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Abstract.   In this paper, we study the uniqueness of meromorphic functions and prove the following 

result:   Let 3≥n  be a positive integer, ,}01:{ 1 =−−= −nn zzzS  and let f and g  be two 

nonconstant meromorphic functions whose poles are of multiplicities at least 2.                                      If 

),0(),0( gEfE = , ),(),( gSEfSE = , and ),(),( gEfE ∞=∞ , then )()( zgzf ≡ .                   This 

result also answer a question of Gross [4] and improve some results of  Fang and Xu [1], Yi [14] and 

Yi [15]. 

 
1.   Introduction 
 
In this paper, by a meromorphic function we always mean a function which is 
meromorphic in the whole complex plane.  Let )(zf  be a nonconstant meromorphic 
function.  We use the following standard notations of value distribution theory,  
 

),1,(),,(),,(),,(),,( frNfrNfrNfrmfrT  

(see Hayman [6], Yang [12]).  We denote by ),( frS  any function satisfying 
 

)},({),( frTofrS = , 

 

as ∞+→r ,  possibly outside of a set  E  with finite measure.  In this paper,  E may be 

different at different places. 
   Let S  be a set of complex numbers.  Set 

∪
Sa

azfzfSE
∈

=−= }0)(:{),( , 

where the zeros point with multiple m is counted  m  times in the set. 
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 Let ),( 1
2( afrN −  be the counting function which only includes multiple zeros of 

azf −)(  and  

.1,1,1, 2(2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− af

rN
af

rN
af

rN  

In 1977, Gross [4] posed the following question. 
 
Question A.  Can one find two finite sets 1S  and 2S  such that any two nonconstant entire 
functions  f  and g  satisfying ),(),( gSEfSE ii =  for 2,1=i  must be idential? And if 
such two sets exist, it would be interesting to know how large the two sets would have to 
be. 
    Yi [14] proved such two sets exist. 

Theorem B.  Let 5≥n  be a positive integer, }{1 cS =  and }1:{2 == nzzS  such that 

,12 ≠nc  and let f  and g  be two nonconstant entire functions.  If ),(),( gSEfSE ii =  

for ,2,1=i  then )()( zgzf ≡ . 
 
    Fang and Xu [1], Yi [15] completely solved Question A.  They proved the following 
theorem: 

Theorem C.  Let 3≥n  be a positive integer, }0{1 =S  and }01:{ 1
2 =−−= −nn zzzS , 

and let f  and g  be two nonconstant entire functions. If ),(),( gSEfSE ii =                      
for ,2,1=i  then )()( zgzf ≡ . 
    They give examples to show that if both 1S  and 2S  have at most two elements, then 

),(),( gSEfSE ii =  for 2,1=i  cannot imply )()( zgzf ≡ . 
    In this note, we extend and improve Theorem C as follows. 

Theorem 1.  Let 3≥n  be a positive integer, }0{1 =S  and ,}01:{ 1
2 =−−= −nn zzzS  

and let f and g  be two nonconstant meromorphic functions whose poles are                     of 
multiplicities at least 2.   If ),(),( gEfE ∞=∞  and ),(),( gSEfSE ii =  for ,2,1=i  
then )()( zgzf ≡ . 
Remark.  The condition that the poles of )(zf  and )(zg  are of multiplicities at least 2 
can not be removed in Theorem 1. 
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and let ,}0{1 =S }01:{ 1
2 =−−= −nn zzzS .  Obviously, ),(),( gEfE ∞=∞  and 

),(),( gSEfSE ii =  for  ,2,1=i  but )()( zgnotzf ≡ . 
 
Corollary 2. Let ,3≥n  k  be two positive integers, }0{1 =S  and 

}01:{ 1
2 =−−= −nn zzzS , and let f  and g  be two nonconstant meromorphic 

functions. If ),(),( gEfE ∞=∞ , ),(),( )()( k
i

k
i gSEfSE =  for ,2,1=i  then 

)()( )()( zgzf kk ≡ . 

2.  Some lemmas 
  
In order to prove Theorem 1, we need the following lemmas. 
Lemma 1.  ([10])   Let naaa ,,, 21  be finite complex numbers, ,0≠na  and let  f  be 
a nonconstant meromorphic function.  Then 

),(),(),( 1
1

1 frSfrnTfafafarT n
n

n
n +=+++ −

− . 

Lemma 2.  ([17]) Let f  and g  be two nonconstant meromorphic functions.                         
If ),1(),1( gEfE = , ),(),( gEfE ∞=∞ , and 

2
1

),(),(

1,),(1,),(
lim

22

<
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∉
∞→ grTfrT

g
rNgrN

f
rNfrN

Er
r

 

 
then either )()( zgzf ≡  or .1)()( ≡zgzf  

3.   Proof of Theorem 1 
By Theorem C, we only prove the case that .),(),( Ο/≠∞=∞ gEfE  
    Firstly, we prove that 

 

 11 −− −≡− nnnn ggff                            (3.1) 
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Set 

 
)1)(1(

')]1([
)1)(1(

')]1([
)(

11 −−−

−−
−

−−−

−−
=

−− nnnn gggg
gnng

ffff
fnnf

zH .          (3.2) 

Next we consider two cases. 
 
