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Abstract. We introduce and study new classes of meromorphic harmonic functions. In addition to
finding certain coefficient characterizations, we obtain several inclusion relations, convexity conditions,
and extreme points for these classes.

1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in a complex
domain D < C if both u and v are real harmonic in D. Hengartener and Schober [2],
among other things, investigated the family X, of functions f = h + g which are

harmonic, meromorphic, orientation preserving, and univalent in U ={z :|z| > 1}
where

h(z) = z + ianz‘n . 0(2) = ibnz‘n zeU 1)
n=1 n=1
Motivated by the results of [2], Jahangiri and Silverman [4] and Jahangiri [3] studied the
classes of functions in >, which are starlike or convex in U. In particular, they
investigated starlike and convex functions in the class X consisting of functions
f =h+g where h and g are of the form

h(Z)=Z+i|an|2‘n , g(z):i|bn|z‘” zeU. @)
n=1 n=1

In this paper we look at the following six classes of functions. For these classes we
provide coefficient characterizations, inclusion and convexity conditions, and extreme
points.
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Definition 1. For 0 < o < 1, we define

feYy Pl o RF¥%>Q,ZGJ 1.2)
2 £(z) L
feY,Qa < RP% J>a , z=re%cU (1.2)
EZ
0 -~
feXyR@d) = R%Lwﬂf)+4”;m}>a,zzo,z6u (L3)
@Z
S P@) =Sy Pl@) NI (1.4)
Zﬁ Q((l) = ZH Q(a) M Zg (1.5)
Zq R(a,l) = ZH R(a,/i) M ZE . (16)

Note that if the co-analytic partof f = h + g iszero,i.e.if g = 0, then the conditions
1.1, 1.2, and 1.3 reduce to the respective  analytic  cases
R(h(z)/z) > a, R(zh'(2))' > «, and R{(L — A)(h(z)/z) + Ah'(2)} > a. See, for
example, [4,5,6]. We also note that >, R(¢,0)=2X>, P(e) and
2h R(@1) = Xy Qa).

2. Coefficient inequalities

First we give a sufficient coefficient bound for function to be in >\, R(e, 4).

Theorem 1. Let f = h + g where hand g are given by (1). If

S{n+0a-1a,]+ (-0 +1|[b,|]<1-a
n=1

forsome 4 > 0and ¢ (0 < @ < 1), then f € X R(a, 1).
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Proof. Letting w(z) = 1-A)[f(2)/z] + A[5 f(2)1/[5 2], it suffices to show that

|1-a+w| > |1+a—w]|. Thisis equivalent to show that if the condition (3) holds then

|@-a)z + @G- + 9@) + 2@ - 2@ | -

‘(l+a)z ~@-2)(h@) + 9(2)) - ﬂ,(zh’(z)—zg’(z))‘ = M(a, ) > 0.

Substituting for hand g in M (, 4) yields

M(a, 1) = ‘(2—a)z—i(ﬂ(n+1)—l)anz‘” +i(/1(n—1)+1)bnz‘”
n=1 n=1
- ‘az+ i(ﬂ(n+1)—l)anz’” —i(/l(n—l)ﬂ) b,z ™"
n=1 n=1
> 9| z|{l—a—(i |20 +D)-1]| a, |+§u(n_1)+1)|bn|J| z|-<”+1>}
n=1 n=1
>

2|Z|{1—a—i [| A(n+1)-1] |, |+(/1(n—1)+1)|bn|]}.
n=1

Now this last expression is non-negative by the hypothesis of Theorem 1 and so the proof is
complete.

Remark. For f = h + g as given by (1), Jahangiri and Silverman [4] prove that if
Z:zl n(la,| + |b,|) <1 thenf is orientation preserving and univalent in U. Since

n<(h-DA+1<(n+ DA -1, we conclude that the hypothesis of Theorem 1 is
sufficient for the harmonic function f = h + g to be orientation preserving and univalent

inU.

Corollary 1. Let f = h + g where hand g are given by (1). Then f eXy P(a) if
z:;l(lanl"'lbnngl—a, 0<ac<l.

Corollary 2. Let f = h + g whereh and g are given by (1). Then f eX,, Q(«) if
Z:Zl n(la,| +|b,|) <1-a,0 <a <1.
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In the following theorem we show that the sufficient coefficient condition given by (3) is
also necessary for the family > - R(«, 1).

Theorem 2. Let f =h+g where hand g are given by (2). Then f e X5 R(a, 1) ifand
only if

S0+ D4 -1][a] + |0 -D2+1][b,]]<1-a. @)
n=1

Proof. In view of the fact that > - R(a, 4) = Xy R(a, 1), the "if" part follows from
Theorem 1. For the "only if" part, assume that f € X5 R(e, 4).

