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Abstract. In this paper we study the behaviour of [/, (/)] (2) = zF (a,b,c,2) 4 f(z) where
F(a,b,c,z) is the Gaussian Hypergeometric function and the * is usual Hadamard product. In the

main result, we find conditions on a,b,c, 4,B and f so that [/, .(f)](2) belong to S*[A,B]
whenever f(z) € R(f), f < 1.

1. Introduction

Let A denote the family of functions f(z)=z+ Z a,z" that are analytic in the interior of
n=2

unit disk A={z e C: |z| < 1}. Let g be analytic and univalent in A and f be analytic in
A then fz) is said to be subordinate to g(z), written f< g if f(0)=g(0) and

f(B) < g(B).
For —-1<B<AXL1, let

<
f(2) 1+ Bz

S°[4, B] :{feA |Zf'(z) L+dz zeA}

For A=1,B=-1 we get the well known family S* of starlike functions. We further
get S[1-2y,—1] = S*(y) and S"(1,0)=S,. For B <1,define

R(B)={feA |36 e(—%, %j / Re [eia (f'(z)—,b’)] >0, zeA}.
Note that when >0, we have R(f) < S, the class of univalent functions in A . For

each <0, R(f) contains also nonunivalent functions.



[P

For any complex number ‘a’ we define the ascending factorial notation
(a,m)y=a(a+1)---(a+n-1) for n>1 and (a,0)=1 for a#0. The triangle inequality
for (a,n) is |(a,n)| £ (|a|, n)). When ‘a’ is neither zero nor a negative integer, we can
write (a, n)=T'(n+a)/T'(a).

The Gaussian hypergeometric function is defined as

(a ) (b,1) z" a, b,ceC

F(abcz)—z . eny ()

where c is neither zero nor a negative integer. The following well known formula

I'(c—a-b)T(c)

Fabed = s’

Re(c—a-b) >0 (1.1)

will be used frequently. Univalence, starlikeness and convexity properties of zF'(a, b, c, z)
have been studied in [6] and [8].

For f'e A, we consider the Hohlov convolution operator [2] 7, , . (f) given by
[[a,b,c (f) ] (Z) = ZF(aaba C,Z) k f(Z)

where « stands for the usual Hadamard product of power series.
For Rec>Re b >0, itis known that

F(C) ! b— c—b-1 dt
F(a,b,c,z) =
(a,b,c,z) = T D) Jz —1) o
We can write
__T@ g esn SU2) 2
FanelN@ = orh Ojt (1-1) — dt =

This operator reduces to Bernardi operator
1
Bi(z) = (I+p) [ 77 f(z)at
0

for a=1,b=1+y and c=2+y with Re y>—-1. For y=1 and 2, respectively
we get Alexander transform and Libera transform. These three operators are
all examples of the situation where c=a+b in [,,.(f). Also we have



4 f(D) =111 (/)] (2), n >~1 which is known as Ruscheweyh differential,

(1-2)
studied in [7]. It represents the case ¢ <a+b with a=1, b=n+1 and c=1. Some more

special cases of the operator / (f) can be found in [10].

a,b,c
P.T. Mocanu [3] obtained the range for y so that the Bernardi operator B, eS :

whenever feR(0). As a natural extension, here we determine conditions on 4, B, a,b,c

and f, the transform by the hypergeometric function F(a,b,c,z) on the class R(f) so that
Lpe(f) € ST[4,B].

2. Auxiliary lemmas
We shall state the following Lemmas [4] which may be used in proving the main theorems.

Lemma 2.1. Let a,b,c>0. Then

>i) for c>a+ b+ 1,

> (n+1)(a,n)(b,n)_r(c—a—b)r(c)[ ab +1}
= (c,n)y(Ln)  T(c—a)T(c=b) |c—1-a—b

(i1) for ¢ >a+ b+ 2,

i (n+1)2 (a,n)(b,n) T(c—a-b)I'(c) . (a,2)(b,2) N 3ab
"m0 (c,n)(L,n) - I'(c—a) I'(c-b) (c=2-a-b2) c—l-a-b|

Lemma 2.2. Let a,b,c>0 andfor a=1,b#1,c#1with ¢c>max {0,a+b-1},

i (a,n)(b,n) 1 I'(c+1—a-b)'(c) -1
o (e,n)(L,n+1) ~ (a=1)(b-1) T'(c—a)l(c-b) -

Lemma2.3. Let a,b,c>0. For b#1 and ¢>1+b,

by 1 c-1 N 3
em D b)) (w(c-D)—-y(c-b))

o
5

where y(x)=T"(x)/T(x).



