A Unicity Theorem for Meromorphic Functions

Huiling Qiu and Mingliang Fang
Department of Mathematics, Nanjing Normal University, Nanjing 210097 People’s Republic of China email: qiuhuiling1304@sina.com

Abstract

In this paper, we study the uniqueness of meromorphic functions and prove the following result: Let $n \geq 3$ be a positive integer, $S=\left\{z: z^{n}-z^{n-1}-1=0\right\}$, and let f and g be two nonconstant meromorphic functions whose poles are of multiplicities at least 2. If $E(0, f)=E(0, g), E(S, f)=E(S, g)$, and $E(\infty, f)=E(\infty, g)$, then $f(z) \equiv g(z)$. This result also answer a question of Gross [4] and improve some results of Fang and Xu [1], Yi [14] and Yi [15].

1. Introduction

In this paper, by a meromorphic function we always mean a function which is meromorphic in the whole complex plane. Let $f(z)$ be a nonconstant meromorphic function. We use the following standard notations of value distribution theory,

$$
T(r, f), m(r, f), N(r, f), \bar{N}(r, f), N(r, 1 / f), \cdots
$$

(see Hayman [6], Yang [12]). We denote by $S(r, f$) any function satisfying

$$
S(r, f)=o\{T(r, f)\},
$$

as $r \rightarrow+\infty$, possibly outside of a set E with finite measure. In this paper, E may be different at different places.

Let S be a set of complex numbers. Set

$$
E(S, f)=\bigcup_{a \in S}\{z: f(z)-a=0\},
$$

where the zeros point with multiple m is counted m times in the set.

Let $N_{(2}\left(r, \frac{1}{f-a}\right)$ be the counting function which only includes multiple zeros of $f(z)-a$ and

$$
N_{2}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)
$$

In 1977, Gross [4] posed the following question.

Question A. Can one find two finite sets S_{1} and S_{2} such that any two nonconstant entire functions f and g satisfying $E\left(S_{i}, f\right)=E\left(S_{i}, g\right)$ for $i=1,2$ must be idential? And if such two sets exist, it would be interesting to know how large the two sets would have to be.

Yi [14] proved such two sets exist.
Theorem B. Let $n \geq 5$ be a positive integer, $S_{1}=\{c\}$ and $S_{2}=\left\{z: z^{n}=1\right\}$ such that
$c^{2 n} \neq 1$, and let f and g be two nonconstant entire functions. If $E\left(S_{i}, f\right)=E\left(S_{i}, g\right)$ for $i=1,2$, then $f(z) \equiv g(z)$.

Fang and Xu [1], Yi [15] completely solved Question A. They proved the following theorem:

Theorem C. Let $n \geq 3$ be a positive integer, $S_{1}=\{0\}$ and $S_{2}=\left\{z: z^{n}-z^{n-1}-1=0\right\}$, and let f and g be two nonconstant entire functions. If $E\left(S_{i}, f\right)=E\left(S_{i}, g\right)$ for $i=1,2$, then $f(z) \equiv g(z)$.

They give examples to show that if both S_{1} and S_{2} have at most two elements, then $E\left(S_{i}, f\right)=E\left(S_{i}, g\right)$ for $i=1,2$ cannot imply $f(z) \equiv g(z)$.

In this note, we extend and improve Theorem C as follows.
Theorem 1. Let $n \geq 3$ be a positive integer, $S_{1}=\{0\}$ and $S_{2}=\left\{z: z^{n}-z^{n-1}-1=0\right\}$, and let f and g be two nonconstant meromorphic functions whose poles are of multiplicities at least 2. If $E(\infty, f)=E(\infty, g)$ and $E\left(S_{i}, f\right)=E\left(S_{i}, g\right)$ for $i=1,2$, then $f(z) \equiv g(z)$.
Remark. The condition that the poles of $f(z)$ and $g(z)$ are of multiplicities at least 2 can not be removed in Theorem 1.

