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Abstract.   The notion of contra-continuity was introduced and investigated by Dontchev [3].               
In this paper, we introduce and investigate a new generalization of contra-continuity called                
contra-precontinuity. 

 
 
1.  Introduction 
 
Dontchev [3] introduced the notions of contra-continuity and strong S-closedness in 
topological spaces.  He defined a function YXf →:  to be contra-continuous if the 
preimage of every open set of Y is closed in X.  In [3], he obtained very interesting and 
important results concerning contra-continuity, compactness, S-closedness and strong         
S-closedness.  Recently a new weaker form of this class of functions called                  
contra-semicontinuous functions is introduced and investigated by Dontchev and           
Noiri [5].  They also introduced the notion of  RC-continuity [5] between topological 
spaces which is weaker than contra-continuity and stronger than B-continuity [35].                     
Quite recently, the present authors [12] introduced and investigated a new class of 
functions called contra-super-continuous functions which lies between classes of               
RC-continuous functions and contra-continuous functions. 
 The aim of this paper is to introduce and investigate a new class of functions called 
contra-precontinuous functions which is weaker than contra-continuous functions.                  
In Section 3, we obtain several basic properties of contra-precontinuous functions.                
In Section 4, we introduce contra-preclosed graphs and investigate relations between 
contra-precontinuity and contra-preclosed graphs. In Section 5, we obtain some 
properties of strongly S-closed spaces and compact spaces. Decompositions of                   
RC-continuity and perfect continuity are also obtained.   In the last section, we deal with 
strong forms of connectedness. 
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2.  Preliminaries 
 
In what follows, spaces X and Y are always topological spaces.  )(1 AC  and )(Int A  
designate the closure and interior of A which is a subset of X.   A subset A is said to be 
regular open (resp. regular closed ) if  .)))(Int(1resp.())(1(Int ACAACA ==   
 
Definition 2.1.  A subset A of a space X is called 
 (i)  preopen [16] if  ,))(1(Int ACA ⊂  
 (ii)  semi-open [15] if ,))(Int(1 ACA ⊂  
 (iii)  α-open [22]  if  ,)))(Int(1(Int ACA ⊂  
 (iv)  β-open [1]  if .)))(1(Int(1 ACCA ⊂  

 
    The complement of a preopen (resp. semi-open, α-open, β-open) set is                        
said to be preclosed (resp. semi-closed, α-closed, β-closed). The collection                           
of all closed (resp. preopen, semi-open, α-open and β-open) subsets of                                     
X will be donted by )(XC .))( and)(,)(,)(  resp.( XXXSOXPO βα  We set 

})({),( VxXCVxXC ∈∈=  for .Xx ∈   We define similarly ,),( xXPO  
,),( xXSO  .),(  and  ),( xXxX βα  

 
Definition 2.2.  A function YXf →:  is called perfectly continuous [23]                   

(resp. RC-continuous [5])  if  for each open set V of  Y, )(1 Vf −  is clopen (resp.   
regular-closed)  in X. 
 
Definition 2.3. A function YXf →:  is called precontinuous [16] (resp.                   
semi-continuous [15], β-continuous [1])  if for each Xx ∈  and each                                
open set V of Y containing ,)(xf  there exists ),( xXPOU ∈  

)),(,),(.resp( xXUxXSOU β∈∈   such that .)( VUf ⊂  
 
Definition 2.4. A  function YXf →:  is called almost precontinuous [20]  if  for each  

Xx ∈  and each open neighborhood V of ,)(xf  there exists ),( xXPOU ∈  such that 
.))(1(Int)( VCUf ⊂  

 
Definition 2.5. A function YXf →:  is called contra-precontinuous (resp.            
contra-continuous [3], contra-semicontinuous [5], contra-α-continuous [11],                         
contra-β-continuous [3])  if )(1 Vf −  is preclosed (resp. closed, semi-closed, α-closed,          
β-closed)  in X  for each open set V of Y. 
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 For the functions defined above, we have the following diagram: 
 
 

perfectly continuous RC-continuous contra-continuous 
 
 

contra-α-continuous              contra-precontinuous 
 
 

contra-semicontinuous           contra-β-continuous 
 
 
Remark 2.1.  It should be noticed that contra-precontinuity and precontinuity are 
independent notions as shown by the following examples due to Dontchev [2]. 
 
