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Abstract.  We show that a suitable variation of the well-known residue formula holds when an 
analytic function has isolated essential singularities along the contour of integration. 

 
 
1. Introduction 
 
Let C  be a smooth simple curve contained in a complex region Ω .  Let F be analytic in 
the region G\Ω  where G is a finite set.  If no singularities are located on C, that is, if  

,∅=∩ GC  then the well-known residue formula from elementary complex variable 
courses,  
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holds.  Here nbb ,,1 L  are the singularities of  F inside C and )(Res zF

jbz=  their 

respective residues.  The jb  can be poles or essential singularities of F. 
Interestingly, it is true and known, although not so well-known, that a simple 
generalization of (1.1) holds if some of the singularities, say ,,,1 maa L are poles located 
on the contour C.  Indeed, in such a case [6] 
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Observe that the integral is not an ordinary integral in this case:  the presence of poles 
makes it divergent and thus we consider its finite part, as explained in Section 2.  When 
all the poles are simple the finite part integral reduces to its Cauchy principal value and in 
such a case the generalized formula (1.2) was already given by Cauchy. 
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 Our aim is to give a generalization of (1.2) to the case when some of the ja  are 
essential singularities of  F.  Simple examples, such as 
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show that (1.2) does not hold in such cases.  Interestingly, many times the integrals, as 
(1.3) and (1.4) illustrate, can be ordinary convergent integrals.  As we show, however, 
when F has distributional boundary values from the inside and the residues are redefined 
appropriately, then (1.2) still holds. 
 The plan of the article is as follows.  In Section 2 we discuss some useful preliminary 
concepts, such as finite parts and distributional limits.  In Section 3 we define a new 
residue along a contour for a function with an essential singularity; this is exactly the 
residue needed in our generalized formula.  Section 4 treats the relationship between 
finite part integrals and distributional limits, while in Section 5 we state and prove our 
main result. 
 
 
2. Preliminaries 
 
 In this section we explain the ideas of the principal value and finite part of divergent 
integrals.  These are fundamental notions in the study of integral equations, since, in fact, 
the integrals that appear in singular integral equations are usually principal value integrals 
[6], [7], [11] while those in hyper-singular integral equations are usually finite part 
integrals [1], [8], [10].  A detailed discussion can be found in [6, Chapter 1].  We also 
give some ideas from the distributional boundary values of analytic functions [2], [4]. 
 Let C be a smooth simple contour in the complex plane and let .0 C∈ξ   Suppose 
that a function  g  is defined and continuous on .}{\ 0ξC   Then one may define the 
improper integral of g over C as 
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Here −

εC  is the part of C from the initial point to the first intersection of C and a circle of 

radius ε  about 0ξ  while +
εC  is the part of contour from the second intersection to the 

final point.  If the curve is closed one just takes as initial and final points any point of C 
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different from .0ξ   Observe that since the curve is smooth, the circle does intersect it at 
exactly two points if ε  is small enough.  The key for the existence of the improper 
integral is that ε  and η  tend to zero independently. 
 It happens many times that the improper integral (2.1) does not exist but the limit 
exists when ε  and η  are related in an appropriate way, say, for instance, when .ηε =   
In this case we obtain the Cauchy principal value of the integral, 
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where .+− ∪= εεε CCC   Typical principal value integrals are the Cauchy type integrals 

∫ −
C

df ,))/()(( 0 ξξξξ  where  f  is a function defined on C. 

 It is important to point out the formula 
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where C  is a smooth simple contour and .0 C∈ξ   Formula (2.3) is a sort of average of 
the Cauchy formula 
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 When the limit (2.2) does not exist, one may obtain a finite result by using the 
Hadamard finite part method.  Let 
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We want to study the bahavior of the limit of )(εG  as .0→ε   Then we write 

 
  ,)()()( 01 εεε GGG +=  (2.6) 
 
where ,)(1 εG  the “infinite part”, captures what makes the limit divergent while ,)(0 εG  
the “finite part” satisfies that 
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exists.  There is not a unique way to perform the split (2.6); to obtain a unique 
decomposition we require that the infinite part be given as 
 
