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Abstract.  In this paper specific wave geometries are discussed which occur in deep water and are 
calculated by a numerical method based on Fourier transforms. Examples are presented of 
permanent waves and wave groups of permanent envelope in two and three dimensions without 
restriction on wave height. 

 
 

1.  Introduction 
 
Analytic methods of modelling water waves of small but finite height are based on the 
linear theory and improved with weakly nonlinear theories [1].  An alternative is to 
develop, with computer assistance, water wave modes which are nonlinear in their lowest 
approximation and are valid for a range of heights up to the onset of wave breaking [2]. 
The present approach falls into the latter category, and is concerned with investigating 
wave geometries which occur in locally deep water. 
 Water waves propagating from a surface disturbance are subject to dispersion 
modified by nonlinear interactions.  This property suggests that the numerical resolution 
into Fourier components of the nonlinear equations governing the evolution of a water 
wave system models the dispersion and its modification, and is therefore a natural 
method for investigating water waves properties.  Forberg and Whitham [3] used this 
approach in studying certain nonliear model equations for wave phenomena.  It is applied 
here to Laplace’s equation with the nonlinear boundary conditions appropriate to 
irrotational gravity wave propagation in deep water. 
 Analytical solutions in the form of perturbation expansions exist for two dimensional 
water waves of permanent shape in deep water Stoke waves for which the dispersion and 
nonlinear modifications are in balance.  A number of computer based methods have been 
used (Schwartz and Fenton [2]) to extend the calculations up to the highest waves of 
permanent form.  The present method is demonstrated first in Section 2 for the 
calculation of two dimensional permanent waves.  Three dimensional permanent waves 
have been found as perturbations to two dimensional permanent waves.  The present 
method allows calculations of three dimensional waves independently of two dimensional 
waves, and one such example appears in Section 3. 
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 Waves on ocean surface often occur locally as a wave group with an envelope that 
changes slowly as the waves propagate.  Analytical solutions exist for weakly nonlinear 
wave groups of permanent envelope in two and three dimensions.  The present method is 
applied to the calculation of wave groups of permanent envelope in two dimensions 
(Section 4). 
 Specific wave geometries which occur in deep water are calculated by a numerical 
method based on Fourier analysis.  Examples are presented for wave parameters outside 
the range of validity of analytical methods.  Wave properties, such as the form of the 
permanent waves of finite crest length, and the approach to wave breaking, are 
demonstrated.  Although the method is applied here only to gravity waves in deep water, 
it may be generalised to further forms of nonlinear wave motion. 
 
 
2.  Method of calculation 
 
The set of equations governing gravity waves in inviscid irrotational motion on the 
surface of deep water is 
 

),,(,0 tyxzzzyyxx ηεφφφ <=++                                            (2.1a) 

          −∞→→ zzyx ,0,, φφφ     (2.1b) 
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The dimensional variables are the surface displacement ηa , the velocity potential 

φagl  and ,,,, 1 tlll gzyx where a is a measure of water wave amplitude, lπ2  is a 

typical wave length, and l
a=ε  is a measure of wave steepness.  The origin of coordinates 

lies in the mean water surface with the z-axis vertically upwards. 
 Symmetric two dimensional permanent wave solutions of the set of equations (2.1) 
exist for which 
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The permanent wave propagates with velocity glc , where c is an unknown function of 
ε  and lπ2  is the wavelength.  The number of harmonics N is determined numerically by 
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trial and error so that the set amplitudes kk ba ,  includes all those amplitudes greater in 
magnitude that some small prescribed value. 
 When the serves (2.2a,b) are substituted into the boundary conditions (2.1c,d) with 

kc  denoting the cosine in (2.2a) and ks  the sine in (2.2b) the resulting expression may 
be written as 
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where )(exp ∑=

k
pp

k cake εηε .  If the measure of amplitude, a, is taken to be half the 

height of the wave crest above the wave trough, ( ))()0(2
1 τηη − , then 
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Equations (2.3a,b) are transformed numerically to 
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from which   0== mm GF  for all m.                        (2.5) 

