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Abstract.   In this paper, we study the uniqueness of entire functions.  We mainly obtain the following 

result:   Let )(zf  and )(zg  be two non-constant entire functions, ,5≥n  k two positive  integers, 

and let },,{},1:{ 21 cbaSzzS n ===  where a, b, c are nonzero finite distinct constants satisfying 

abcacbbca ≠≠≠ 222 ,, .  If ),(),( 11 gSEfSE = , ),(),( )(
2

)(
2

kk gSEfSE = , then  .)()( zgzf ≡  

 
 
1. Introduction  and main results 
 
Let )(zf  be a non-constant meromorphic function in the whole complex plane.  In this 
paper we use the following standard notations of value distribution theory, 
 

",1,),,(),,(),,(),,( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
f

rNfrNfrNfrmfrT  
 

(see Hayman [7], Yang [9]).  We denote by ),( frS any function satisfying  
  

,)},({),( frTofrS =  
 

as ,+∞→r  possibly outside of a set with finite measure.   
     Let S be a set of complex numbers.  Set  
 

∪
Sa

azfzfSE
∈

=−= }0)(:{),( , 
 
where a zero point with multiplicity m is counted m times in the set. 
   In 1977, Gross [5] posed the following question. 
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Question 1.  Can one find two finite sets )2,1( =jS j  such that any two non-constant 
entire functions f and g satisfying ),(),( gSEfSE jj =   for 2,1=j  must be identical? 
    
 Yi [11] gave a positive answer to the question.  He proved 
 
Theorem A.  Let )(zf  and )(zg  be two non-constant entire functions, 5≥n   a positive 
integer, and let }{},1:{ 21 aSzzS n === , where 0≠a  is a constant satisfying 12 ≠na . 
If ),(),( gSEfSE jj =  for ,2,1=j  then .)()( zgzf ≡    
 
 In this paper, we have proved 
 
Theorem 1.  Let )(zf  and )(zg  be two non-constant entire functions, ,5≥n  k two 
positive integers, and let },,{},1:{ 21 cbaSzzS n === , where a, b, c are nonzero finite 
distinct constants satisfying abcacbbca ≠≠≠ 222 ,, . If ),(),( 11 gSEfSE = , 

),(),( )(
2

)(
2

kk gSEfSE = , then  .)()( zgzf ≡  
 
Remark 1.  The following example shows that the condition that a, b, c are nonzero finite 
distinct constants satisfying abcacbbca ≠≠≠ 222 ,,  in Theorem 1 is necessary. 
 
Example 1.  Let },,{},1:{ 21 abbaSzzS n === , where a, b are two distinct            
nonzero constants.  Taking ,)( zabezf −= zabezg −−=)( . Obviously, 

),(),( 11 gSEfSE = ,}1:{ == − zabnez )',()',( 22 gSEfSE = zabez −= :{  
aaba −=   or   

ab
be zab

−
=−   or  }

ab
abe abz

−
=− ,  but  .)()( zgzf ≡/  

 
 When 2S  has two elements or one element, we have the following results. 
 
Theorem 2.  Let )(zf  and )(zg  be two non-constant entire functions, ,5≥n  k  two 
positive integers, and let },{},1:{ 21 baSzzS n === , where a, b are two nonzero finite 
distinct constants. If ,),(),( 11 gSEfSE = ),(),( )(

2
)(

2
kk gSEfSE = , then one of the 

following cases must occur:  
 
    (1) ;)()( zgzf ≡   
 (2) ,ab −= dczdcz tezgezf −−+ == )(,)( , where c, d, t are three constants 

satisfying 1=nt   and 22)1( atc kk =− ;  



Entire Functions and their Derivatives Share Two Finite Sets 

 

9 

 
    (3)  dczdcz tezgezf −−+ == )(,)( ,  where c, d, t are three constants satisfying 1=nt  

and abtc kk =− 2)1( ;   
(4) .)()(, zgzfab −≡−=  

 
Theorem 3.  Let )(zf  and )(zg  be two non-constant entire functions, ,5≥n  k two 
positive integers, and let }{},1:{ 21 aSzzS n === , where .,0 ∞≠a   If 

),(),( 11 gSEfSE = , ,),(),( )(
2

)(
2

kk gSEfSE =  then one of the following cases must 
occur:  
 
   (1)   ;)()( zgzf ≡  
   (2)  dczdcz tezgezf −−+ == )(,)( , where c, d, t are three constants satisfying 1=nt  

and 22)1( atc kk =− . 
 