Let $f(z)=\frac{e^{z}+e^{2 z}+\cdots+e^{(n-1) z}}{1+e^{z}+e^{2 z}+\cdots+e^{(n-1) z}}, \quad g(z)=\frac{1+e^{z}+\cdots+e^{(n-2) z}}{1+e^{z}+e^{2 z}+\cdots+e^{(n-1) z}}$, and let $S_{1}=\{0\}, S_{2}=\left\{z: z^{n}-z^{n-1}-1=0\right\}$. Obviously, $E(\infty, f)=E(\infty, g)$ and $E\left(S_{i}, f\right)=E\left(S_{i}, g\right)$ for $i=1,2$, but $f(z) n o t \equiv g(z)$.

Corollary 2. Let $n \geq 3, \quad k$ be two positive integers, $S_{1}=\{0\}$ and $S_{2}=\left\{z: z^{n}-z^{n-1}-1=0\right\}$, and let f and g be two nonconstant meromorphic functions. If $E(\infty, f)=E(\infty, g), E\left(S_{i}, f^{(k)}\right)=E\left(S_{i}, g^{(k)}\right)$ for $i=1,2$, then $f^{(k)}(z) \equiv g^{(k)}(z)$.

2. Some lemmas

In order to prove Theorem 1, we need the following lemmas.
Lemma 1. ([10]) Let $a_{1}, a_{2}, \cdots, a_{n}$ be finite complex numbers, $a_{n} \neq 0$, and let f be a nonconstant meromorphic function. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f\right)=n T(r, f)+S(r, f)
$$

Lemma 2. ([17]) Let f and g be two nonconstant meromorphic functions. If $E(1, f)=E(1, g), E(\infty, f)=E(\infty, g)$, and

$$
\varlimsup_{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}(r, f)+N_{2}\left(r, \frac{1}{f}\right)+\bar{N}(r, g)+N_{2}\left(r, \frac{1}{g}\right)}{T(r, f)+T(r, g)}<\frac{1}{2}
$$

then either $f(z) \equiv g(z)$ or $f(z) g(z) \equiv 1$.

3. Proof of Theorem 1

By Theorem C, we only prove the case that $E(\infty, f)=E(\infty, g) \neq \mathscr{D}$.
Firstly, we prove that

$$
\begin{equation*}
f^{n}-f^{n-1} \equiv g^{n}-g^{n-1} \tag{3.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
H(z)=\frac{[n f-(n-1)] f^{\prime}}{f(f-1)\left(f^{n}-f^{n-1}-1\right)}-\frac{[n g-(n-1)] g^{\prime}}{g(g-1)\left(g^{n}-g^{n-1}-1\right)} . \tag{3.2}
\end{equation*}
$$

Next we consider two cases.

Case 1. $H(z) \equiv 0$, that is

$$
\begin{equation*}
\frac{[n f-(n-1)] f^{\prime}}{f(f-1)\left(f^{n}-f^{n-1}-1\right)} \equiv \frac{[n g-(n-1)] g^{\prime}}{g(g-1)\left(g^{n}-g^{n-1}-1\right)} \tag{3.3}
\end{equation*}
$$

then by solving (3.3) we get

$$
\begin{equation*}
\frac{f^{n}-f^{n-1}-1}{f^{n}-f^{n-1}} \equiv c \frac{g^{n}-g^{n-1}-1}{g^{n}-g^{n-1}} \tag{3.4}
\end{equation*}
$$

By (3.4) and $E(\infty, f)=E(\infty, g) \neq \emptyset$, we deduce that $c=1$. Hence in this case we obtain (3.1).

Case 2. $H(z)$ not $\equiv 0$. Let $z_{0} \in E(\infty, f)$, then by the poles of f and g are of multiplicities at least $2, E(\infty, f)=E(\infty, g),(3.2)$, and simple computing we get z_{0} is a zero $H(z)$ with multiplicity at least $2 n-1$. Thus we get by $E\left(S_{i}, f\right)=E\left(S_{i}, g\right)$ $(i=1,2), E(\infty, f)=E(\infty, g)$, that

$$
\begin{align*}
\bar{N}(r, f) & =\bar{N}(r, g) \leq \frac{1}{2 n-1} N\left(r, \frac{1}{H}\right) \leq \frac{1}{2 n-1} N(r, H)+S(r, f)+S(r, g) \\
& \leq \frac{1}{2 n-1}\left(\bar{N}\left(r, \frac{1}{f-1}\right)+\bar{N}\left(r, \frac{1}{g-1}\right)\right)+S(r, f)+S(r, g) \tag{3.5}\\
& \leq \frac{T(r, f)+T(r, g)}{2 n-1}+S(r, f)+S(r, g)
\end{align*}
$$

Now we consider two subcases.

