On Contra-Precontinuous Functions

SAEID JAFARI AND TAKASHI NOIRI

Department of Mathematics and Physics, Roskilde University, Postbox 260, 4000 Roskilde, Denmark
Department of Mathematics, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866-8501 Japan

1e-mail: sjafari@ruc.dk and 2e-mail: noiri@as.yatsushiro-nct.ac.jp

Abstract. The notion of contra-continuity was introduced and investigated by Dontchev [3]. In this paper, we introduce and investigate a new generalization of contra-continuity called contra-precontinuity.

1. Introduction

Dontchev [3] introduced the notions of contra-continuity and strong S-closedness in topological spaces. He defined a function \(f : X \to Y \) to be contra-continuous if the preimage of every open set of \(Y \) is closed in \(X \). In [3], he obtained very interesting and important results concerning contra-continuity, compactness, S-closedness and strong S-closedness. Recently a new weaker form of this class of functions called contra-semicontinuous functions is introduced and investigated by Dontchev and Noiri [5]. They also introduced the notion of \(RC \)-continuity [5] between topological spaces which is weaker than contra-continuity and stronger than \(B \)-continuity [35].Quite recently, the present authors [12] introduced and investigated a new class of functions called contra-super-continuous functions which lies between classes of \(RC \)-continuous functions and contra-continuous functions.

The aim of this paper is to introduce and investigate a new class of functions called contra-precontinuous functions which is weaker than contra-continuous functions. In Section 3, we obtain several basic properties of contra-precontinuous functions. In Section 4, we introduce contra-preclosed graphs and investigate relations between contra-precontinuity and contra-preclosed graphs. In Section 5, we obtain some properties of strongly S-closed spaces and compact spaces. Decompositions of \(RC \)-continuity and perfect continuity are also obtained. In the last section, we deal with strong forms of connectedness.
2. Preliminaries

In what follows, spaces X and Y are always topological spaces. $\text{Cl}(A)$ and $\text{Int}(A)$ designate the closure and interior of A which is a subset of X. A subset A is said to be regular open (resp. regular closed) if $A = \text{Int} (\text{Cl}(A))$ (resp. $A = \text{Cl} (\text{Int}(A))$).

Definition 2.1. A subset A of a space X is called

(i) preopen [16] if $A \subseteq \text{Int} (\text{Cl}(A))$,

(ii) semi-open [15] if $A \subseteq \text{Cl} (\text{Int}(A))$,

(iii) α-open [22] if $A \subseteq \text{Int} (\text{Cl} (\text{Int}(A)))$,

(iv) β-open [1] if $A \subseteq \text{Cl} (\text{Int} (\text{Cl}(A)))$.

The complement of a preopen (resp. semi-open, α-open, β-open) set is said to be preclosed (resp. semi-closed, α-closed, β-closed). The collection of all closed (resp. preopen, semi-open, α-open and β-open) subsets of X will be denoted by $\text{C}(X)$ (resp. $\text{PO}(X)$, $\text{SO}(X)$, $\alpha (X)$ and $\beta (X)$). We set $C(X, x) = \{V \in C(X) \mid x \in V\}$ for $x \in X$. We define similarly $\text{PO}(X, x)$, $\text{SO}(X, x)$, $\alpha(X, x)$ and $\beta(X, x)$.

Definition 2.2. A function $f : X \to Y$ is called perfectly continuous [23] (resp. RC-continuous [5]) if for each open set V of Y, $f^{-1}(V)$ is clopen (resp. regular-closed) in X.

Definition 2.3. A function $f : X \to Y$ is called precontinuous [16] (resp. semi-continuous [15], β-continuous [1]) if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists $U \in \text{PO}(X, x)$ (resp. $U \in \text{SO}(X, x)$, $U \in \beta(X, x)$) such that $f(U) \subseteq V$.