 
2. Some  lemmas 
 
For the proof of our theorems we need the following lemmas. 
 
Lemma 1 ([3]).   Let )(zf  be a non-constant entire function, and let 2≥k  be a positive 
integer.   If 0)()( )( ≠zfzf k ,  then ,bazef +=  where ,0≠a  b are constants. 
 
Lemma 2 ([11]).   Let  )(zf  and )(zg  be two transcendental entire functions, 5≥n  a 
positive integer, and let }1:{ == nzzS .  If ,),(),( gSEfSE =  then either tzgzf ≡)()(   
or ,)()( ztgzf ≡  where t is a constant satisfying 1=nt . 
 
 
3. Proof of Theorem 1 
 
First we consider the case when )(zf  and  )(zg are two transcendental entire functions. 
By Lemma 2 we know that either  tzgzf ≡)()(  or ,)()( ztgzf ≡   where t is a constant 
satisfying  1=nt .  Next we divide two cases. 
 
Case 1. ,)()( tzgzf ≡  where t is a constant satisfying 1=nt .  Obviously, .0≠f   Hence 
we have 
 

                    ,)( )(zhezf =     )()( zhtezg −=                                          (3.1)   
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where )(zh  is a non-constant entire function.  Thus we have          

            ,),,( )()( hkk ehhPf "′=    hkk ehhtQg −′= ),,( )()( "                    (3.2)  

where P, Q  are polynomials of )(,,, khhh "′′′ .   Set 

,))(,,)(,)(()(),,,( )()( zhzhzhPzhhhP kk "" ′′′=′′′   
 .))(,,)(()(),,,( )()( zhzhQzhhhQ kk "" ′=′′′  

Obviously there exists 0z  such that azf k =)( 0
)( .  Then by ),(),( )(

2
)(

2
kk gSEfSE =  

and (3.2)  we deduce that one of the following cases must occur: 

  (i) 0))(,,,())(,,,(,)(
2

0
)(

0
)(

0
)( =−′′′′′′=

t
azhhhQzhhhPazg kkk "" ; 

  (ii)  0))(,,,())(,,,(,)( 0
)(

0
)(

0
)( =−′′′′′′=

t
abzhhhQzhhhPbzg kkk "" ; 

  (iii)  0))(,,,())(,,,(,)( 0
)(

0
)(

0
)( =−′′′′′′=

t
aczhhhQzhhhPczg kkk "" . 

Next we consider four sub-cases. 

Case 1.1.  ,0))(,,)(,)(())(,),(),((
2

)()( ≡/−′′′′′′
t

azhzhzhQzhzhzhP kk ""  

,0))(,,)(())(,),(),(( )()( ≡/−′′′′
t

abzhzhQzhzhzhP kk ""  

.0))(,,)(,)(())(,),(),(( )()( ≡/−′′′′′′
t

aczhzhzhQzhzhzhP kk ""  

Then by ),(),( )(
2

)(
2

kk gSEfSE =  we obtain 

    ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

− af
rN

k )(
1,

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−′′′′′′
≤

t
ahhhQhhhP

rN
kk

2
)()( ),,,(),,,(

1,
""

 

                                  
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−′′′′′′
+

t
abhhhQhhhP

rN
kk ),,,(),,,(

1,
)()( ""

 

   
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−′′′′′′
+

t
achhhQhhhP

rN
kk ),,,(),,,(

1,
)()( ""

 .                 (3.3) 



Entire Functions and their Derivatives Share Two Finite Sets 

 

11 

By Logarithmic derivative lemma (see [7,9]), we have  

),(,),(),( frS
f
f

rmhrmhrT =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
=′=′ . 