Example 2.1. A continuous function need not be contra-precontinuous.  The identity 
function on the real line with the usual topology is an example of a continuous function 
which is not contra-precontinuous. 
 
Example 2.2. A contra-precontinuous function need not be precontinuous.  Let 

},{ baX =  be the Sierpinski space by setting  }},{,{ XaΟ/=τ  and .}},{,{ XbΟ/=σ   
The identity function ),(),(: στ XXf →  is contra-precontinuous.  But it is neither 
precontinuous nor semi-continuous. 
 
 
3. Some properties 
 
Definition 3.1. Let  A  be a subset of a space .),( τX  

 (1) The set }{ UAU ⊂∈τI   is called the kernel of A [19] and is denoted by 
,)(ker A  

 (2) The set }:,{ preclosedFFAXF ⊂∈I  is called the preclosure of A [7] and 
is denoted by .)(1 ApC  

 
Lemma 3.1. The following properties hold for subsets A, B of a space X: 

(1) )ker(Ax∈   if and only if  Ο/≠∩ FA   for any .),( xXCF ∈  

(2) )ker(AA ⊂  and )(ker AA =  if  A  is open in X. 

(3)    If ,BA ⊂   then .)ker()(ker BA ⊂  
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Theorem 3.1. The following are equivalent for a function YXf →: : 

(1) f  is contra-precontinuous; 
(2) for every closed subset F of Y,  ;)()(1 XPOFf ∈−  
(3) for each Xx ∈  and each ,))(,( xfYCF ∈  there exists ),( xXPOU ∈  

such that ;)( FUf ⊂  
(4) ))(ker())(1( AfApCf ⊂   for every subset  A  of X; 

(5) ))(ker())((1 11 BfBfpC −− ⊂   for every subset of B of Y. 
 
Proof. The implications )2()1( ⇔  and )3()2( ⇒  are obvious. 

:)2()3( ⇒  Let  F  be any closed set of Y  and .)(1 Ffx −∈   Then Fxf ∈)(  and  
there exists ),( xXPOU x ∈  such that .)( FUf x ⊂  Therefore, we obtain 

.)()}({)( 11 XPOFfxUFf x ∈∈= −− U    

:)4()2( ⇒  Let A be any subset of X.   Suppose that  .))((ker Afy ∉   Then by  
Lemma 3.1 there exists ),( YXCF ∈  such that .)( Ο/=∩ FAf   Thus,                             

we  have Ο/=∩ − )(1 FfA  and .)()(1 1 Ο/=∩ − FfApC   Therefore, we                  
obtain Ο/=∩ FApCf ))(1(  and .))(1( ApCfy ∉   This implies that 

.))((ker))(1( AfACf ⊂  
:)5()4( ⇒  Let B  be any subset of Y.  By (4) and Lemma 3.1, we have 

)(ker))(((ker)))((1( 11 BBffBfpCf ⊂⊂ −−  and .))((ker))((1 11 BfBfpC −− ⊂  
:)1()5( ⇒  Let V be any open set of Y.  Then, by Lemma 3.1 we have 

)())((ker))((1 111 VfVfVfpC −−− =⊂  and .)())((1 11 VfVfpC −− =   This shows 

that )(1 Vf −  is preclosed in X . 
 
Theorem 3.2. The following are equivalent for a  function YXf →: : 
 (i) f  is contra-α-continuous; 
 (ii) f  is contra-precontinuous and contra-semicontinuous. 
 
Proof. This follows from the fact that )(XA α∈  if and only if  

)()( XSOXPOA ∩∈  [28, Lemma 1]. 
 