Definition 2.4. A function $f : X \to Y$ is called almost precontinuous [20] if for each $x \in X$ and each open neighborhood V of $f(x)$, there exists $U \in \text{PO}(X, x)$ such that $f(U) \subseteq \text{Int}(\text{Cl}(V))$.

Definition 2.5. A function $f : X \to Y$ is called contra-precontinuous (resp. contra-continuous [3], contra-semicontinuous [5], contra-α-continuous [11], contra-β-continuous [3]) if $f^{-1}(V)$ is preclosed (resp. closed, semi-closed, α-closed, β-closed) in X for each open set V of Y.
For the functions defined above, we have the following diagram:

\[
\text{perfectly continuous } \iff \text{ RC-continuous } \iff \text{ contra-continuous } \\
\downarrow \\
\text{contra-}\alpha\text{-continuous } \iff \text{ contra-precontinuous } \\
\downarrow \\
\text{contra-semicontinuous } \iff \text{ contra-}\beta\text{-continuous }
\]

Remark 2.1. It should be noticed that contra-precontinuity and precontinuity are independent notions as shown by the following examples due to Dontchev [2].

Example 2.1. A continuous function need not be contra-precontinuous. The identity function on the real line with the usual topology is an example of a continuous function which is not contra-precontinuous.

Example 2.2. A contra-precontinuous function need not be precontinuous. Let \(X = \{a, b\} \) be the Sierpinski space by setting \(\tau = \{\emptyset, \{a\}, X\} \) and \(\sigma = \{\emptyset, \{b\}, X\} \). The identity function \(f : (X, \tau) \to (X, \sigma) \) is contra-precontinuous. But it is neither precontinuous nor semi-continuous.

3. Some properties

Definition 3.1. Let \(A \) be a subset of a space \((X, \tau)\).

1. The set \(\bigcap \{U \in \tau \mid A \subseteq U\} \) is called the kernel of \(A \) [19] and is denoted by \(\ker(A) \).
2. The set \(\bigcap \{F \in X \mid A \subseteq F, F : \text{preclosed}\} \) is called the preclosure of \(A \) [7] and is denoted by \(p\text{Cl}(A) \).

Lemma 3.1. The following properties hold for subsets \(A, B \) of a space \(X \):

1. \(x \in \ker(A) \) if and only if \(A \cap F \neq \emptyset \) for any \(F \in C(X, x) \).
2. \(A \subseteq \ker(A) \) and \(A = \ker(A) \) if \(A \) is open in \(X \).
3. If \(A \subseteq B \), then \(\ker(A) \subseteq \ker(B) \).
Theorem 3.1. The following are equivalent for a function $f : X \to Y$:

1. f is contra-precontinuous;
2. for every closed subset F of Y, $f^{-1}(F) \in PO(X)$;
3. for each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in PO(X, x)$ such that $f(U) \subset F$;
4. $f(pCl(A)) \subset \ker(f(A))$ for every subset A of X;
5. $pCl(f^{-1}(B)) \subset f^{-1}(\ker(B))$ for every subset of B of Y.

Proof. The implications (1) \iff (2) and (2) \implies (3) are obvious.

(3) \implies (4): Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in PO(X, x)$ such that $f(U_x) \subset F$. Therefore, we obtain $f^{-1}(F) = \bigcup \{U_x \mid x \in f^{-1}(F)\} \in PO(X)$.

(2) \implies (4): Let A be any subset of X. Suppose that $y \notin \ker(f(A))$. Then by Lemma 3.1 there exists $F \in C(X, Y)$ such that $f(A) \cap F = \emptyset$. Thus, we have $A \cap f^{-1}(F) = \emptyset$ and $pCl(A) \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(pCl(A)) \cap F = \emptyset$ and $y \notin f(pCl(A))$. This implies that $f(Cl(A)) \subset \ker(f(A))$.