 
The Fourier components mm GF ,  are nonlinear functions of kk ba ,  and c for given ε . 
Equation (2.5) may be solved numerically by Newton’s method, which for F is described 
by 
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Each coefficient on the left of (2.6) is an m Fourier coefficient of a partial derivative of 
(2.3a) and the prime denotes new value of each variable.  The coefficients and the height 
of (2.6) are evaluated at the odd values of the variables.  There is a similar set of 
equations derived from G and a single equation derived from H.  The complete set of 
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linear equations is solved numerically for the differences ccbbaa kkkk ′−′−′− ,, , the 
new values of the variables are calculated and the procedure is repeated until the 
differences are less than some arbitrary number (usually 10-8). 
 The range of permanent wave solutions may be explored as amplitude ratio ε  is 
changed step by step.  Since the number of harmonics increases rapidly as the limiting 
wave is approached, and the wave properties near the limiting wave are fully described 
already, the present calculations have been contained only up to 95% of the limiting wave 
height. Rienecker and Fenton [4] had developed a method similar to that described here 
except that Fourier transforms are not used and Equations (2.3) are solved directly by 
evaluating them at a number of points spaced along the wave profile.  The Fourier 
transform method is now demonstrated for the more general wave geometries. 
 
 
3.  Three dimensional permanent waves 
 
Three dimensional permanent wave solutions of the set of Equations (2.1) exist for which 
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having wavelength lπ2  in the x-direction and rlπ2  in the y-direction, whose profile is 

steady relative to a frame of reference moving with velocity glc  in the x-direction.  
The bounds of summation are determined numerically by trial and error so that the set of 
amplitudes a jk  includes all these magnitudes greater in magnitude than some small 
prescribed value.  Since η  is chosen to have a zero mean and the argument is symmetric 
in k when 0=j , the lower bound )0(1k  may be sent equal to 1 without loss of 
generality.  Other lower bounds 0),(1 >jjk , may be negative. 
 Yen and Lake [5] have considered three dimensional permanent waves which are 
perturbations to uniform two dimensional permanent waves, and which are steady to the 
two dimensional waves.  Less restrictive assumptions are implicit in the analysis of 
Robers [6] and Roberts and Peregrine [7] where the perturbation expansion in wave 
steepness are developed. 
 When the series (3.1a,b) are substituted into the boundary conditions (2.1c,d), with 

jkc  denoting the cosine in (2.2a) and jks  the sine in (2.2b), the resulting expression may 
be written as: 



Waves and Wave Groups in Deep Water 

 

21

[ ]

[ ] [ ]

0  =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥⎦

⎤
⎢⎣

⎡
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥⎦

⎤
⎢⎣

⎡−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−=

∑∑∑∑

∑∑∑∑

∑∑

j k
jk

K
jk

j k
jkjk

j k
jk

K
jk

j k
jkjk

j k
jk

K
jkjkjkjk

ceb
r
j

sa
r
j

cekbska

sebKskcaF

jk

jk

jk

ηε

ηε

ηε

ε

ε (3.2a) 

 
[ ]

[ ]

[ ] 0
2
1  

2
1

2
1

2

22

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−=

∑∑

∑∑∑∑

∑∑

j k
jk

K
jkjk

j kr
jk

K
jk

j k
jk

K
jk

j k
jk

K
jkjkjk

sebK

ceb
j
kcekb

ceckbcaG

jk

jkjk

jk

ηε

ηεηε

ηε

ε

εε  (3.2b) 

 

where 2

22

r
jk

jkK +=  and .][exp ∑∑=
p q

pqpqjk
K caKe jk εηε   If the measure of the 

amplitude a is taken to be the central surface displacement ,)0,0,0(η  then 
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Equations (3.2a, b) are transformed numerically to 
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for which 0== mnmn GF , for all m, n. 
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 The Fourier coefficients mnmn GF ,  are nonlinear functions of jkjk ba , , and c from 
given ε  and r, and these harmonics and the wave velocity may be calculated by 
Newton’s method.  A three dimensional permanent wave example is presented now 
which lies outside the range of analytical solutions described previously.  This example, 
drawn in Figure 1, has parameter values 10,25.0 == rr , with 0262.1=c .  The 
dominant harmonics have amplitudes 65.011 =a  and 44.001 =a  with all other 
harmonics having smaller amplitudes because they are the result of resonant nonlinear 
interactions between the dominant pair.  The harmonic 1,0 == kj  propagates in the           

x-direction with a velocity ,glc  while the harmonic 1,1 == kj  propagates at an angle 

)1.0(tan 1−  to the x-direction with a velocity component glc  in the x-direction.              
The net result is a long crested three dimensional permanent wave propagating at an 
angle 06.0=θ  to the x-direction, whose wave height to wavelength ratio is 0.71.              