  ,)()()( 11 εφεφε nG ++= L  (2.8) 
 
where nφφ ,,1 L  are chosen from a given set of functions that become infinite as ,0→ε  
usually inverse powers of ε  and logarithms.  We then write 
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for the finite part of the integral. 
 If ,2, ≥∈ kk N  the integral 
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does not exist as an improper integral nor as a principal value integral. 
However, its finite part exists and we have 
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where a  is the initial point and b is the final point of the contour.  In particular, 
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if C is a closed contour.  Of course, 
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also. 
 It is useful to generalized the finite part method by requiring the limit (2.7) to hold 
not in the ordinary sense but in the distributional sense of Lojasiewicz [9].  This one may 
call the distributional finite part method. 
 Let us consider distributional boundary values of analytic functions [2], [4].  Let C 
be a simple smooth contour; it may be open or closed.  The space of test functions over 
C, denoted as ,)(CD  is formed by those smooth functions φ  defined on C that vanish in 
a neighborhood of the endpoints of C (if C is closed, )(CD  is just the space of smooth 



A Generalization of the Residue Formula 
 

43

functions over C).  The space of distributions over C is the dual space ;)(CD ′  that is,            
a distribution f over C is a continuous linear functional on the space of test functions.             
The evaluation of a distribution )(Cf D ′∈  at a test function )(CD∈φ  is denoted as 

., φf    
 The curve C determines two sides of .\ CC  Corresponding to the positive 
orientation of C, one side is to the left and the other to the right of the curve; these sides 
are local, but if the curve is closed they become global, the left corresponding to the 
interior and the right to the exterior of C if the counterclockwise orientation is used.  
Usually the left side is called the positive side, while the right is the negative side. 
 Let εC  be a continuous family contours for 00 εε ≤≤   that approach 0CC =  as 

,0→ε  say from the positive side.  Suppose for instance that the parametrization of εC  
is given by .,);( btatz ≤≤ε   One obtains an isomorphism of )(CD  and )( εCD  by 
putting  ))0;(());(( tztz φεφε =  if .)(CD∈φ   Let now )(zF  be an analytic function 
defined on the positive side of C.  We then say that the distributional limit of )(zF  as z  
approaches C from the positive side exists and equals )(Cf D ′∈  if 
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for ).(CD∈φ   Similar considerations apply to limits from the negative side.  Notice the 
cases 
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for limits from iniside the unit circle and 
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for limits from the upper half plane.  Actually, most results are the same for any smooth 
contour, since one may use the Riemann mapping theorem to reduce the situation to 
(2.15) or (2.16).  In particular, in (2.15), F has distributional boundary values if and only 
if there exist R∈β,M   such that 
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while in (2.16) the distributional limit exists if only if for each 0>a  there exist 
R∈)(,)(,)( ayaaM β  such that 
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3. The residue along a contour 
 
Our first task is to define the residue of an analytic function at a singularity relative to a 
given contour.  When the singularity is a pole, we obtain the ordinary residue at a pole, 
but when the singularity is an essential singularity, we obtain precisely what is needed to 
generalize the residue formula (1.2). 
 Suppose first that  a is a pole of the analytic function F.  Then we can write 
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where  ,aSS =  the singular part of )(zF  at ,az =  is given by 
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where k  is the order of the pole and where )(ajj αα =  are constants.  In particular, 

,)(sRe1 zFaz==α  is the residue at .az =   Observe that in this case 
k

k azzF )/(~)( −α   as ,az →  and that this is true along any contour through 
.az =  

 Suppose now that a  is an isolated essential singularity of F.  Then (3.1) still holds, 
where 0F  is analytic at ,az =  while ,aSS =  the singular part is given by a series of 
the form 
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for z near  a.  In this case, however, the behavior of )(zF  as az →  can be rather 
complicated.  If C is a contour through ,az =  the limit )(lim zFaz→  may even exist 
despite the presence of the highly singular term (3.3) in (3.1), and this limit may be 
different from .)(0 aF  
 
 
 



A Generalization of the Residue Formula 
 

45

Example. Let .)(
2/1 zezF −=   Then 0=z  is an essential singularity of F, the singular 

part is ,1)(
2/1 −= − zezS  and .1)(0 =zF   However, on the real axis the function 

)0()( ixFxf +=  is not singular at ,0=x and in fact all the derivatives )0()( jf  exist 
and equal 0. 
 