Obviously,  

.),,2(),,(),(),(),( )( kjfrShrShrThrT j "==′+′≤  

Hence we get  

.),()),,,(,(,),()),,,(,( )()( frShhhQrTfrShhhPrT kk =′′′=′′′ ""        (3.4) 

Thus by (3.3), (3.4) and  Nevanlinna first fundamental theorem we have 
 

    ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

− af
rN

k )(
1,  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−′′′′′′≤

t
ahhhQhhhPrT kk

2
)()( ),,,(),,,(, ""  

                               ⎟
⎠
⎞

⎜
⎝
⎛ −′′′′′′+

t
abhhhQhhhPrT kk ),,,(),,,(, )()( ""  

                               .),()1(),,,(),,,(, )()( frSO
t

achhhQhhhPrT kk ≤+⎟
⎠
⎞

⎜
⎝
⎛ −′′′′′′+ ""   

 
By Milloux’s inequality (see [7,9]) we obtain 

),(1,1,),(),(
)(

frS
af

rN
f

rNfrNfrT
k

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+≤ . 

Hence by the above two formulas and (3.3)-(3.4) we deduce a contradiction: 
.),(),( frSfrT =  

 
Case 1.2.  .0),,,(),,,(

2)()( ≡−′′′′′′ t
akk hhhQhhhP ""  Then by (3.2) we deduce that 

2)()( )()( azgzf kk ≡   and  azf k =)()(  if and only if azg k =)()( .   Thus we obtain that if 
bzf k =)()( ,  then either bzg k =)()(  or czg k =)()( .   If bzg k =)()(  if and only if 
bzf k =)()( ,  then we get czg k =)()(  if and only if czf k =)()( .   Hence we deduce that 

2222 , caba == .  Thus we get either ba =  or ca =  or  ,cb =  which is a contradiction.  
If there exists 1z  such that bzf k =)( 1

)( , czg k =)( 1
)( , then we get bca =2 , a 

contradiction. 
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Case 1.3.  .0),,,(),,,( )()( ≡−′′′′′′ t
abkk hhhQhhhP ""   Then by (3.2) we deduce that 

abzgzf kk ≡)()( )()(  and azf k =)()(  if and only if bzg k =)()( , bzf k =)()(  if and only 
if azg k =)()( .  Hence by ),(),( )(

2
)(

2
kk gSEfSE =  we deduce that czf k =)()(  if and 

only if czg k =)()( .  Thus by (3.2) we get abc =2 , a contradiction. 
 
Case 1.4.  .0),,,(),,,( )()( ≡−′′′′′′ t

ackk hhhQhhhP ""   In this case, by using the same 
argument as do in Case 1.3 we get a contradiction. 
Hence we deduce that  tzgzf ≡)()(  is impossible. 
 
Case 2.  ,)()( ztgzf ≡  where t is a constant satisfying 1=nt . Hence we have 

)()( kk tgf ≡ . 
We claim that  .1=t   Without loss of generality, we assume that there exist 1z  and 2z  
such that azf k =)( 1

)(  and bzf k =)( 2
)( . Suppose that ,1≠t  then by 

),(),( )(
2

)(
2

kk gSEfSE =  and )()( kk tgf ≡  we deduce that either bzg k =)( 1
)(  or 

czg k =)( 1
)(  and that either azg k =)( 2

)(  or czg k =)( 2
)( .  Now we discuss the 

following four cases. 
 
 (2.1)  bzg k =)( 1

)( , azg k =)( 2
)( . Then by )()( )()( ztgzf kk ≡  we get tba =  and 

.tab =   Thus we get .1, −=−= tab  If there exists 3z  such that 
czf k =)( 3

)(  then czg k −=)( 3
)( .  Hence by ),(),( )(

2
)(

2
kk gSEfSE =  we 

deduce that  ac =−  or  bc =−  or  .cc =−   Thus by  ab −=  we get bc =  
or  ac =  or  ,0=c   which is a contradiction.   If there exists 3z  such that 
that czg k =)( 3

