BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

On Full Hilbert C*- Modules

MOHAMMAD SAL MOSLEHIAN

Department of Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran e-mail: msalm@math.um.ac.ir

Abstract. Let *M* be both a full Hilbert *A*-module and a full Hilbert *B*-module. In this paper we prove that a map $\phi: A \to B$ is an isometrically *-isomorphism iff it satisfies $ax = \phi(a)x$ and $\phi(< x, y >_A) = < x, y >_B$ where $a \in A, x, y \in M$. We also show that the fullness condition can not be dropped.

1. Introduction

Hilbert C^* -modules are used as a powerful tool in C^* -algebraic quantum group theory, K- and KK-theory, induced representations of C^* -algebras and Morita equivalence. Some sources of references to the subject are [1] and [2].

The goal of this paper is to show that if M is full Hilbert C^* -modules over C^* -algebras A and B and $\phi: A \to B$ is a map, then ϕ is *-isomorphism iff $ax = \phi(a)x$ and $\phi(\langle x, y \rangle_A) = \langle x, y \rangle_B$ where $a \in A, x, y \in M$. We show that without any one of the assumptions of M being full the result does not in general hold. Our result is interesting in its own.

Definition 1.1. Suppose A is a C*-algebra. Let M be a complex linear space which is a right A-module and $\lambda(ax) = (\lambda a)x = a(\lambda x)$ where $\lambda \in C, a \in A$ and $x \in M$. M is called a pre-Hilbert A-module if there exists an (A-valued) inner product $\langle \cdot, \cdot \rangle : M \times M \rightarrow A$ satisfying:

- (i) $\langle x, x \rangle \ge 0$,
- (*ii*) $\langle x, x \rangle \ge 0$, *iff* x = 0,
- (iii) $\langle x + \lambda y, z \rangle = \langle x, z \rangle + \lambda \langle y, z \rangle,$

$$(iv) \quad \langle x, y \rangle = \langle y, x \rangle^*,$$

(v) $\langle ax, y \rangle = a \langle x, y \rangle.$

M.S. Moslehian

A pre-Hilbert A-module is caled a Hilbert A-module or Hilbert C*-module over A, if it is complete with respect to the norm $||x|| = || < x, x > ||^{\frac{1}{2}}$. *M* is said to be full if the linear span of $\{ < x, y >; x, y \in M \}$ is dense in A.

Example 1.2. Let *A* be a *C**-algebra. Then *A* together with its product as the usual action is a left *A*-module. In addition it equipped with inner product $\langle a, b \rangle = ab^*$ is a full Hilbert *A*-module.

2. Main theorem

Let *M* be a (full) Hilbert *B*-module and $\phi: A \to B$ *a* *-isomorphism of *C**-algebras. Define the module action by $ax = \phi(a)x$ and *A*-valued inner product by $\phi(\langle x, y \rangle_A) = \langle x, y \rangle_B$. Then it is straightforward to show that *M* is a (full) Hilbert *A*-module. We are going to establish a converse statement to the above.

Lemma 2.1. Let N be a full Hilbert C*-module over C and $u \in C$. Then ux = 0 for all $x \in N$ iff u = 0.

Proof. Since N is full, there exists $\{u_n\}$ in $\langle N, N \rangle$ such that $u = \lim_n u_n$. Each u_n is of the form $u_n = \sum_{i=1}^{k_n} \langle x_{i,n}, y_{i,n} \rangle$ in which $x_{i,n}, y_{i,n} \in N$. Hence

$$uu^* = u \lim_n u_n^* = \lim_n uu_n^* = \lim_n \left(u \sum_{i=1}^{k_n} \left\langle y_{i,n}, x_{i,n} \right\rangle \right) = \lim_n \sum_{i=1}^{k_n} \left\langle uy_{i,n}, x_{i,n} \right\rangle = 0.$$

Hence u = 0.

Theorem 2.2. Let *M* be both a full Hilbert A-module and a full Hilbert B-module and there exist a map $\phi: A \to B$ in such a way that $ax = \phi(a)x$ and $\phi(\langle x, y \rangle_A) = \langle x, y \rangle_B$. Then ϕ is an (isometrically) *-isomorphism.

Proof. If $a_n \to 0$ and $\phi(a_n) \to b$, then $a_n x \to 0$ and $\phi(a_n) x \to bx$, But $\phi(a_n) x \to 0$, Hence bx = 0. By Lemma 2.1 b = 0. Thus ϕ is continuous. $(\phi(ab) - \phi(a)\phi(b))x = (ab)x - a(bx) = 0$. It follows from Lemma 2.1 that $\phi(ab) = \phi(a)\phi(b)$. Similarly one can show that ϕ is linear.

If $a \in A$, then we may assume that $a = \lim_{n} u_n$, $u_n = \sum_{i=1}^{k_n} \langle x_{i,n} \rangle_A$ where $x_{i,n}, y_{i,n} \in M$. Hence

$$\phi(a^*) = \lim_{n} \phi(u_n^*) = \lim_{n} \sum_{i=1}^{k_n} \phi\left(\left\langle y_{i,n}, x_{i,n} \right\rangle_A\right) = \lim_{n} \sum_{i=1}^{k_n} \left\langle y_{i,n}, x_{in} \right\rangle_B$$
$$= \left(\lim_{n} \sum_{i=1}^{k_n} \left\langle x_{i,n}, y_{i,n} \right\rangle_B\right)^* = \left(\phi(a)\right)^*$$

If $\phi(a) = 0$, then $ax = \phi(a)x = 0$ for all $x \in M$. Hence a = 0. ϕ is therefore one to one.

Given $b \in B$ and $\varepsilon > 0$, there are $\{x_i\}_{1 \le i \le n}$, $\{y_i\}_{1 \le i \le n}$ in M such that $\left\| b - \sum_{i=1}^n \langle x_i, y_i \rangle_B \right\| < \varepsilon$, Hence $\left\| b - \phi \sum_{i=1}^n \langle x_i, y_i \rangle_A \right\| < \varepsilon$. Therefore ϕ has a dense range. But ϕ is a *-homomorphism from A into B, so that its range is closed. Thus ϕ is a *-isomorphism.

Remark 2.3. The result may fail, if any one of the conditions of M being full is dropped.

For example, first, take *A* to be a von Neumann algebra acting on a Hilbert space which has a central projection $p \neq 0, I$. Put B = M = Ap and consider *M* as a Hilbert *B*-module and a Hilbert *A*-module with the usual actions and the inner products $\langle x, y \rangle = xy^*$. Clearly *M* is not full *A*-module. Then $\phi: A \rightarrow B \phi(a) = ap$ has evidently the properties $ax = \phi(a)x$ and $\phi(\langle x, y \rangle_A) = \langle x, y \rangle_B$, but is not one to one (and hence is not isometry).

Second, let A and B be arbitrary C*-algebras and A be a proper subset of B. Put M = A and consider it as a Hilbert A-module and a Hilbert B-module such above. Clearly M is not full B-module. Then the inclusion map $\phi: A \to B$ satisfies obviously $ax = \phi(a)x$ and $\phi(\langle x, y \rangle_A) = \langle x, y \rangle_B$, but is not surjecive.

References

- 1. C. Lance, Hilbert C*-modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
- 2. W.L. Paschke, Inner product modules over *B**-algebras, *Trans. Amer. Math. Soc.* **182** (1973), 443-464.

Keywords and phrases: Full Hilbert C*-modules.

Mathematics Subject Classification: 46L05