 We define the residue of  F  at az =  along a contour C as follows.  Suppose that 
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where )(lim 0, zFCzaz ∈→  exists in the distributional sense.  Then we call 
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in particular, we call 1α  the residue of )(zF  at az =  along C and write  
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 Observe that the existence of  )(Res ; zFCaz=  does not imply the existence of  
)(sRe

1; zFCaz=  for other curves 1C  through az =  and even if the two residues exist, 
they might be different. 
 
Example.   Let 
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Then 0=z  is an isolated essential singularity and F has q different residues 
 

  ,)(sRe
0;0

2

dteezF
q

q
ij

j

t
Cz ∫

∞ −
= =

π

 (3.7) 

 
,1 qj ≤≤  along the q lines 
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Example. Consider the function zezG /1)( =  along the imaginary axis I.  If  

,, R∈= εεiz  then 
1

)(
−−= εε ieiG does not have an ordinary limit as .0→ε   

However, 0)(lim 0 =→ εε iG   in the distributional sense of Lojasiewicz and thus 
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4. A lemma 
 
Let F be an analytic function in ,\ GΩ  where G is finite.  Suppose C is a curve in Ω  and 
let us try to consider the function F as a distribution on C.  If ∅≠∩ GC  then F does 
not define a unique distribution on C.  Indeed, we may consider the finite part distribution 

)( F.p. F defined as  
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But, one may also consider the distributional limits +F   and −F   from the positive and 
negative sides of C, respectively.  Not all three +FF ,)( F.p.  and −F  need to exist, 
perhaps none does.   But even if they exist, they are usually different.  Recall for instance 
the well-known dispersion relations [5, (2.4.18)] 
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that show that the three distributions are different when ,/1)( nzzF =  and .R=C                      
It follows that, in general, if all the singularities of F on C are poles, then the three 
distributions +FF ,)(F.p.  and −F   exist and are different. 
 The situation near an isolated essential singularity is of another nature.  Let us 
suppose, to fix the ideas, that there is only one singularity, ,}{ 0ξ=G  where ,0 C∈ξ  
and that it is an essential singularity.  Then at least one of the two distributional limits  

+F  of −F   does not exist, although neither may exist.  Suppose +F  and )(F.p. F  both 
exist (and −F  does not), then in general .)(F.p. FF ≠+   However, there is one particular 
and important case when the two distributions have to coincide:  when the distributional 
point value )( 0ξF  exists.  We prove this result in the lemma below, but before we do so 
it is worth to notice some related results. 

 If we use the Phragmén-Lindelöf  theorems [12, section 5.6] we can easily show that 
if F, initially defined on ,}{\ 0ξC  can be extended to a continuous function on C and if       
F is bounded on the intersection of a neighborhood of  0ξ  with the positive side of C, 
then actually )()( 0ξFzF → as z approaches 0ξ  from the positive side non-tangentially.  
Actually, the same argument works if the distributional limit from the positive side, +F , 
exists. 
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 Notice, however, the example .)/1(sin)( zzzF =   Along the real axis F  can be 
extended from }0{\R  to R  by setting  .0)0( =F   However, )(zF  does not approach 0 
as  z approaches 0  non-tangentially from either the upper or lower half-planes.  In this 
example neither of the distributional limits  +F   nor −F  exist. 
 The next proof is based on ideas from the theory of Fourier series. 
 
Lemma 1. Let F be analytic in ,}{\ 0ξΩ where 0ξ is an essential singularity.  Let C be 
a smooth simple curve that goes through .0ξ  Suppose the finite part distribution 

))((F.p.){ ξξ Ff = exists in )(CD ′ and the distributional point value )( 0ξf exists.  
Suppose also that the distributional boundary limit of F from the positive side, ,+F exists.  
Then 
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Proof. It is enough to give the proof when }1:{ =∈= zzC C  is the unit circle, 

,10 =ξ  and Ω  is a region that contains the unit disc; the general case can be reduced to 

this one by conformal mapping.  We use the standard notation ., R∈= θξ θie    
 It is clear that +F  and )(F.p. F  coincide for .1≠ξ   Thus they differ by a 
distribution concentrated at ,1=ξ  that is, by a finite sum of derivatives of the Dirac 
delta function at .1=ξ   Hence 
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nn ea∞
−∞=∑  be the Fourier series of 

.))((F.p. θieF   Observe that the Fourier series of +F  contains only terms with positive 
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But the Fourier coefficients of a distribution with distributional point value at a point 
have been characterized [3].  A simple corollary of that characterization is that 0→na  
as ∞−→n  in the Cesàro sense, .)(0lim Cann =∞−→   But the limit of (4.6) is ∞  

unless .00 === mαα L   Therefore (4.3) follows. 
 