(4) \implies (5): Let B be any subset of Y. By (4) and Lemma 3.1, we have $f(pCl(f^{-1}(B))) \subset \ker(f(f^{-1}(B))) \subset \ker(B)$ and $pCl(f^{-1}(B)) \subset f^{-1}(\ker(B))$.

(5) \implies (1): Let V be any open set of Y. Then, by Lemma 3.1 we have $pCl(f^{-1}(V)) \subset f^{-1}(\ker(V)) = f^{-1}(V)$ and $pCl(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is preclosed in X.

Theorem 3.2. The following are equivalent for a function $f : X \to Y$:

(i) f is contra-α-continuous;
(ii) f is contra-precontinuous and contra-semicontinuous.

Proof. This follows from the fact that $A \in \alpha(X)$ if and only if $A \in PO(X) \cap SO(X)$ [28, Lemma 1].

Theorem 3.3. If a function $f : X \to Y$ is contra-precontinuous and Y is regular, then f is precontinuous.
Proof. Let x be an arbitrary point of X and V be an open set of Y containing $f(x)$. Since Y is regular, there exists an open set W in Y containing $f(x)$ such that $\text{Cl}(W) \subset V$. Since f is contra-precontinuous, so by Theorem 3.1 there exists $U \in \text{PO}(X, x)$ such that $f(U) \subset \text{Cl}(W)$. Then $f(U) \subset \text{Cl}(W) \subset V$. Hence, f is precontinuous.

Remark 3.1. By Example 2.1, a precontinuous functions $f : X \to Y$ is not always contra-precontinuous even if Y is regular.

Recall that a function $f : X \to Y$ is called M-preopen [17] if the image of each preopen set is preopen.

Theorem 3.4. If $f : X \to Y$ is an M-preopen contra-precontinuous function, then f is almost precontinuous.

Proof. Let x be any arbitrary point of X and V be an open neighborhood $f(x)$. Since f is contra-precontinuous, then by Theorem 3.1 (3), there exists $U \in \text{PO}(X, x)$ such that $f(U) \subset \text{Cl}(V)$. Since f is M-preopen, $f(U)$ is preopen in Y. Therefore $f(U) \subset \text{Int}(\text{Cl}(f(U))) \subset \text{Int}(\text{Cl}(V))$. This shows that f is almost precontinuous.

Definition 3.2. A function $f : X \to Y$ is said to be almost weakly continuous [13] if $f^{-1}(V) \subset \text{Int}(f^{-1}(\text{Cl}(V)))$ for every open set V of Y.

It is shown in [25, Theorem 3.1] that a function $f : X \to Y$ is almost weakly continuous if and only if for each $x \in X$ and each open neighborhood V of $f(x)$, there exists $U \in \text{PO}(X, x)$ such that $f(U) \subset \text{Cl}(V)$.

Remark 3.2. The following implications are obvious:

precontinuity \Rightarrow almost precontinuity \Rightarrow almost weak continuity,

where the converses are false as shown in Examples 2.1 and 2.2 [10].

As shown in Example 2.2, a contra-precontinuous function need not be precontinuous. However, every contra-precontinuous function is necessarily almost weakly continuous.

Theorem 3.5. If a function $f : X \to Y$ is contra-precontinuous, then f is almost weakly continuous.
Proof. Let V be any open set of Y. Since $\text{Cl}(V)$ is closed in Y, $f^{-1}(\text{Cl}(V))$ is preopen in X and we have $f^{-1}(V) \subset f^{-1}(\text{Cl}(V)) \subset \text{Int}(f^{-1}(\text{Cl}(V)))$. This shows that f is almost weakly continuous.

The prefrontier [26] $p\text{Fr}(A)$ of A, where $A \subset X$, is defined by $p\text{Fr}(A) = p\text{Cl}(A) \cap p\text{Cl}(X - A)$.

Theorem 3.6. The set of all points of x of X at which $f : X \to Y$ is not contra-precontinuous is identical with the union of the prefrontier of the inverse images of closed sets of Y containing $f(x)$.