Case 1.   ,0)( ≡zH  that is 

           
)1)(1(

')]1([
)1)(1(

')]1([
11 −−−

−−
≡

−−−

−−
−− nnnn gggg
gnng

ffff
fnnf

              (3.3) 

then by solving (3.3) we get 

                 
1

1

1

1 11
−

−

−

−

−

−−
≡

−

−−
nn

nn

nn

nn

gg
gg

c
ff

ff
                         (3.4) 

By (3.4) and ,),(),( Ο/≠∞=∞ gEfE  we deduce that 1=c .  Hence in this case we 
obtain (3.1). 
 
Case 2.   0)( ≡notzH .  Let ),(0 fEz ∞∈ , then by the poles of f and g  are of 
multiplicities at least 2, ),(),( gEfE ∞=∞ , (3.2), and simple computing we get 0z  is a 
zero )(zH  with multiplicity at least 12 −n .  Thus we get by ),(),( gSEfSE ii =  

,)2,1( =i ),(),( gEfE ∞=∞ , that 

),(),(),(
12

11,
12

1),(),( grSfrSHrN
nH

rN
n
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           ),(),(
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    Now we consider two subcases. 
 
Case 2.1.  .),0(),0( Ο/≠= gEfE    Set 
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ϕ                        (3.6) 
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Next we divide two subcases. 
 
Case 2.1.1.  .0)( ≡zϕ   By solving this, we deduce that 
 

)1(1 11 −−≡−− −− nnnn ggcff , 

where c  is a nonzero constant.  Since ,),0(),0( Ο/≠= gEfE  we can easily obtain 
.1=c   Hence, we obtain (3.1). 

 
Case 2.1.2.  .0)( ≡notzϕ   Since ,),0(),0( Ο/≠= gEfE  we deduce from (3.6) that 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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⎞
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⎝

⎛
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1,1,1, rN

g
rN
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rN  

 ),(),(),()1(),( frSfrSrNOrT ≤+≤+≤ ϕϕ . 
Hence, we obtain that 

          ),(
1

1,
1

1,1,1,
1

frS
f
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f

rN
f
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ff
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and 

     ),(
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1

1,1,1, 2(2(12( frS
f
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ff
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Therefore, 

   ⎟
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Likewise, we have 

 ⎟
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By Lemma 1, we have 

   ),(),(),(,),(),(),( 11 grSgrnTggrTfrSfrnTffrT nnnn +=−+=− −− ,  (3.11) 

Set 1−−= nn ffF , and 1−−= nn ggG .   Then by (3.9)-(3.11) and 3≥n , we have 

              
2
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),(),(
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               (3.12) 

Since )(zf  and )(zg  satisfy ),(),( 22 gSEfSE =  and ,),(),( gEfE ∞=∞  we deduce 
that ),1(),1( GEFE =  and  .),(),( GEFE ∞=∞   Thus  by Lemma 2 we get that either 

GF ≡  or 1≡FG . 

    If 1))(( 11 ≡−−= −− nnnn ggffFG , then  by ),(),( gEfE ∞=∞ , we deduce that  

∞≠ ,1,0f .  Thus f  is a constant, a contradiction.  Hence we prove ,GF ≡  that is (3.1) 
holds. 
 
Case 2.2.   .),0(),0( Ο/== gEfE    Then 
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                    ),(),(),( frSfrTfrN ++≤  

       Hence, we get (3.9), (3.10) and (3.12).  Next using the similar argument to                
Case 2.1.2, we obtain (3.1). 
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Now we prove f(r) = SQ). Suppose on the contrary that f(z)not = g(z)'

Se t  f  l g -h ,  thenby  . f ' - f ' - ' =gn  * �gn - ' ,  r vededuce tha t

|  +  h  +  . . .  +  h n - z

l + h + . . . h n - l
(3.  I  3)O =

6

By E(0, f) - E(0, g) E(*, f) - E(*, g) we get h(z) = eo(') , whete a(z) is an

entire function. lf a is not a constant, then by the Nevanlinna second fundamental

theorem, for  any a e C, a *  0,  we have N(t ,*)  -  T(r ,h)  +^S(r 'h)  and

lr(r, *) 
- S?,h). Hence the zeros of h-a are almost simple. By (3.13), the poles

of g(z) are of almost simple, a contradiction. Thus a is a constant, that is /r is a

constant. Hence by (3.13), g is a constant, a contradiction. Therefore' we prove that

f (t) = SQ) . The proof of the theorem is complete'
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