n=2}^{\infty}\{n(1-B)-(1-A)\}\left|B_{n}\right| \leq A-B .
$$

We have

$$
\begin{aligned}
T & =\sum_{n=2}^{\infty}\{n(1-B)-(1-A)\} \frac{|(a, n-1)(b, n-1)|}{(c, n-1)(1, n-1)}\left|a_{n}\right| \\
& \leq \sum_{n=2}^{\infty}\left\{(n+1)^{2}(1-B)-(n+1)(1-A)\right\} \frac{(|a|, n)(|b|, n)}{(c, n)(1, n)} \\
& =(1-B) \sum_{n=1}^{\infty} \frac{(n+1)^{2}(|a|, n)(|b|, n)}{(c, n)(1, n)}-(1-A) \sum_{n=1}^{\infty} \frac{(n+1)(|a|, n)(|b|, n)}{(c, n)(1, n)}:=T_{2}
\end{aligned}
$$

From Lemma 2.1. we get

$$
\begin{aligned}
T_{2}= & \frac{\Gamma(c-|a|-|b|) \Gamma(c)}{\Gamma(c-|a|) \Gamma(c-|b|)}\left[(1-B)+\frac{(1-B)|(a, 2)(b, 2)|}{(c-2-|a|-|b|, 2)}+\frac{3(1-B)|a b|}{c-1-|a|-|b|}\right. \\
& \left.-\frac{(1-A)|a b|}{(c-1-|a|-|b|)}-(1-A)\right]-(1-B)+(1-A) \\
= & \frac{\Gamma(c-|a|-|b|) \Gamma(c)}{\Gamma(c-|a|) \Gamma(c-|b|)}\left[\frac{(1-B)|a(a+1) b(b+1)|}{(c-2-|a|-|b|)(c-1-|a|-|b|)}+\frac{A|a b|}{c-1-|a|-|b|}\right. \\
& \left.\quad-\frac{|a b|}{(c-1-|a|-|b|)}+\frac{3(1-B)|a b|}{(c-1-|a|-|b|)}+(A-B)\right]-(A-B) \\
= & \frac{\Gamma(c-|a|-|b|) \Gamma(c)}{\Gamma(c-|a|) \Gamma(c-|b|)}\left[\frac{(1-B)|a(a+1) b(b+1)|}{(c-2-|a|-|b|)(c-1-|a|-|b|)}\right. \\
& \left.\quad+\frac{(A+2-3 B)|a b|}{c-1-|a|-|b|}+(A-B)\right]-(A-B) .
\end{aligned}
$$

Then, under the hypothesis (3.4) of the theorem we get $T \leq T_{2} \leq A-B$. Therefore the operator $I_{a, b, c}(f)$ maps S into $S^{*}[A, B]$.

Note. When $A=\lambda, B=0$, this reduces to Theorem 2.6. in [4].

References

1. O.P. Ahuja, Families of analytic functions related to Ruscheweyh derivatives and subordinate to convex functions, Yokohama Math. J. 41 (1993), 39-49.
2. Y.E. Hohlov, Convolution Operators preserving univalence functions, Pliska Stud. Math. Bulgar. 10 (1989), 87-92.
3. P.T. Mocanu, Starlikeness of certain integral operators, Mathematica, (Cluj) 36 (59),2 (1994), 179-184.
4. S. Ponnusamy and F. Ronning, Starlikeness properties for convolutions involving Hypergeometric Series, Ann. Univ. Mariae Curie-Sklodowska sect A52 No. 1 (1998), 141-155.
5. S. Ponnusamy and F. Ronning, Duality for Hadamard products applied to certain integral transforms, Complex Variables 32 (1997), 263-287.
6. S. Ponnusamy and M. Vuorinen, Univalence and convexity properties for Gaussian Hypergeometric functions, Rocky Mountain J. Math. (To appear).
7. St. Ruscheweyh, New Criteria for Univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
8. St. Ruscheweyh, and V. Singh, On the order of starlikeness of Hypergeometric functions, J. Maths. Anal. Appl. 113 (1986), 1-11.
9. T. Shail-Small and E.M. Silvia, Neighborhoods of analytic functions, J. Analyse. Math. 52 (1989), 210-240.
10. H.M. Srivastava, Univalence and Starlike integral operators and certain associated families of linear operators, Proceedings of the Conference on Complex Analaysis (Z. Li, F. Ren, L. Yang and S. Zhang, Eds.), International Press Inc., 1994.

Keywords: hypergeometric functions, starlikeness, subordination, Hadamard product.
1991 Mathematics Subjects Classification: 30C45, 33C05.

* The work was carried out when the first author is under the Faculty Improvement programme of Univesity Grants Commission of IX plan.

