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Abstract. In this paper, we study the uniqueness of entire functions. We mainly obtain the following
result: Let f(z) and g(z) be two non-constant entire functions, n>5, k two positive integers,
and let S; ={z:z" =1},S, ={a,b,c} where a, b, c are nonzero finite distinct constants satisfying
a? #hbe,b? zac,c? =ab . If E(Sy, f)=E(S1,9),E(S,, f9)=E(S,,g®) , then f(z)=g(2).

1. Introduction and main results

Let f(z) be a non-constant meromorphic function in the whole complex plane. In this
paper we use the following standard notations of value distribution theory,

T(r, f), m(r, f), N(r, f), N(r, f), N(r,%),
(see Hayman [7], Yang [9]). We denote by S(r, f)any function satisfying
S(r, f) = ofT(r, 1)},

as r — +oo, possibly outside of a set with finite measure.
Let S be a set of complex numbers. Set

E(S,f):U{z:f(z)—a:O},

ae$s

where a zero point with multiplicity m is counted m times in the set.
In 1977, Gross [5] posed the following question.
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Question 1. Can one find two finite sets S;(j =1, 2) such that any two non-constant
entire functions f and g satisfying E(S;, f)=E(S;,g) for j=1,2 must be identical?

Yi [11] gave a positive answer to the question. He proved

Theorem A. Let f(z) and g(z) be two non-constant entire functions, n>5 a positive
integer, and let S; ={z:z" =1}, S, ={a}, where a= 0 is a constant satisfying a1,
If E(S;, f)=E(S;,9) for j =12, then f(z)=g(2).

In this paper, we have proved
Theorem 1. Let f(z) and g(z) be two non-constant entire functions, n>5, k two
positive integers, and let S, ={z:z" =1}, S, ={a,b,c}, where a, b, ¢ are nonzero finite
distinct constants satisfying a® =bc, b® = ac, c> = ab . If E(Sy, f)=E(S;,9) ,

E(S,, f®)=E(S,,9®),then f(2)=g(2).

Remark 1. The following example shows that the condition that a, b, ¢ are nonzero finite
distinct constants satisfying a® = bc, b? =ac, ¢ =ab in Theorem 1 is necessary.

Example 1. Let S, ={z:z"=1},S, ={a,b,+/ab} , where a, b are two distinct

nonzero  constants. Taking f(z) = eV | g(z) = e V72 Obviously,
ES,, 1) = ES,0) =Lz -1}, Eﬁg )=E6,g) ~fziet
V—abz J-abz
=a/+—aba or e =——— or e = , but f(2)#9(2).
/ vJ—ab - ab

When S, has two elements or one element, we have the following results.

Theorem 2. Let f(z) and g(z) be two non-constant entire functions, n>5, k two
positive integers, and let S; ={z:z" =1}, S, ={a, b}, where a, b are two nonzero finite
distinct constants. If E(S;, f)=E(S;,9), E(S,, f ©¥)=E(S,,g®), then one of the
following cases must occur:

1 f(@)=9();
(2) b=-a, f(z)=e""" g(z)=te™* " , where c, d, t are three constants
satisfying t" =1 and (-1)*tc® =a?;
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() f(z)=e""Y g(z) =te"% ¥, wherec, d, t are three constants satisfying t" =1
and (-1)*tc® =ab;
(4) b=-a, f(2)=-9(2).

Theorem 3. Let f(z) and g(z) be two non-constant entire functions, n>5, k two
positive integers, and let S, ={z:z"=1},S,={a} , where a=#0,x. If
E(Sy, f)=E(S1,9), E(S,, f®)=E(S,,g®), then one of the following cases must
occur:

@ f@=90);
() f(z)=e""" g(z) =te™ ¥ where, d, t are three constants satisfying t" =1
and (-)*¥tc? =a?.
2. Some lemmas

For the proof of our theorems we need the following lemmas.

Lemma 1 ([3]). Let f(z) be a non-constant entire function, and let k > 2 be a positive
integer. If f(2)f®(2)=0, then f =e®* where a=0, b are constants.

Lemma 2 ([11]). Let f(z) and g(z) be two transcendental entire functions, n>5 a
positive integer, and let S={z:z" =1}. If E(S, f)=E(S, g), then either f(z)g(z)=t
or f(z)=tg(z), wheretis a constant satisfying t" =1.