3. Main theorems
Now let us study the action of the hypergeometric function on the classes R(f) and S.
Theorem 3.1. Let a,be C\{0}, |al|=1l, |b|#1, c#1 and c > |a]| + |b].

For —1<B< A<1, assume that

T(c—|a|-|b])T(c) (1-4) (c—|al|-|b])
(1-8) -
I'(c—|a|)T(c—|b]) (Ja|-1) (| b]-1)

(3.1)

S(A—B){l+ ! } (=4 (=D

204-p) ) (al-n (bs]-D
Then the operator 1,,, .(f) maps R(p) into S*[A,B].

Proof. Let a, beC\{0} and c > |a|+]|b|, |a|#1, |b|#1 and c#1. Let

f(z) =z + Z a,z" be a function in R(f). Then, it is well-known that
n=2
21—
(0, < 20=8).
n

Consider zF(a,b,c,z) y f(z) = z + Z:O:Z B,z" where B, =1 and for n>1,

_(a,n=1)(b,n-1) 4
C (e,n-D(Mn-1) "

n

A special case of Theorem 3 in [1] gives a sufficient condition for feS *[A, B] is that

> {n(1-B)-(1-4)} |a, | < A-B. Then we have to show that
n=2

T:f {n(1-B)—(1-A4)}|B,| < 4-B.
n=2
We have
(|al. n=D ([b]. n-D) 2(1-p)
(c,n-1)(A,n-1) n

T < i {(n(1-B)—(1-A)}
n=2

T R SR Y TS R

n=1

= 2(l—ﬂ){(1—8)i—(|a .m(8l.m _ S (|"|=”)(|b|’n)}

n=l



Using the formula (1.1) and Lemma 2.2. we observe that

1= a0-p) aop Dezlel oD O g
: F(c—|a|) F(c—|b|)
—(I—A) F(C_|a|—|b|) l—‘(C)(C_|a|_|b|) + (I—A)(C—l) + (I—A)
T(c—|a|)T(c—|b])(|a|-D(|6|-D (|a|-D(|b]-D

_20-p) I(c—|a|-|b|) T(c) -5 (1-4)(c-|a|-|b]
T(c—|a|) T(c—|b]) (|a|-D(|b]-D
(1-A4)(c-1)

—(4-B) }.
TETCE )}

Then under the hypothesis (3.1) of the theorem we get

(4-B)

T<T <2(-p) g

thereby showing that /€S : [4,B].
Note. For 4= 1, B =0 we get, as a special case, Theorem 2.1 of [4].

Theorem 3.2. Let b € C\{0}, ¢>0, |b| # 1 and c>1+|b|. For -1 £ B< A4 <1,
assume that

(1-B)(c-D
(c—|b|-D)

- (- )( J('//(c D-y(c-|b])) < +(4-B) (33)

2(1 ﬂ)
where y(x)=T"(x)/T'(x). Then the operator I, .(f) maps R(f)into s* [4,B].

Proof. Putting a=1 in (3.2) we get

T1=2(1—ﬂ){(1 B)Z(| | )i (elm }

1 (c,n)(n+1)

Using (1.1) and Lemma 2.3. we get

(1-B)(c-)

Tl = 2(1_ﬂ){ (C—|b|—1)

- (- )[ j(z//(c D - we—|b]) - (4- B)}



Thus under the hypothesis (3.3) of the theorem we get T'< T} < (4 - B), there by showing
that the operator 1, , (/) maps R(f) into S [4,B].

Note. For 4=14, B=0, we get as a special case, Theorem 2.2. of [4].

From the proof of Theorems 3.1 and 3.2, we observe that for A =1, B=0. We need not
treat the case a =1 separately neither we need the aestrictions | b | #1 and c#1. In this

case, we have the following result.

Corollary 3.3. Let a,b eC\{0} and ¢ > |a| + |b|. Assume that

T(c—|a|-|b]) T(c) ]

T(c—|a]) T(c-|b]) ~  20-p8)

Then the operator 7, , .(f) maps R(f) into S “I1, 0].