Proof. “Necessity”. Suppose that f is not contra-precontinuous at $x \in X$. There exists $F \in C(Y, f(x))$ such that $f(U) \cap (Y - F) \neq \emptyset$ for every $U \in PO(X, x)$. This implies that $U \cap f^{-1}(Y - F) \neq \emptyset$. Therefore, we have $x \in p\text{Cl}(f^{-1}(Y - F)) = p\text{Cl}(X - f^{-1}(F))$. However, since $x \in f^{-1}(F), x \in p\text{Cl}(f^{-1}(F))$. Therefore, we obtain $x \in p\text{Fr}(f^{-1}(F))$.

“Sufficiency”. Suppose that $x \in p\text{Fr}(f^{-1}(F))$ for some $F \in C(Y, f(x))$. Now, we assume that f is contra-precontinuous at x. Then there exists $U \in PO(X, x)$ such that $f(U) \subset F$. Therefore, we have $x \in U \subset f^{-1}(F)$ and hence $x \in p\text{Int}(f^{-1}(F)) \subset X - p\text{Fr}(f^{-1}(F))$. This is a contradiction. This means that f is not contra-precontinuous.

Recall that a family E of subsets of a space (X, τ) is called a network for a topology τ on (X, τ) if every set in τ is the union of some subfamily of E.

Definition 3.3. A space (X, τ) is said to be

1. extremally disconnected [33] if the closure of every open set of X is open in X,
2. locally indiscrete [21] if every open set of X is closed in X,
3. submaximal [29] if every dense set of X is open in X, equivalently if every preopen set is open,
4. strongly irresolvable [8] if no nonempty open set is resolvable, equivalently if every preopen subset is α-open,
5. mildly Hausdorff [6] if the δ-closed sets form a network for its topology τ, where a δ-closed set is the intersection of regular closed sets,
6. strongly S-closed [3] if every closed cover of X has a finite subcover,
7. door space [4] if every subset of X is either open or closed.
Remark 3.3. It should be noted that every door space X is submaximal \cite[Theorem 2.7]{4} and every mildly Hausdorff strongly S-closed space is locally indiscrete \cite[6]{6}.

The following results follow immediately from Definition 3.3 and Remark 3.3:

Theorem 3.7. If a function $f : X \to Y$ is continuous and X is locally indiscrete, then f is contra-continuous.

Corollary 3.1. If a function $f : X \to Y$ is continuous and X is mildly Hausdorff strongly S-closed, then f is contra-continuous.

Theorem 3.8. Let $f : X \to Y$ be a contra-precontinuous function.

1. If X is submaximal, then f is contra-continuous,
2. If X is strongly irresolvable, then f is contra-α-continuous.

Corollary 3.2. If a function $f : X \to Y$ is contra-precontinuous and X is a door space, then f is contra-continuous.

Lemma 3.2. For a subset A of a space X, the following are equivalent:

1. A is regular closed;
2. A is preclosed and semi-open;
3. A is α-closed and β-open.

Proof. (1) \Rightarrow (2): Let A be regular closed. Then $A = \text{Cl}(\text{Int}(A))$ and A is preclosed and semi-open.

(2) \Rightarrow (3): Let A be preclosed and semi-open. Then $\text{Cl}(\text{Int}(A)) \subseteq A$ and $A \subseteq \text{Cl}(\text{Int}(A))$. Therefore, we have $\text{Cl}(\text{Int}(A)) = \text{Cl}(A)$ and hence $\text{Cl}(\text{Int}(\text{Cl}(A))) = \text{Cl}(\text{Int}(\text{Cl}(A))) = \text{Cl}(\text{Int}(A)) \subseteq A$. This shows that A is α-closed. Since $\text{SO}(X) \subseteq \beta O(X)$, it is obvious that A is β-open.