3. Proof of Theorem 1

First we consider the case when f(z) and g(z) are two transcendental entire functions.

By Lemma 2 we know that either f(z)g(z)=t or f(z)=tg(z), where tis a constant

satisfying t" =1. Next we divide two cases.

Case 1. f(z)g(z) =t, where t is a constant satisfying t" =1. Obviously, f #0. Hence
we have

f(z)=e"®  g(z)=te"@ (3.1)



10 M.L. Fang

where h(z) is a non-constant entire function. Thus we have

00 P(h',---,h(k))eh, g(k) _ tQ(h',---,h(k))e_h (3.2)

where P, Q are polynomials of h’,h",--- h®) . Set

P(h,h",--,h®)) (2) = P(h'(2),h"(z), -, h™(2)),
Q(',h",-+,h®) (2) =Q(h'(2),---,h ) (2)).

Obviously there exists Z, such that f ®)(zo)=a. Then by E(S,, f®))=E(S,,g™®)

and (3.2) we deduce that one of the following cases must occur:
2
(I) g(k) (ZO) =a, P(h’v h”v ] h(k))(ZO)Q(h,! h”’ B h(k))(ZO) _a_ =0 ;
(”) g(k) (ZO) = b! P(h’v h”! ] h(k))(ZO)Q(h,’ h”’ ] h(k) )(ZO) _a_ = O’

(i) g™ (20) = ¢ PV, 1", h®)(2g)QUN", ", -+~ h®))(z9) = =0
Next we consider four sub-cases.

Case 11. P(h'(2).h"(2).,h® (2)) Q(h'(2), h"(z),---,h<k>(z))—i—2$o :
P(h'(2),h"(2),---,h " (2))Q(h'(2),---,h ™ (Z))_aTb 40,
P(h'(z),h"'(2),---,h® (2))Q(h'(2) ,h"'(2),---,h ™ (Z))—%i 0.

Then by E(S,, f ®)=E(S,,9%) we obtain

N r,; <N|r, 1
P -a K 0. a’
P(h’,h”:"'!h())Q(h’,h”,'-',h())_7

t
+N |, 1 -
P(h', h/'l,,.l h(k))Q(h!, h”n”'n h(k))_aT
+N|r, 1 . 33)
P(h,, h”;"" h(k))Q(h,, h”,"‘, h(k))_ﬁ

t
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By Logarithmic derivative lemma (see [7,9]), we have

T(r,h’)=m(r,h’)=m(r,%j=s(r, f).
Obviously,
T(r,hD)y<T(r,h)+S(r,h")=5(r, f), (j=2,--,k).
Hence we get
T(r,P(h', 0", h O =s(r, £), T(r,Qh',h", -, h®)) = s(r, f).  (3.4)

Thus by (3.3), (3.4) and Nevanlinna first fundamental theorem we have

N1 1 N (k) N (k) a2
N r—g— | <T| POV nOQ N )~ 2

+T(r, P(h',h", -, A HQ(h', h", -, h‘k))—aTbj

+T(r,P(h',h”,---,h“")Q(h’,h”,---,h<k>)—%j + 0(@) < S(r, f).

By Milloux’s inequality (see [7,9]) we obtain
— 1 — 1
T(r, f) < N(r, f)+N|r,—= |+ N r,———| + S(r, f).
f £ _g

Hence by the above two formulas and (3.3)-(3.4) we deduce a contradiction:
T(r, f)=5(r, f).

Case 1.2. P(h',h",--,h®)Q(h',h",---,h®))—2=0. Then by (3.2) we deduce that
f 0 ()g®(z)=a? and f®(z)=a ifandonlyif g* (z)=a. Thuswe obtain that if
f ¥ (z)=b, then either g (z)=b or g (z)=c. If g®(z)=b if and only if
f®(z)=b, thenwe get g™ (z)=c ifand only if f® (z)=c. Hence we deduce that
a®=b?, a?=c?. Thuswe geteither a=b or a=c or b=c, which is a contradiction.
If there exists z, such that f®(z,)=b, g®(z;)=c, then we get a®=hc, a
contradiction.
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Case 1.3. P(h',h",---,h®)Q(h',h",---,n®)) — 2 =0. Then by (3.2) we deduce that
f W (2)g®(z)=ab and f®(z)=a ifandonlyif g (z)=b, f®(z)=b ifand only
if g™ (z)=a. Hence by E(S,, f ®)=E(S,,9™) we deduce that f*)(z)=c if and
only if g (z)=c. Thus by (3.2) we get ¢ = ab, a contradiction.