The wave speed of the permanent wave is ,cosθglc  and its wavelength is θπ cos2 l .  
The wave structure at the ends of the crest, drawn in detail in Figure 2, propagates in the 
x-direction with a velocity glc , and reduces the wave height to the wavelength ratio to 
0.021 at its lower point.  Relative to the frame of reference moving with the long crested 
permanent wave, the end structure propagates along the wave crests with a velocity 

θsinglc  producing a three dimensional wave which has a steady profile relative to a 

reference moving with velocity glc  in the x-direction.  The net result illustrated in 
Figure 3 is of the same form as that calculated analytically by Roberts and Peregrine [7] 
(Figure 4) for semi infinite long crested permanent waves. 
 The data for the present solution is as follows.  Equation (3.1a) contains 173 
harmonics in 17 wavebands 160 ≤≤ j ; the wave number range being 96 ≤≤− k .  The 
maximum Fourier coefficients mnmn GF ,  not included in the calculations has magnitude 

5102.3 −× .  The maximum magnitude of F and G over the )3264( ×  points used in the 

final calculation is 4106.7 −×  with a root mean square deviation of F and G from zero to 
4102.1 −× . 
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Figure l. Perspective view of long-crested pennanent waves showing 8 wave lengths in the x-direction
and 2 wavelengths in the y-direction, with vertical magnification -5 when e = 0.25 and r = l0 .

Figure 2. Detailed view of the end structur€ of the long-crested pennanent waves in Figure l,
with vertical magnification 5.
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Figure 3. The wave group of permanent envelope with e = 0.470 and y = 0.6 , showing

the water surt'ace displacenrent at an instant (the solid curve) and the envelope
(the dashed curves). drawn with the horizontal and vertical scales equal.

Figure 4. A wave at the center of the group of Figure 3 (the solid curves) compared with the
permanent wave of the sarne height and length (the dashed curve), both drawn
with the horizontal and vertical scales equal.

4. Two dimensional waYe groups

Two dimensional wave groups with envelops of permanent shape, which are periodic in
the x-direction with a group length 2n L , are composed of harmonics with wave numbers

+, where k has integer values only. If 2nt is the wavelength of a typical wave in the

group with k" - 
+ not necessarily an integer, then to a first approximation of

the spectrum of the wave group in non-dimensional wave number space is centred

on ko. The velocity of the group, to a first approximation is +J tt in deep water.

The non-dimensional wave frequency, o(k), expanded about the central wave number,

f t o , i s



Waves and Wave Groups in Deep Water 

 

25

L

o

o
o

oo +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
−+=

kk dk
d

kk
dk
d

kkkk
2

2
2)(

2
1)()()(

ωω
ωω  

L
o

o

o

o +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+=

2

22
1

k
kk

O
k
kk

                                   (4.1) 

 

for waves in deep water with .
ok

k=ω    The wave group is described then by 
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where β  is an unknown non-dimensional frequency correction.  This form of a periodic 
wave group satisfies the nonlinear Schroedinger equation, which in the present non-
dimensional notation is: 
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where )( 2
1+= βα .  The index 0=j  for which 1)0(1 =k .  Since η  has a zero mean, 

describes the surface displacement and water motion which is steady relative to the group 
structure.  The index 1=j  refers to the harmonics in (4.2) for the dominant waveband 
with k near to ok .  Each higher value of j describes a set of harmonics in a waveband 
about )( okj , where 0),(1 >jjk  may be negative.  When the series (4.4a,b) are 
substituted into the boundary conditions (2.1c,d), equations similar in form to equations 
(3.2) are obtained, which are solved by the same method as is described previously for 

α,, jkjk ba  as a function of ε  and ok .  It was found that the calculated spectral peek in 

the dominant waveband )1( =j  moved outside the neighbourhood of ok  as ε  increased 
to larger values.  Such solutions need re-scaling with a more appropriate wavelength 

l′π2  so that l
Lk ′=′o  corresponds to the actual centre of the dominant waveband.              