(3) \Rightarrow (1): Let A be α-closed and β-open. Then $A = \text{Cl}(\text{Int}(\text{Cl}(A)))$ and hence $\text{Cl}(\text{Int}(A)) = \text{Cl}(\text{Int}(\text{Cl}(\text{Int}(A)))) = \text{Cl}(\text{Int}(\text{Cl}(A))) = A$. Therefore, A is regular closed.

As a consequence of the above lemma, we have the following result:

Theorem 3.9. The following statements are equivalent for a function $f : X \to Y$:

1. f is RC-continuous;
2. f is contra-precontinuous and semi-continuous;
3. f is contra-α-continuous and β-continuous.
4. Contra-preclosed graphs

We begin with the following notion:

Definition 4.1. The graph \(G(f) \) of a function \(f : X \to Y \) is said to be contra-preclosed if for each \((x, y) \in (X \times Y) - G(f) \), there exist \(U \in PO(X, x) \) and \(V \in C(Y, y) \) such that \((U \times V) \cap G(f) = \emptyset \).

Lemma 4.1. The graph \(G(f) \) of \(f : X \to Y \) is contra-preclosed in \(X \times Y \) if and only if for each \((x, y) \in (X \times Y) - G(f) \), there exist \(U \in PO(X, x) \) and \(V \in C(Y, y) \) such that \(f(U) \cap V = \emptyset \).

Theorem 4.1. If \(f : X \to Y \) is contra-precontinuous and \(Y \) is Urysohn, then \(G(f) \) is contra-preclosed in \(X \times Y \).

Proof. Let \((x, y) \in (X \times Y) - G(f) \). Then \(y \neq f(x) \) and there exist open sets \(V, W \) such that \(f(x) \in V, y \in W \) and \(Cl(V) \cap Cl(W) = \emptyset \). Since \(f \) is contra-precontinuous, there exists \(U \in PO(X, x) \) such that \(f(U) \subseteq Cl(V) \). Therefore, we obtain \(f(U) \cap Cl(W) = \emptyset \). This shows that \(G(f) \) is contra-preclosed.

Definition 4.2. A space \(X \) is said to be

1. strongly compact [17] if every preopen cover of \(X \) has a finite subcover,
2. \(S \)-closed [34] if every semi-open cover \(\{ V_\alpha \mid \alpha \in \mathbb{N} \} \) of \(X \), there exists a finite subset \(\mathbb{N}_0 \) of \(\mathbb{N} \) such that \(X = \bigcup \{ Cl(V_\alpha) \mid \alpha \in \mathbb{N}_0 \} \), equivalently if every regular closed cover of \(X \) has a finite subcover,
3. mildly compact [32] if every clopen cover of \(X \) has a finite subcover.

Definition 4.3. A subset \(S \) of a space \(X \) is said to be

1. strongly compact relative to \(X \) [17] if every cover of \(S \) by preopen sets of \(X \) has a finite subcover,
2. strongly \(S \)-closed [3] if the subspace \(S \) is strongly \(S \)-closed.

Theorem 4.2. Let \(X \) be submaximal. If \(f : X \to Y \) has a contra-preclosed graph, then the inverse image of a strongly \(S \)-closed set \(K \) of \(Y \) is closed in \(X \).

Proof. Assume that \(K \) is a strongly \(S \)-closed set of \(Y \) and \(x \notin f^{-1}(K) \). For each \(k \in K, (x, k) \notin G(f) \). By Lemma 4.1, there exists \(U_k \in PO(X, x) \) and \(V_k \in C(Y, k) \) such that \(f(U_k) \cap V_k = \emptyset \). Since \(\{ K \cap V_k \mid k \in K \} \) is a closed cover of the subspace \(K \), there exists a finite subset \(K_1 \subseteq K \) such that
On Contra-Precontinuous Functions

123

\(K \subset \bigcup \{ V_k \mid k \in K \} \). Set \(U = \bigcap \{ U_k \mid k \in K \} \), then \(U \) is open since \(X \) is submaximal. Therefore \(f(U) \cap K = \emptyset \) and \(U \cap f^{-1}(K) = \emptyset \). This shows that \(f^{-1}(K) \) is closed in \(X \).