)( ,  then we can similarly deduce a contradiction. If 
czf k ≠)()(  and czg k ≠)()( , then by )()( )()( zgzf kk −=  we get 

cczf k −≠ ,)()( , which contradicts Picard’s theorem. 
   (2.2)  bzg k =)( 1

)( , czg k =)( 2
)( .  Then by )()( )()( ztgzf kk ≡  we get tba =  and  

.tcb =   Thus we get acb =2 , a contradiction. 
   (2.3)  czg k =)( 1

)( , azg k =)( 2
)( .   Then by )()( )()( ztgzf kk ≡  we get bca =2 , 

a contradiction. 
   (2.4)  czg k =)( 1

)( , czg k =)( 2
)( .  Then by )()( )()( ztgzf kk ≡  we get ,ba =  a 

contradiction. 
 Hence we deduce that  ,1=t  that is .)()( zgzf ≡   
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 Now we consider the case when )(zf  and )(zg  are two polynomials.  Thus by 

=),( 1 fSE   ),( 1 gSE  we have  
                    ]1)([1)( −≡− zgkzf nn ,                                          (3.5) 

 
where  k is a constant.   Hence we have  
 

                    )()()()( 11 zgzkgzfzf nn ′≡′ −− .                                     (3.6) 
 

Thus by (3.6) and 5≥n  we deduce that there exists 0z  such that .0)()( 00 == zgzf  
Substituting this into (3.5) we get  ,1=k  that is )()( zgzf nn ≡ .   Hence we get  
 

                   ,)()( ztgzf ≡                                                        (3.7) 
 
where  t is a constant satisfying 1=nt . Thus we have  
 

                    )()( )()( ztgzf kk ≡ .                                                 (3.8) 
 

Next by using the similar argument to Case 2 we get .)()( zgzf ≡  The proof of the 
theorem is complete. 
 
4. Proofs of theorems 2-3 
 
As the proof of Theorem 2 and Theorem 3 is similar, we only give the 
  
Proof of Theorem 2.  First we consider the case when )(zf and )(zg  are two 
transcendental entire functions. 
 
By Lemma 2 we know that either  ,)()( tzgzf ≡  or ,)()( ztgzf ≡  where t is a constant 
satisfying .1=nt   Next we divide two cases. 
 
  Case 1.   .tfg ≡   Obviously,  .0≠f   Hence we have  
 

,)(,)( )()( zhzh tezgezf −==                                           (4.1) 
 
where )(zh  is a non-constant entire function.  In the following we consider two                 
sub-cases. 
 
 Case 1.1.   .1=k   Thus we by (4.1) have  
 

)()( )()(,)()( zhzh ezhtzgezhzf −′−=′=′ .                                 (4.2) 
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Obviously there exists 0z  such that azf =′ )( 0 .  Then by ),(),( 22 gSEfSE ′=′  and (4.2) 
we deduce that one of the following cases must occur: 
 
   (i)  ;0)]([,)(

22
00 =+′=′ t

azhazg  
   (ii)  .0)]([,)( 2

00 =+′=′ t
abzhbzg  

 
Next we consider three sub-cases. 
 
Case 1.1.1.  ,0))((

22 ≡/+′ t
azh .0))(( 2 ≡/+′ t

abzh   Then by using the same argument as do 
in Case 1.1 of the proof of Theorem 1 we deduce a contradiction. 
 
Case 1.1.2.  .0))((

22 ≡+′ t
azh  Then we have ,)( dczzh +=  where c, d are two constants 

satisfying  .22 atc =−    Thus we get  
 

dczdcz tezgezf −−+ == )(,)( . 
Hence we have  

dczdcz tcezgcezf −−+ −=′=′ )(,)( . 
 
Obviously, azf =′ )(  if and only if azg =′ )( . Thus by ),(),( 22 gSEfSE ′=′  we deduce 
that bzf =′ )(  if and only if bzg =′ )( . Hence we get ,22 ba =  that is .ab −=  Thus the 
conclusion (2) occurs. 
 
Case 1.1.3.  .0))(( 2 ≡+′ t

abzh  Then we have ,)( dczzh +=  where c, d are two constants 
satisfying  abtc =− 2 .   Thus we get 
  

dczdcz tezgezf −−+ == )(,)( . 
Hence we have  

dczdcz tcezgcezf −−+ −=′=′ )(,)( . 
 
Obviously, azf =′ )(  if and only if bzg =′ )( , bzf =′ )(  if and only if azg =′ )( .  Thus 
the conclusion (3) occurs. 
 