If 2>0, then for z=rei‘9, r>1, and @ real we have

o — —
L e

0
R {1—Zf=1(ﬂ(n +1)-1)] @, [ Dg-iCr0

652

- 3% (A(n=1) + 1|b, |r-("Dei-De
oy (A(n=1) + Db,

{1_ Y (An+1)-1)|a, |r " cos(n+1)0

-3 (An-1)+1) | b,[r " cos(n-1)0 | 2 a.
n=1

The above inequality must hold for all z=re'’ e U. In particular, it must hold for 6 =0
and r —1", which gives the required condition (4).

If =0, then by the Definition 1.3, we must have

R{@} = R{l+i |a,|z7 ™ + zi |bn|(2)-<“+1>}
n=1

Zna

R{1+ i|an|r—(n+1)e—i(n+l)9 N §:| by| r—(n+1)e—i(n—1)6’}
n-1 n-1

=1+ i|an|r‘(“+l) cos(n+1)6 + i|bn|r‘(”+l)cos(n—1)9 > a.
n=1 n=1
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Similarly, we let f = h+g and r—1" toobtain X, (|a,| +|b,]|) <1 - a andso
the proof is complete.

Corollary 3. Let f=h+ g where h and g are given by (2). If 0 <a <1, then
feXyP(e)ifand only if 27, (Ja,|+|b,|<1-a, and feX;Q(a) if and
onlyif X n(la,|+|b,|) <1-«a.

3. Inclusion relations and extreme points

The inclusion relations between the classes > 5 R(a, 1), 25 P(e),and X5 Q(a) are
given in the following.

Theorem 3. Let 0<a <1. Then
i) Y5Q) c XY 5P@)

(i) ZQQ(a) c Zﬁ R(e,A),0< A <1
(iii) ZE R(a, 1) < ZF‘Q(Q), A >1

Proof. Part (i) follows from Corollary 3 upon noting that

(|an| +|bn|)g in(|an| + b)) <1-a.

1 n=1

M

>
Il

(if) For 0< A <1, we observe that
Y (A(n+D) - 1) a,|+ D (An-1+ D)[b,| < > nla, [+ > n|by| <1-a,
n=1 n=1 n=1 n=1

by the second part of Corollary 3. And so (ii) follows fromTheorem 2.

For (iii) we note that if A >1 then by Theorem 2

n(Ja,] +[b]) < S (A0 + 1) - Da| + X (A0 -1 + Dby <1 - a.

1 n=1 n=1

M

n

Therefore the result follows from the second part of Corollary 3.
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Note that for 2 =1, > - Q(a) = X5 R(a,4). Also note that the containment in (i) is
proper since z + (1-a)z > € X5 P(a) - X5 Qa) for 0 < a < 1.

We now examine certain inclusion properties related to the starlikeness and convexity of the
functionsin X 5 R(a, 2).

Denote by X7 S*(a), the subclass of X, consisting of functions f = h + g which

are starlike of order ¢ (0 <« <1) in L], that is, fsatisfy the condition
%arg(f(rem)) >a,0<a<1l,z=re? 0<0 <2z, r>1

Also, denote by > - K(a), the subclass of > -, consisting of functions f =h + g

which are convex of order ¢ (0 < & < 1) in G, thatis, f eX; K(a) ifandonly if

i arg if(rei‘g) >a,0<a<1,z=re%, 0<0 <27, r>1
00 o0

For such functions, the second author [3] proved the following

Theorem A. Let f = h + g where h and g are of the form (2). Then

) feXgs*@ o Yo {(n+a)a|+ (n-a)b|f<1-a

i) feXgK*@ o X2 {n(n+a)a,]+n(n-a)by|}<1-a.
We are now ready to state and prove the following:

Theorem 4.

(i) >5S*0) c YzR(04),if 0< <1

(i)  YgR@A) c Y 5S8*(p),if 1<, 0<a, f<1, 0<f<al2-a)
(i) > 5K(p) <> 5Q(@) c X5P(@),if 0<a<p<1 b=0

V) YK c TaR(@),if 0<i <1, 0<as<p <l
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Proof. () If 0 <4 <1land fe X5 S*(0),thenby Theorem A(i) we have

Z|/1(n+l)—1||a |+ 3 (A0 -1 + Db, < 3 n(|ag] + |ba|) < L.

n—l n—l
Now in view of Theorem 2, it follows that f e 2. R(0, 2).

(i) Let f e Xy R(a,4). Then by the hypothesis we have

an//;' ol + n,lﬂ ET/[;' |+n,1ﬂb|
2w M R e
s;n|a|+ 2 a|b|
<3 A el R A

This last expression is less than or equal to 1, by Theorem 2. Now part (ii) follows
from Theorem A (i) above.