A space \(X \) is said to be weakly Hausdorff [31] if each point of \(X \) is an intersection of regular closed sets of \(X \).

Corollary 4.1. Let \(X \) be submaximal and \(Y \) be strongly \(S \)-closed weakly Hausdorff. The following properties are equivalent for a function \(f : X \to Y \):

1. \(f \) is contra-precontinuous;
2. \(G(f) \) is contra-preclosed;
3. \(f^{-1}(K) \) is closed in \(X \) for every strong \(S \)-closed set \(K \) of \(Y \);
4. \(f \) is contra-continuous.

Proof.

1. \((1) \Rightarrow (2) \): It is shown in [9, Theorem 3.7] that every \(S \)-closed weakly Hausdorff space is extremally disconnected. Since a strongly \(S \)-closed space is \(S \)-closed, \(Y \) is extremally disconnected and hence every regular closed set of \(Y \) is clopen. This shows that \(Y \) is Urysohn. By Theorem 4.1, \(G(f) \) is contra-preclosed.

2. \((2) \Rightarrow (3) \): This is a result of Theorem 4.2.

3. \((3) \Rightarrow (4) \): First, we show that an open set of \(Y \) is strongly \(S \)-closed. Let \(V \) be an open set of \(Y \) and \(\{ H_\alpha \mid \alpha \in \mathbb{V} \} \) be a cover of \(V \) by closed sets \(H_\alpha \) of the subspace \(V \). For each \(\alpha \in \mathbb{V} \), there exists a closed set \(K_\alpha \) of \(X \) such that \(H_\alpha = K_\alpha \cap V \). Then, the family \(\{ K_\alpha \mid \alpha \in \mathbb{V} \} \cup (Y - V) \) is a closed cover of \(Y \). Since \(Y \) is strongly \(S \)-closed, there exists a finite subset \(\mathbb{V}_+ \subset \mathbb{V} \) such that \(Y = \bigcup \{ K_\alpha \mid \alpha \in \mathbb{V}_+ \} \cup (Y - V) \). Therefore we obtain \(V = (\bigcup \{ K_\alpha \mid \alpha \in \mathbb{V}_+ \}) \cap V = \bigcup \{ H_\alpha \mid \alpha \in \mathbb{V}_+ \} \). This shows that \(V \) is strongly \(S \)-closed. For any open set \(V \), by (3) \(f^{-1}(V) \) is closed in \(X \) and \(f \) is contra-continuous.

5. **Strong forms of compactness**

Theorem 5.1. If \(f : X \to Y \) is contra-precontinuous and \(K \) is strongly compact relative to \(X \), then \(f(K) \) is strongly \(S \)-closed in \(Y \).

Proof. Let \(\{ H_\alpha \mid \alpha \in \mathbb{V} \} \) be any cover of \(f(K) \) by closed sets of the subspace \(f(K) \). For each \(\alpha \in \mathbb{V} \), there exists a closed set \(K_\alpha \) of \(Y \) such that \(H_\alpha = K_\alpha \cap f(K) \). For each \(x \in K \), there exists \(\alpha(x) \in \mathbb{V} \) such that
f(x) ∈ K_{α(x)} and by Theorem 3.1 there exists U_x ∈ PO(X, x) such that f(U_x) ⊂ K_{α(x)}. Since the family \{U_x \mid x ∈ K\} is a preopen cover of K, there exists a finite subset \(K_0 \) of K such that \(K ⊂ \bigcup \{U_x \mid x ∈ K_0\}. \) Therefore, we obtain \(f(K) ⊂ \bigcup \{f(U_x) \mid x ∈ K_0\} \) which is a subset of \(\bigcup \{K_{α(x)} \mid α ∈ K_0\}. \) Thus, \(f(K) = \bigcup \{H_{α(x)} \mid x ∈ K_0\} \) and hence \(f(K) \) is strongly S-closed.