Theorem 3.3. If a function  YXf →:  is contra-precontinuous and Y is regular, then  
f  is precontinuous. 
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Proof. Let  x be an arbitrary point of X and V be an open set of Y containing .)(xf   
Since Y is regular, there exists an open set W in Y  containing )(xf  such that 

.)(1 VWC ⊂   Since f is contra-precontinuous, so by Theorem 3.1 there exists  
),( xXPOU ∈  such that .)(1)( WCUf ⊂   Then .)(1)( VWCUf ⊂⊂   Hence, f is 

precontinuous. 
 
Remark 3.1. By Example 2.1, a precontinuous functions YXf →:  is not always  
contra-precontinuous even if  Y  is regular. 
  
 Recall that  a function YXf →:  is called M-preopen [17] if the image of each 
preopen set is preopen. 
 
Theorem 3.4. If YXf →:   is an M-preopen contra-precontinuous function, then  f  is 
almost precontinuous. 
 
Proof. Let x be any arbitrary point of X and V be an open neighborhood .)(xf   Since        
f  is contra-precontinuous, then by Theorem 3.1 (3), there exists ),( xXPOU ∈  such 
that  .)(1)( VCUf ⊂   Since f is M-preopen, )(Uf  is preopen in Y.  Therefore 

.))(1(Int)))((1(Int)( VCUfCUf ⊂⊂   This shows that f is almost precontinuous. 
 
Definition 3.2. A function YXf →:  is said to be almost weakly continuous [13]            

if )))(1((1(Int)( 11 VCfCVf −− ⊂   for every open set V  of Y. 
 
 It is shown in [25, Theorem 3.1]  that a function YXf →:  is almost weakly 
continuous if and only if for each Xx ∈   and each open neighborhood  V of  ,)(xf  
there exists ),( xXPOU ∈  such that .)(1)( VCUf ⊂  
 
Remark 3.2. The following implications are obvious: 
 
 precontinuity ⇒ almost precontinuity ⇒ almost weak continuity, 
 
where the converses are false as shown in Examples 2.1 and 2.2 [10]. 
 
 As shown in Example 2.2, a contra-precontinuous function need not  be 
precontinuous.  However, every contra-precontinuous function is necessarily almost 
weakly continuous. 
 
Theorem 3.5. If  a function YXf →:  is contra-precontinuous, then f is almost 
weakly continuous. 
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Proof. Let V be any open set of Y.   Since )(1 VC  is closed in ))(1(, 1 VCfY −  is 

preopen in X  and we have ))))(1((1(Int))(1()( 111 VCfCVCfVf −−− ⊂⊂ .  This 
shows that  f  is almost weakly continuous. 
 
 The prefrontier [26]  )(pFr A  of A, where ,XA ⊂  is defined by 

.)(1)(1)(pFr AXpCApCA −∩=  
 
Theorem 3.6. The set of all points of x of X at which YXf →:  is not                  
contra-precontinuous is identical with the union of the prefrontier of the inverse images 
of closed sets of  Y containing .)(xf  
 
Proof. “Necessity”.   Suppose that  f  is not contra-precontinuous at .Xx ∈   There 
exists ))(,( xfYCF ∈  such that Ο/≠−∩ )()( FYUf  for every .),( xXPOU ∈                    

This implies that .)(1 Ο/≠−∩ − FYfU   Therefore, we have ))((1 1 FYfpCx −∈ −  

.))((1 1 FfXpC −−=   However, since .))((1,)( 11 FfpCxFfx −− ∈∈    Therefore, 

we obtain .))((pFr 1 Ffx −∈  

“Sufficiency”.  Suppose that ))((pFr 1 Ffx −∈  for some .))(,( xfYCF ∈   Now,               
we assume that  f  is contra-precontinuous  at  x.   Then there exists  ),( xXPOU ∈   

such that .)( FUf ⊂   Therefore, we have  )(1 FfUx −⊂∈  and hence 

.))((pFr))((Int 11 FfXFfpx −− −⊂∈   This is a contradiction.  This means that  f  
is not contra-precontinuous. 
 