Case 1.4. P(h',h",-- h®)Q(h',h",--,h())—2 =0 In this case, by using the same
argument as do in Case 1.3 we get a contradiction.
Hence we deduce that f(z)g(z) =t isimpossible.

Case 2. f(z)=tg(z), where t is a constant satisfying t" =1 . Hence we have
£09 g ®)

We claim that t=1. Without loss of generality, we assume that there exist z, and z,
such that f®(z;)=a and f®(z,)=b . Suppose that t=1, then by
E(S,, f®)=E(S,,9™) and & =tg®™ we deduce that either g® (z;)=b or
g®(z,)=c and that either g™ (z,)=a or g®(z,)=c. Now we discuss the
following four cases.

21  g®(@z)=b, g®(z,)=a.Thenby f®(z)=tg™ (z) we get a=tb and
b=ta. Thus we get b=-a,t=-1. If there exists Z, such that
f ) (z5)=c then g™ (z3) =—c. Henceby E(S,, f ©¥)=E(S,,g®) we
deduce that —c=a or —c=b or —c=c. Thusby b=-a weget c=b
or c=a or ¢=0, which is a contradiction. If there exists z3 such that
that g™ (z3)=c, then we can similarly deduce a contradiction. If
f®@)2c and g®(z)=c , then by f®(2)=—g®(z2) we get
f ¥ (z)  ¢,—c, which contradicts Picard’s theorem.

22)  g®(@z)=b, g®(z,)=c. Thenby f®(z)=tg™® (z) weget a=tb and
b=tc. Thuswe get b? = ac, a contradiction.

23)  g®(@z)=c, g®(z,)=a. Thenby f®(z2)=tg™® () we get a® =bc,
a contradiction.

24  g®@z)=c, g®(z,)=c. Then by f®(z)=tg® (z) we get a=b, a
contradiction.

Hence we deduce that t =1, thatis f(z)=g(z).
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Now we consider the case when f(z) and g(z) are two polynomials. Thus by
E(S;, f)= E(S;,9) we have
f"(z)-1=k[g"(z)-1], (3.5)
where Kk is a constant. Hence we have

" @t (@)=kg" (2)9'(2). (3.6)

Thus by (3.6) and n>5 we deduce that there exists z, such that f(z,)=g(z,)=0.
Substituting this into (3.5) we get k =1, thatis f"(z)=g"(z). Hence we get

f(2)=19(2), 3.7
where t is a constant satisfying t" =1. Thus we have
f () =tg®(z). (3.8)

Next by using the similar argument to Case 2 we get f(z)=g(z). The proof of the
theorem is complete.

4. Proofs of theorems 2-3
As the proof of Theorem 2 and Theorem 3 is similar, we only give the

Proof of Theorem 2. First we consider the case when f(z) and g(z) are two
transcendental entire functions.

By Lemma 2 we know that either f(z)g(z)=t, or f(z)=tg(z), where t is a constant
satisfying t" =1. Next we divide two cases.

Casel. fg=t. Obviously, f =0. Hence we have
f(z2)=e"® g(z)=te™"@, (4.1)

where h(z) is a non-constant entire function. In the following we consider two
sub-cases.

Case 1.1. k=1. Thus we by (4.1) have

f'(z) =h'(2)e"?, g(z) = —th'(2)e "®. (4.2)
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Obviously there exists z, suchthat f'(zy)=a. Thenby E(S,, f")=E(S,,g’) and (4.2)
we deduce that one of the following cases must occur:

() 9'(zo)=a [N'(z)]* +&=0;
(i) 9'(z9) =b, [n'(zo)]* + 2 =0.

Next we consider three sub-cases.

Case 1.1.1. (h'(2))% + at—z 0, (h'(2))% + aTb #0. Then by using the same argument as do
in Case 1.1 of the proof of Theorem 1 we deduce a contradiction.