Corollary 5.1. If \(f : X → Y \) is contra-precontinuous surjection and X is strongly compact, then Y is strongly S-closed.

Theorem 5.2. A function \(f : X → Y \) is RC-continuous if and only if it is contra-precontinuous and semi-continuous.

Proof. “Necessity”. Every RC-continuous function is contra-continuous and hence contra-precontinuous. Since every regular closed set is semi-open, RC-continuous functions are semi-continuous.

“Sufficiency”. For any open set V of Y, \(f^{-1}(V) \) is preclosed and semi-open in X and hence we have \(Cl(\text{Int}(f^{-1}(V))) ⊂ f^{-1}(V) ⊂ Cl(\text{Int}(f^{-1}(V))). \) Therefore, we obtain \(Cl(\text{Int}(f^{-1}(V))) = f^{-1}(V) \) and hence \(f \) is RC-continuous.

Remark 5.1. It follows from Examples 2.1 and 2.2 that contra-precontinuity and semi-continuity are independent of each other. Therefore, by Theorem 5.2 we had a decomposition of RC-continuity.

Theorem 5.3. If \(f : X → Y \) is an RC-continuous surjection and X is S-closed, then Y is compact.

Proof. Let \(\{V_α \mid α ∈ \mathcal{V}\} \) be any open cover of Y. Then \(\{f^{-1}(V_α) \mid α ∈ \mathcal{V}\} \) is a regular closed cover of X and we have \(X = \bigcup \{f^{-1}(V_α) \mid α ∈ \mathcal{V}\} \) for some finite subset \(\mathcal{V}_0 \) of \(\mathcal{V}. \) Since \(f \) is surjective, \(Y = \bigcup \{V_α \mid α ∈ \mathcal{V}_0\} \) and Y is compact.

A function \(f : X → Y \) is said to be \(α \)-continuous \([18]\) if \(f^{-1}(V) ∈ α(X) \) for every open set V of Y. In [2, Theorem 2.9], Dontchev obtained decompositions of perfect continuity. The following is also a decomposition of perfect continuity.

Theorem 5.4. A function \(f : X → Y \) is perfectly continuous if and only if it is contra-precontinuous and \(α \)-continuous.
Proof. “Necessity”. This is obvious.
“Sufficiency”. Let \(f \) be contra-precontinuous and \(\alpha \)-continuous. Let \(V \) be any open set of \(Y \). Then \(f^{-1}(V) \) is preclosed and \(\alpha \)-open in \(X \). Therefore, we have

\[
 \text{Int} (\text{Cl}(\text{Int}(f^{-1}(V)))) \subseteq \text{Cl}(\text{Int}(f^{-1}(V))) \subseteq f^{-1}(V) \\
\subseteq \text{Int}(\text{Cl}(\text{Int}(f^{-1}(V)))) \subseteq \text{Cl}(\text{Int}(f^{-1}(V))).
\]

This implies that \(f^{-1}(V) \) is clopen in \(X \). Thus, \(f \) is perfectly continuous.

Remark 5.2. Contra-precontinuity and \(\alpha \)-continuity are independent of each other as shown by Examples 2.1 and 2.2.

Corollary 5.2. (Dontchev [3]). For a function \(f : X \to Y \) the following are equivalent:
1. \(f \) is perfectly continuous;
2. \(f \) is continuous and contra-continuous;
3. \(f \) is \(\alpha \)-continuous and contra-continuous.

Theorem 5.5. If \(f : X \to Y \) is a perfectly continuous surjection and \(X \) is mildly compact, then \(Y \) is compact.