Case 1.2.   .2≥k   Then by (4.1) we have 
 

        hkk ehhPf ),,( )()( "′= , hkk ehhtQg −′= ),,( )()( "                               (4.3) 
 
 where P, Q are polynomials of )(,,, khhh "′′′ .   
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 Obviously there exists 0z  such that azf k =)( 0
)( . Then by 

),(),( )(
2

)(
2

kk gSEfSE =  and (4.3) we deduce that one of the following cases must 
occur:  
 

    (i)  0))(,,,())(,,,(,)(
2

0
)(

0
)(

0
)( =−′′′′′′= t

akkk zhhhQzhhhPazg ""  
(ii) .0))(,,,())(,,,(,)( 0

)(
0

)(
0

)( =−′′′′′′= t
abkkk zhhhQzhhhPbzg ""  

 
Next we consider three sub-cases. 
 
Case 1.2.1. ,0))(,,)(,)(())(,,)(,)((

2)()( ≡/−′′′′′′ t
akk zhzhzhQzhzhzhP ""  and 

.0))(,),(),(())(,),(),(( )()( ≡/−′′′′′′ t
abkk zhzhzhQzhzhzhP ""  Then by using the same 

argument as do in Case 1.1 of the proof of Theorem 2 we deduce a contradiction. 
 
Case 1.2.2.  .0),,,(),,,(

2)()( ≡−′′′′′′ t
akk hhhQhhhP ""   Thus by (4.3) we deduce that 

2)()( )()( azgzf kk ≡  and azf k =)()(  if and only if azg k =)()( .  Hence we obtain 
,0)()( ≠zf k  thus by Lemma 1 we deduce that dczezf +=)( .  Considering  ,)()( tzgzf ≡  

we get dcztezg −−=)( .   Thus we have  
 

                 dczkkkdczkk etczgeczf −−+ −== )1()(,)( )()( ,                              (4.4) 
 
Obviously, c, d satisfies 22)1( atc kk =− .  Thus the conclusion (2) occurs. 
 

Case 1.2.3.  .0),,,(),,,( )()( ≡−′′′′′′ t
abkk hhhQhhhP ""    Thus by (4.3) we deduce that 

abzgzf kk ≡)()( )()(  and azf k =)()(  if and only if bzg k =)()( .  Hence we have 
,0)()( ≠zf k  thus by Lemma 1 we deduce that dczezf +=)( . Considering  ,)()( tzgzf ≡  

we get dcztezg −−=)( .   Hence we have  
 

dczkkkdczkk etczgeczf −−+ −== )1()(,)( )()( ,                          (4.5) 
 

Obviously, c,d satisfies abtc kk =− 2)1( .   Thus the conclusion (3) occurs. 
 

Case 2.  .tgf ≡   Then )()( kk tgf ≡ .  Without loss of generality, we assume that there 
exists 1z  such that azf k =)( 1

)( . Suppose that ,1≠t  then by ),(),( )(
2

)(
2

kk gSEfSE =  
and )()( kk tgf ≡  we deduce that .)( 1

)( bzg k =   Hence we deduce that azf k =)()(  if and 
only if bzg k =)()(  and that bzf k =)()(  if and only if azg k =)()( . 
 
 
 



M.L. Fang 

 

16

 If bzf k =)()(  has solution, then by )()( )()( ztgzf kk ≡  we get tba =  and .tab =  
Hence we get ab −=  and  .1−=t   That is  ,)()( zgzf −≡  the conclusion (4) occurs. 
 If ,)()( bzf k ≠  then .)()( azg k ≠  Hence by )()( )()( ztgzf kk ≡  we get 

.,)()( tabzf k ≠   If  ,tab ≠  then by Picard’s theorem we get a contradiction.  If  ,tab =  
then by azf k =)( 1

)(  and bzg k =)( 1
)(  we get  .tba =   Hence we get  ab −=  and  

.1−=t   That is  ,)()( zgzf −≡  the conclusion (4) occurs. 
  Now we consider the case when  )(zf and )(zg  are two polynomials.  Then by using 
same argument as do in Theorem 1 we get .)()( ztgzf ≡  Thus we obtain 

)()( )()( ztgzf kk ≡ .  Next by using the similar argument to Case 2 we obtain  .)()( zgzf ≡   
The proof of the theorem is complete. 
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