Case 2.1. $E(0, f)=E(0, g) \neq \emptyset$. Set

$$
\begin{equation*}
\varphi=\frac{\left(f^{n}-f^{n-1}-1\right)^{\prime}}{f^{n}-f^{n-1}-1}-\frac{\left(g^{n}-g^{n-1}-1\right)^{\prime}}{g^{n}-g^{n-1}-1} \tag{3.6}
\end{equation*}
$$

Next we divide two subcases.

Case 2.1.1. $\varphi(z) \equiv 0$. By solving this, we deduce that

$$
f^{n}-f^{n-1}-1 \equiv c\left(g^{n}-g^{n-1}-1\right)
$$

where C is a nonzero constant. Since $E(0, f)=E(0, g) \neq \mathscr{D}$, we can easily obtain $c=1$. Hence, we obtain (3.1).

Case 2.1.2. $\varphi(z)$ not $\equiv 0$. Since $E(0, f)=E(0, g) \neq \emptyset$, we deduce from (3.6) that

$$
\begin{aligned}
N\left(r, \frac{1}{f}\right) & =N\left(r, \frac{1}{g}\right) \leq N\left(r, \frac{1}{\varphi}\right) \\
& \leq T(r, \varphi)+O(1) \leq N(r, \varphi)+S(r, f) \leq S(r, f) .
\end{aligned}
$$

Hence, we obtain that

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{f^{n}-f^{n-1}}\right)=\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-1}\right) \leq \bar{N}\left(r, \frac{1}{f-1}\right)+S(r, f) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{N}_{(2}\left(r, \frac{1}{f^{n}-f^{n-1}}\right) \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-1}\right) \leq \bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+S(r, f) . \tag{3.8}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\bar{N}\left(r, f^{n}\right. & \left.-f^{n-1}\right)+N_{2}\left(r, \frac{1}{f^{n}-f^{n-1}}\right) \\
& \leq \bar{N}(r, f)+N\left(r, \frac{1}{f-1}\right)+S(r, f) \leq \bar{N}(r, f)+T(r, f)+S(r, f) \\
& \leq \frac{1}{2 n-1}(T(r, f)+T(r, g))+T(r, f)+S(r, f)+S(r, g) \tag{3.9}
\end{align*}
$$

Likewise, we have

$$
\begin{align*}
\bar{N}\left(r, g^{n}\right. & \left.-g^{n-1}\right)+N_{2}\left(r, \frac{1}{g^{n}-g^{n-1}}\right) \\
& \leq \frac{1}{2 n-1}(T(r, f)+T(r, g))+T(r, g)+S(r, f)+S(r, g) \tag{3.10}
\end{align*}
$$

By Lemma 1, we have

$$
\begin{equation*}
T\left(r, f^{n}-f^{n-1}\right)=n T(r, f)+S(r, f), T\left(r, g^{n}-g^{n-1}\right)=n T(r, g)+S(r, g) \tag{3.11}
\end{equation*}
$$

Set $F=f^{n}-f^{n-1}$, and $G=g^{n}-g^{n-1}$. Then by (3.9)-(3.11) and $n \geq 3$, we have

$$
\begin{equation*}
\varlimsup_{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+N_{2}\left(r, \frac{1}{G}\right)}{T(r, F)+T(r, G)}<\frac{1}{2} \tag{3.12}
\end{equation*}
$$

Since $f(z)$ and $g(z)$ satisfy $E\left(S_{2}, f\right)=E\left(S_{2}, g\right)$ and $E(\infty, f)=E(\infty, g)$, we deduce that $E(1, F)=E(1, G)$ and $E(\infty, F)=E(\infty, G)$. Thus by Lemma 2 we get that either $F \equiv G$ or $F G \equiv 1$.

If $F G=\left(f^{n}-f^{n-1}\right)\left(g^{n}-g^{n-1}\right) \equiv 1$, then by $E(\infty, f)=E(\infty, g)$, we deduce that $f \neq 0,1, \infty$. Thus f is a constant, a contradiction. Hence we prove $F \equiv G$, that is (3.1) holds.