Proof. Let \(f : X \to Y \) be a perfectly continuous surjection and \(X \) be mildly compact. Let \(\{V_\alpha \mid \alpha \in \mathcal{V}\} \) be any open cover of \(Y \). Then \(\{f^{-1}(V_\alpha) \mid \alpha \in \mathcal{V}\} \) is a clopen cover of \(X \). Since \(X \) is mildly compact, there exists a finite subset \(\mathcal{V}_* \) of \(\mathcal{V} \) such that \(X = \bigcup \{f^{-1}(V_\alpha) \mid \alpha \in \mathcal{V}_*\} \). Since \(f \) is surjective, \(Y = \bigcup \{V_\alpha \mid \alpha \in \mathcal{V}_*\} \) and \(Y \) is compact.

A space \(X \) is said to be almost compact [30] or quasi \(H \)-closed [27] if every open cover has a finite subfamily the closures of whose members cover \(X \). We have the following implications:

-strongly \(S \)-closed \(\Rightarrow \) \(S \)-closed \(\Rightarrow \) almost compact \(\Rightarrow \) mildly compact.

Corollary 5.3. (Dontchev [3]). The image of an almost compact space under contra-continuous nearly continuous (precontinuous) function is compact.

Proof. It is shown in [3, Theorem 2.9] that a function is contra-continuous and nearly continuous if and only if it is perfectly continuous. Then, the proof follows from Theorem 5.5.
6. Strong forms of connectedness

Definition 6.1. A space X is said to be

1. hyperconnected \[33\] if $\text{Cl}(V) = X$ for every nonempty open set V of X,
2. θ-irreducible \[14\] if every two nonempty regular closed sets intersect,
3. preconnected \[24\] if X cannot be expressed as the union of two nonempty preopen sets.

Theorem 6.1. Let X be preconnected and Y be T_1. If $f : X \to Y$ is contra-precontinuous, then f is constant.

Proof. Since Y is T_1-space, $U = \{f^{-1}(y) \mid y \in Y\}$ is a disjoint preopen partition of X. If $\left|U\right| \geq 2$, then X is the union of two nonempty preopen sets. Since X is preconnected, $\left|U\right| = 1$. Therefore, f is constant.

A function $f : X \to Y$ is said to be preclosed \[7\] if the image $f(A)$ is preclosed in Y for every closed set A of X.

Theorem 6.2. Let $f : X \to Y$ be a contra-precontinuous and preclosed surjection. If X is submaximal, then Y is locally indiscrete.

Proof. Let V be any open set of Y. Since f is contra-continuous and X is submaximal, $f^{-1}(V)$ is closed in X and hence V is preclosed in Y. Therefore, $\text{Cl}(V) = \text{Cl}(\text{Int}(V)) \subset V$ and V is closed in Y. This shows that Y is locally indiscrete.

Theorem 6.3. If $f : X \to Y$ is a contra-precontinuous semi-continuous surjection and X is θ-irreducible, then Y is hyperconnected.

Proof. Suppose that Y is not hyperconnected. Then, there exists two disjoint nonempty open sets V, W and Y. By Theorem 5.2, f is an RC-continuous surjection and $f^{-1}(V)$, $f^{-1}(W)$ are disjoint nonempty regular closed sets of X. Therefore, X is not θ-irreducible.

Theorem 6.4. If $f : X \to Y$ is a contra-precontinuous α-continuous surjection and X is connected, then Y has an indiscrete topology.

Proof. Suppose that there exists a proper open set V of Y. By Theorem 5.4, f is a perfectly continuous surjection and $f^{-1}(V)$ is a proper clopen set of X. This shows that X is not connected. Therefore, Y has an indiscrete topology.

Acknowledgement. The authors are very grateful to the referee for his careful work.
On Contra-Precontinuous Functions

References

Keywords and phrases: contra-precontinuous, preopen set, mildly compact.

1991 AMS Subject Classification: 54C08