(i) If f e X5 K(p), then by Theorem A (i) and the given conditions, we have

M

(Jan| + |by]) < i (] a,| + [by])

n=1

<Zn(n+ﬂ)|a|+ n(n—,B)|b|
<1-8<1-a.
Therefore, f e 25 Q(a) = X5 P(a) by Corollary 3.

(iv) Assumethat f e X5 R(e,4). We need to show that f e X5 R(a, 4). In view
of Theorem A (ii) and proceeding as in (iii), we have

Z|/1(n+1)—1||a|+ (A0 - 1) + 1) [b,] < Sn([ay] + [bs|) <1 - a.
_1 n=1

Then by Theorem 2 the proof is complete.
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Theorem 5. The family X - R(e, 4) is convex but not compact.

Proof. For i=1,23,--- suppose that f; €2 R(a, 4) where f; isgiven by
fi)=2+> ‘ain‘z’” - z\bin\(zr”.
n=1 n=1
Then, by Theorem 2,

>[4+ 1) - 1|a | + 400 -1 + 1HbinH <1l-a. 5)
n=1

For Z;ilti =1, 0 <t; <1, theconvex combinations of f; may be written as

i tf(z) =z + i [iti\ain U 2" - i (iti‘bin U @™,
i=1 n=1 \\i=1 n=1 \li=1

Now theorem follows by rearranging the above equation and using (5).

Tosee that >+ R(a, 4) is not compact, we observe that

fo2) =72 - ——7eI:R@d) (=123"")
n+1

while lim,_,, f,(z) = z — Z which is not even univalent in u.

Theorem 6. Let 2 > 1. Then each function in the family > R(a, 4) maps the disk
|z| = r > 2 onto convex domains. The constant 2 is best possible.

Proof. Let fe 2 R(a,4). Then rtf(rz) e 25 R(a,4) for any r>1, by
Theorem 2. It now suffices to show that (f(2z))/2 € X5 K(0). Note that

1 1 _ > 1 .
Ef(ZZ) =7+ nZ:lw|an|z -y 2n+1|bn|(z) n
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Also, by Theorem 2,
n

0 1 1 <
> [nzwlanl T Ibn@ = 2l = foul) o

n=1

n=1

A

= i n(|an| + |bn|)

>
LN

<3 ([an+D-1]|a,| + [2(n-1) + 1]|b,|)
n=1
<l-ea <1

As a consequence of Theorem A(ii), it now follows that (f(22))/2 e 2 K(0).

Finally, we introduce extreme points for the classes X R(a, 1), X5 P(a), and
ZH Q(O()

Theorem 7. Forfixed 2 20 and 0 <« <1, wehave fe clcoXy R(a,4) if and
f can be expressed as f(z) = X, (X h,(2) + Y,9,(2)), where

only if

X, 20,Y,20, X0, (X, +Y,) =1, hy(z) =z, go(2) = z, and
la - - 1% 5 =12
hn(Z)_z+mz , 0,(2) =2 |/1(n—1)+1|(z) , (n=12,-).

In particular, the extreme points of clcoX ; R(a, 4) are {h,}and {g,}.

Proof. Note that

(@) = 3 (Xaha(2) + Y9, (2))
n=0
i l-« _ & l-a —_
=z4+y ———Xz2" - —— Y. (@™
nzzl|/1(n+1)—l| " n2:1|/1(n—1)+1| (2)
Then fsatisfies the required condition (3) because
> A +1) -1 loe ey (A -+l Ty,
n-1 | A(n+1)-1] n=t [A(n - 1) + 1]

(- )X, (K 4 V) = (- @)l (X +Yo)) =1 a

This complete the first part of the proof. Conversely, suppose f e clcoX ; R(a,4).
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Letting

A(n+1) -1 A(n-1)+1
N = |(1—)||an| Y, =M|bn|, (n=12,--)
-a l-a

and Yo =1 - Xo — X0y (X, +Y,), we may write

f@)=z+ > |a,|z" = X |b| (@D
n=1 n=1

00 o0

l-a l-a -
— - = x -n _ —Y -n
ot nZ:l | A(n+1)-1] ? nzzl |A(n-1)+1] (2)

2+ Y ((2) - DX, + 3(9.(2) - 2)Y,
n=1 n=1

(Xnha (@) + Yp0,(2)).

1

=}
1

I
ANgE

Corollary 4. The extreme points of clcoX P(a) are hy(z) =z, go(2) = 2
h(@=z+0-a)2", 9,2)=2-10-a)(@)™", forn=12,--.

Corollary 5. The extreme points of clcoX; Q(e) are hy(z) =z, go(2) = z,

ha(2) =z +£227", g,(z) =z - £2(2) ™", for n=1,2,--.
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