The non-dimensional group velocity is change from 2
1  to v according to: 

 

lgvgl ′=
2
1      (4.5) 

 
and Equations (4.4) have the same form in the new non-dimensional variables except that 

2
1  is replaced by v.  If the primes are dropped from the new variables, Equations (4.4) 

become 
 

( )
⎭
⎬
⎫

⎩
⎨
⎧

−−=∑ ∑
=

=

=

tjvtx
k
ka

J

j

jkk

jkk
jk αη

o
cos

0

)(

)(

2

1

    (4.6a) 

 

( )
⎭
⎬
⎫

⎩
⎨
⎧

−−=∑ ∑
=

=

=

tjvtx
k
k

k
zk

b
J

j

jkk

jkk
jk αφ

oo
sinexp

0

)(

)(

2

1

   (4.6b) 

 
where for any particular solution the choice of ok  determines v and conversely. 
 Two examples are presented of two dimensional wave groups with envelopes of 
permanent shape, both of which lie outside the range of validity of the nonlinear 
Schroedinger equation.  This first is of a wave group containing two wavelengths per 
group length, 2=ok , in the range of larger wave heights of such groups. Its parameter 
values are 6.0,470.0 == vε  with 4308.0=α  and the wave height (trough to crest) to 
wavelength ratio for a wave at the centre of the group is 0.100.  One group length is 
sketched in Figure 3, which shows the water surface displacement at an instant, and the 
envelope of permanent shape.  The upper envelope is a height 0.470l above the mean 
level at the centre of the group, while the lower envelope is a depth 0.308l below the 
mean level there.  This is an obvious departure from the permanent envelope analytical 
solutions of the nonlinear Schroedinger equation (4.3) because they are symmetric about 
the mean level. 



Waves and Wave Groups in Deep Water 

 

27

 A wave at the centre of the group of permanent envelope is composed of the group 
of permanent envelope is compared in Figure 4 with the wave of permanent shape having 
the same wave height of its crest above the mean level being 0.470l compared with 
0.471l for a permanent wave.  The horizontal particle velocity at the crest is gl75.0  

compared with gl45.0  for a permanent wave.  The horizontal component of particle 
acceleration in front of the crest, and deceleration behind the crest, is of maximum 
magnitude (0.46 g) compared with (0.31 g) for the permanent wave.  This comparison 
indicates that a wave passing through the centre of the group is closer to the point of 
wave breaking than a permanent wave of the same height wavelength. 
 The wave group solution contains 302 harmonics (605 variables) in 14 wavebands 

130 ≤≤ j , the wave number range being 4017 ≤≤− k .  The maximum amplitude of F 
over the )32128( ×  points used in the final calculations was (0.186) but the root mean 
square deviation of F from zero was (0.018). The maximum magnitude of G over the 
same points was 0.022 with a root mean square deviation from zero to 0.002. 
 The second example is of a wave group containing one wavelength or amplitude, 

1=ok . As the wave train propagates through the group structure, each wave shape 

oscillates with an angular frequency l
g  about a symmetric shape. Since the dominant 

harmonics in (4.6) are now those for which L,2,1, == kkj , the shape of oscillation is 
modeled better by changing the summation in Equations (4.6) to keep 0≥k  with 

α+= vc  and jkm −= .   The series then becomes: 
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The dominant waveband, ,0=m  describes a steady wave propagating with velocity 

glc .  Other wavebands ,0≠m  describe the cyclic oscillation of this wave space as it 
propagates in the x-direction, through it where a periodic wave train set into an oscillation 
about a permanent shape.   It can be seen that when a cyclic wave passes through points 
of maximum wave height (at the centre of the wave group), it is closer to wave breaking 
then is a steady permanent wave of the same height and wavelength, the comparison 
being similar to that for the wave group example above.  Since ocean waves of large 
height are never completely steady in shape, it may be more realistic to model these with 
cyclic waves rather than with steady waves. 
 
 
 
 



Z.R. Bhatti and I. Durrani 28

5.  Discussion 
 
The particular wave geometries described here are only a small selection of those which 
may be calculated by the Fourier transform method applied to the full nonlinear 
governing equations.  Generalisations to the examples above include standing wave 
geometries, waves in finite depth, and short waves influenced by surface tension.  Most 
analytic methods and model equations are valid only for linear or weakly nonlinear 
waves, that is, for waves of small but finite height.  The present method as shown is set 
up for nonlinear waves without restrictions on wave height.  Also, the calculation of the 
irrotational velocity field simultaneously with the water surface displacement provides 
insight into the physical properties of water wave motion. 
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