Case 2.2. $E(0, f)=E(0, g)=\varnothing$. Then

$$
\begin{aligned}
\bar{N}\left(r, f^{n}-f^{n-1}\right) & +\bar{N}_{2}\left(r, \frac{1}{f^{n}-f^{n-1}}\right) \leq \bar{N}(r, f)+\bar{N}_{2}\left(r, \frac{1}{f-1}\right) \\
& \leq \bar{N}(r, f)+N\left(r, \frac{1}{f-1}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+T(r, f)+S(r, f)
\end{aligned}
$$

Hence, we get (3.9), (3.10) and (3.12). Next using the similar argument to Case 2.1.2, we obtain (3.1).

Now we prove $f(z) \equiv g(z)$. Suppose on the contrary that $f(z)$ not $\equiv g(z)$. Set $f / g=h$, then by $f^{n}-f^{n-1} \equiv g^{n}-g^{n-1}$, we deduce that

$$
\begin{equation*}
g=\frac{1+h+\cdots+h^{n-2}}{1+h+\cdots h^{n-1}} \tag{3.13}
\end{equation*}
$$

By $E(0, f)=E(0, g)$ and $E(\infty, f)=E(\infty, g)$ we get $h(z)=e^{\alpha(z)}$, where $\alpha(z)$ is an entire function. If α is not a constant, then by the Nevanlinna second fundamental theorem, for any $a \in C, \quad a \neq 0$, we have $N\left(r, \frac{1}{h-a}\right)=T(r, h)+S(r, h)$ and $N\left(r, \frac{1}{h^{\prime}}\right)=S(r, h)$. Hence the zeros of $h-a$ are almost simple. By (3.13), the poles of $g(z)$ are of almost simple, a contradiction. Thus α is a constant, that is h is a constant. Hence by (3.13), g is a constant, a contradiction. Therefore, we prove that $f(z) \equiv g(z)$. The proof of the theorem is complete.

References

1. M.L. Fang and W.S. Xu, On the Uniqueness of Entire functions, Bull. of Malaysian Math. Soc. 19 (1996), 29-37.
2. M.L. Fang and W.S. Xu, A note on a problem of Gross, Chinese Math. Ann. 18A (1997) 563-568.
3. G. Frank and G. Meinders, A unique range set for meromorphic functions with 11 elements, Complex Variables 37 (1998), 185-193.
4. F. Gross, Factorization of meromorphic functions and some open problems, Lecture Notes in Math. Spring, Berlin (1977), 51-69.
5. G.G. Gundersen, Meromorphic functions that share two finite values with their derivatives, Pacific J. Math. 105 (1983), 299-303.
6. W. K. Hayman, Meromorphic Functions, Clarendon Press Oxford, 1964.
7. P. Li and C.C. Yang, On the unique range set of meromorphic function, Proc. of Amer. Math. Soc. 124 (1996), 177-185.
8. E. Mues and M. Reinders, Meromorphic functions sharing one value and unique range sets, Kodai Math. J. 18 (1995), 515-522.
9. R. Nevanlinna, Le Thórème de Picard-Borel et la Théorie des Fonctions Méromorphes, Paris, 1929.
10. C.C. Yang, On deficiencies of differential polynomials, Math. Z. 125 (1972), 107-112.
11. C.C. Yang and X.H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), 395-406.
12. L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
13. L.Z. Yang, Meromorphic functions that share two values, J. of Math. Anal. and Appl. 209 (1997), 542-550.
14. H.H. Yi, On a question of Gross, Science in China (Series A) 24 (1994), 1137-1144.
15. H.X. Yi, On a question of Gross concerning uniqueness of entire functions, Bull. Austral. Math. Soc. 57 (1998), 343-349.
16. H.X. Yi, Unicity theorems for meromorphic or entire functions II, Bull. Austral. Math. Soc. 52 (1995), 215-224.
17. H.X. Yi, Meromorphic functions that share one or two values, Complex Variables Theory Appl. 28 (1995), 1-11.

Keywords: Meromorphic function, entire function, unicity, finite sets.
1991 Mathematics Subject Classification: 30D35