Remark. The same type of argument shows that if  +F   exists distributionally and if  

))({F.p.)( ξξ Ff =  has lateral distributional point values )( 0
+ξf  and )( 0

−ξf  as ξ  
approaches 0ξ   from the initial or the final part of the contour, then both lateral point 
values coincide and (4.3) holds. 
 
Example. Consider the function 
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Along the real axis, ))((F.p.)( xFxf =  has a jump discontinuity at ,0=x while 

)(xf ′ consists of an ordinary function for ,0≠x  with just a jump discontinuity, and a 
Dirac delta function at the origin.  Looking at the proof of the lemma and the following 
remark, such behavior is not possible if F has distributional boundary values from the 
upper or lower half-planes:  naturally the distributional limits +F  and −F   do not exist in 

.)(RD ′  
 
 
5. The main result 
 
We can now prove our generalized residue formula. 
 
Theorem 1. Let F be analytic in a region ,\ GΩ where G is a finite set.  Let C be a 
simple smooth contour contained in .Ω   Let nbb ,,1 L be the singularities inside C and 
let  maa ,,1 L  be the singularities of  F on C.  Suppose each ja  is either a pole of F or, 
if an isolated essential singularity, has a well-defined singular part along C.  Then the 
finite part integral 
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exists. 
 If also the distributional limit of F from inside C exists, then 
 

 ∫ ∑ ∑
= =

== +=
C

n

j

m

j
Cazbz zFizFidzzF

jj
1 1

; .)(Res)(Res2)(.F.p ππ  (5.2) 



A Generalization of the Residue Formula 
 

49

Proof. Consider the singular parts  .,,,,,
11 mn aabb SSSS LL   If  we write 
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then G is analytic inside C and across },,{\ 1 maaC L  and the distributional point values 
)(,),( 1 maGaG L  along C exist.  Therefore the finite part integral 
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it follows that (5.1) exists. 
 Suppose now that the distributional limit of  F from inside C exists.  Then, because 
of (5.5) and (5.6), the generalized residue formula (5.2) would follow if we show that 

.0)(.. =∫ C
dzzGpF   But G has distributional limits from the inside, as follows from 

(5.3) since the singular parts do.  Therefore using the lemma, if )(CD∈φ  
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where the curves εC  given by ,,),( btatz ≤≤ε  are interior to C as .0→ε   In 
particular, if 1=φ  we obtain 
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 Let us consider some illustrations. 
 
Example. Consider the integral (1.3), namely, 
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Here )1/(1 −ze  is bounded in 1≤z   and thus has boundary values from the inside of 

1: =zC  [4].  The only singularity is ,1=z  but since the function is continuous along 
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residue formula. 
 
Example. Let us consider the integral (1.4), namely, 
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One may try to evaluate the integral in the usual way, namely by observing that 
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where RC  is a contour from R−  to R  along the real axis and from R to R−  along a 
semicircle on the upper half plane, since the integral over the semicircle tends to 0.  Let 
us try to apply the residue formula (5.2).  The integrand, 
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has two singularities; one is an essential singularity at ,0=ω  with ,0)(Res ;0 == ωω FR  
the other is a pole at ,z=ω  with residue .)/1(sin)(Res zFz == ωω   This second 
singularity contributes to the integral only if .0≥ℑ zm   Thus one would obtain from the 
right side of (5.2) the following 
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This is not the right result, however!.  Indeed [6,  example 10], 
 

  
⎪⎩

⎪
⎨
⎧

<ℑ−
>ℑ−

=
−

⎟
⎠
⎞

⎜
⎝
⎛ −∞

∞−∫ ,0,)1(
,0,)1(1sin /

/

zme
zme

zx
dx

x zi

zi

π
π  (5.12) 

 
while 
 

  .0,1cos11sin.p.v =ℑ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

−
⎟
⎠
⎞

⎜
⎝
⎛

∫
∞

∞−
zm

zzx
dx

x
π  (5.13) 

 

 Therefore the generalized residue formula (5.2) does not apply in this case.  Why?  
Because the function )/1(sin z  does not have distributional boundary values from the 
upper half plane, since there are no constants M and β  such that 
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for .1,10 <+<< iyxy  
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