Case 1.1.2. (h'(z))? + at—z =0. Then we have h(z) =cz+d, where c, d are two constants
satisfying —tc? =a?. Thus we get

f (Z) — eCZ+d , g(z) zte—CZ—d .
Hence we have
f'(z) =ce™,g'(2) = ~tce .
Obviously, f'(z)=a ifandonlyif g'(z)=a. Thusby E(S,, f")=E(S,,g") we deduce
that f'(z)=b if and only if g'(z) =b. Hence we get a> =b?, that is b = —a. Thus the

conclusion (2) occurs.

Case 1.1.3. (h'(2))® + aTb =0. Then we have h(z) =cz+d, where c, d are two constants
satisfying —tc? =ab. Thus we get

.I: (Z) — eCZ+d , g(z) — te—CZ—d )
Hence we have

f /(Z) — CeCZ+d , g/(z) — _tcefczfd )

Obviously, f'(z)=a if and only ifg’(z)=b, f'(z)=b if and only if g'(z)=a. Thus
the conclusion (3) occurs.

Case 1.2. k=>2. Then by (4.1) we have
fO =ph,...,h e g® =tQ(h’,---,h®)e™" (4.3)

where P, Q are polynomials of h’,h", - h(®)
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Obviously there exists z, such that f®(z)=a . Then by
E(S,, f®)=E(S,,9™) and (4.3) we deduce that one of the following cases must
occur:

(I) g(k)(zo):a' P(h,’h”"”’h(k))(ZO)Q(h,,h”,'”,h(k))(zo)—at—zz
(i) 9% (zg)=b,P(h",h",-,h®)(z0)Q(', h",--,h®)(zo) - 2 =0.

Next we consider three sub-cases.

Case 121. P(h'(z),h"(z),-, h(2)Q(h'(z), h"(z), -, h®(2)) - & £ 0, and
P(h'(2),h"'(2),--,h% (2))Q(h'(2),h"'(z),--,h ") (2)) - & £ 0. Then by using the same
argument as do in Case 1.1 of the proof of Theorem 2 we deduce a contradiction.

Case 1.2.2. P(h',h",--,h®)Q(h',h",---,n®))~ 2= 0. Thus by (4.3) we deduce that
f 0 ()g®(z)=a? and f®(z)=a if and only if g®(z)=a. Hence we obtain
f ®)(z) =0, thus by Lemma 1 we deduce that f(z) =e*? . Considering f(z)g(z) =t,
we get g(z) =te"% . Thus we have

19 @) =ce™, g®(2) = (-D*tcke ™, (4.4)
Obviously, c, d satisfies (—1)ktc2k =a?. Thus the conclusion (2) occurs.

Case 1.2.3. P(h',h",--,h(NQ(h',h" - .h())— 2 =0. Thus by (4.3) we deduce that
f®()g®(z)=ab and f®(z)=a if and only if g (z)=b. Hence we have
£ () (2) 20, thus by Lemma 1 we deduce that f (z) =e%*9 . Considering f(z)g(z) =t,
we get g(z) =te™ . Hence we have

f (k) (Z) — CkeCZ+d , g (k) (Z) — (_1)k tCkefczfd | (45)
Obviously, c,d satisfies (—1)ktc 2K —ab. Thus the conclusion (3) occurs.
Case 2. f=tg. Then f® =tg® . Without loss of generality, we assume that there
exists z, such that f ) (z,)=a. Suppose that t =1, then by E(S,, f ®)=E(S,,g™®)

and f % =tg® we deduce that g (z,) =b. Hence we deduce that f ®)(z)=a ifand
only if g (z)=b andthat ) (z) =b ifand onlyif g® (z)=a.
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If f®(z)=b has solution, then by f® (z)=tg™ (z) we get a=tb and b=ta.
Hencewe get b=-a and t=-1. Thatis f(z)=-g(z), the conclusion (4) occurs.

If f®()=b, then g®(z)=a. Hence by f®()=tg®(z) we get
f®(z)=b, ta. If b=ta, then by Picard’s theorem we get a contradiction. If b=ta,
then by f®(z;)=a and g®(z,)=b we get a=th. Hence we get b=-a and
t=-1. Thatis f(z)=-g(z), the conclusion (4) occurs.

Now we consider the case when f(z)and g(z) are two polynomials. Then by using
same argument as do in Theorem 1 we get f(z)=tg(z). Thus we obtain
f ®(2) =tg ™ (). Next by using the similar argument to Case 2 we obtain f(z) = g(z).
The proof of the theorem is complete.
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