1
Let 7z : [0,1] & R be a nonnegative function normalized so that fﬂ(t)dt =1and define
0

1
VNG = Jx0 LD, fen .

0 t

1
Let I1(2)= Iﬁ(s) é and assume that I1(#) > 0 when ¢t —> 0+. Itis shown in [9] that the
s
0

class " [4,B], -1 £ B< A <1 can be characterized interms of convolutions that

reS'[4,B] < L)« hap@
z

A—x
z|1- z
[ A-B }

a2

0

z
where

(A-B) — (1 A)t

|x| =1. Choose G(r) = -
(A-B)(1+1)

h(A,B) (2)=

From #g'(t)+ g(t)+1=2G(¢) , we get

(0 20=B)=(=B)1+D) _21-4) log(I+1)
ST By A+ (A-B) 1

An application of Theorem 2.1 in [5] gives the following result.



Theorem 3.4. Let f be given by

L - _Jﬂ(,>{2<l—3:;f)1(—lf>t)a+r> 2020 s }dz.
Then,

Ve (R(B) < S[A4,B] & Ly (ehiyp(’2) 20, zeA
Where

1
A-B)+(A-1)t
LG = inf [ TI() Re[h(tz)J _ =B+ 2) d
zeA 0 1z (A—B)(l+l)
Note. The operator [, .(f) corresponds to V, (f) with #(@)=n, (t)
1

= & 1! (l—t)c_b_1 where j;zbc(t)dt = 1. The cases A=4, B=0 and

L'p)(c-b) 0
A=1-2y, B=-1 were treated in [4] and [5] respectively.

Next we determine the condition on a,b,c and 4,B when f(z)is in S instead of

f(2) e R(P).

Theorem 3.5. Let a,be C\{0},c>2 + |a| + |b| Suppose that a, b and
-1 < B< A4 £ 1 satisfy the condition that

T(c—|a|-|b|) T(c) (1-B) |a(a+1) bb+1)|
T(c—|a|) T(c-|b]) |(c=2-|a|-|b]) (c-1-|a|-|b])
+ (A+2—3B)¢+(A—B) <2(4-B) (34
c=l-|al|-|b]

Then the operator 1, .(f) maps S into s [4,B].

Proof Let aeC|{0},c>2+|a|+|b| and -1<B<A4<L Let

f(zy=z+Y" a,z"€S. Then we have that |a,|<n. Consider

zF(a,b,c,z) % f(z) = z + z B,z" where
n=2
_ (a,n—l)(b,n—l)a
(e,n=-D(1,n-1) "

n



It is enough to show that
T =Y {n(1-B) - 1-A4)}|B,| < 4-B.
n=2
We have
® (a,n-1)(b,n-1)
T =% {n(1-B) - (1—A>}| | |a,|
o (c,n=1)(I,n-1)

® (|al,m(|b].n)
< D (1-B) - -4} ———
ngz{(nﬂ (1=B) = (n+D(1-A} — =

2 (n+)*(lal,m)(|b].m) 2 (n+)(|al.m)(|b].n)
=(1-B -(1-4 =T
-9 2 (csn) (1,m) R T ’

From Lemma 2.1. we get

;. _ Lle-|al-[pro)| (1-B)|(a,2) (5, 2)| . 30-B)|ab|
> T(e—|a])T(e-|b]) (c-2-|a|-|b2) = c~1-|a]-|b]|

(- a] =4y |- (1-B) + (-4)
(c=1=[al=[2])
T(c—|a|-|b])T(c) (1-B) |a(a+1)b(b+1)| Alab]|
© T(e-|a])T(c-|b|) | (c-2-|a|-|b|)(c-1-|a|-|b]) = c-1-]a|-|b]

|ab| 3(1-B)|ab|
- +
@=1=a]-[s]) " Ce=1-Tal-To])

+ (A—B)} ~ (4-B)

_ T(e-|al-|p])T(e) (1-B) |a(a+1)b(b+1)|
" T(c-|ahT(c-|b]) | (c-2-|a|-|b])(c-1-|a]-|b])

(A+2-3B)|ab|

+ “eial-[6] + (A—B)} — (4-B).

Then, under the hypothesis (3.4) of the theorem we get 7'<7, < A—B. Therefore the
operator 7, , .(f) maps S into S*[A,B] .

Note. When 4= A1, B =0, this reduces to Theorem 2.6. in [4].
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