 Recall that a family E of subsets of a space ),( τX  is called a network for a 
topology  τ  on ),( τX  if every set in τ  is the union of some subfamily of E. 
 
Definition 3.3. A space ),( τX  is said to be 

 (1) extremally disconnected [33] if the closure of every open set of X is open in X,
 (2) locally indiscrete [21] if every open set of X is closed in X. 
 (3) submaximal [29]  if every dense set of X is open in X, equivalently if every 

preopen set is open, 
 (4) strongly irresolvable [8]  if no nonempty open set is resolvable, equivalently if 

every preopen subset is α-open, 
 (5) mildly Hausdorff [6]  if the δ-closed sets form a network for its topology τ , 

where a δ-closed set is the intersection of regular closed sets, 
 (6) strongly S-closed  [3] if every closed cover of X has a finite subcover, 
 (7) door space [4]  if every subset of X  is either open or closed. 
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Remark 3.3. It should be noted that every door space X is submaximal                             
[4, Theorem 2.7] and every mildly  Hausdorff strongly S-closed space is locally 
indiscrete [6]. 
 
 The following results follow immediately from Definition 3.3 and Remark 3.3: 
 
Theorem 3.7. If a function YXf →:  is continuous and  X  is locally indiscrete, 
then  f  is contra-continuous. 
 
Corollary 3.1. If  a  function YXf →:   is continuous and X  is mildly Hausdorff 
strongly S-closed, then  f  is contra-continuous. 
 
Theorem 3.8. Let  YXf →: be a contra-precontinuous function. 
 (1) If  X  is submaximal, then  f  is contra-continuous, 
 (2) If  X is strongly irresolvable, then  f  is contra-α-continuous. 
 
Corollary 3.2. If a function YXf →:   is contra-precontinuous  and X  is a door 
space, then  f  is contra-continuous. 
 
Lemma 3.2. For a subset A of a space X, the following are equivalent: 
 (1) A is regular closed; 
 (2) A is preclosed and semi-open; 
 (3) A is α-closed and β-open. 
 
Proof. :)2()1( ⇒   Let  A  be regular closed.  Then ))(Int(1 ACA =  and A is preclosed 
and semi-open. 

:)3()2( ⇒   Let A be preclosed and semi-open.  Then AAC ⊂))(Int(1  and 
.))(Int(1 ACA ⊂   Therefore, we have )(1))(Int(1 ACAC =  and hence 

.))(Int(1))))(Int(1(Int(1)))(1(Int(1 AACACCACC ⊂==   This shows that A is                
α-closed.   Since ,)()( XOXSO β⊂  it is obvious that A  is β-open. 

:)1()3( ⇒   Let A be α-closed and β-open.  Then )))(1(Int(1 ACCA =  and hence 
.)))(1(Int(1)))])(1(Int(1[Int(1))(Int(1 AACCACCCAC ===   Therefore, A is regular 

closed. 
 
 As a consequence of the above lemma, we have the following result: 
 
Theorem 3.9. The following statements are equivalent for a function :: YXf →  
 (1) f  is RC-continuous; 
 (2) f  is contra-precontinuous and semi-continuous; 
 (3) f  is contra-α-continuous and β-continuous. 
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4. Contra-preclosed graphs 
 
We begin with the following notion: 
 
Definition 4.1. The graph )( fG  of a function YXf →:  is said to be                    
contra-preclosed  if  for each ,)()(),( fGYXyx −×∈  there exist ),( xXPOU ∈  
and  ),( yYCV ∈  such that .)()( Ο/=∩× fGVU  
 
Lemma 4.1. The graph )( fG  of  YXf →:  is  contra-preclosed  in YX ×  if 
and only if for each ,)()(),( fGYXyx −×∈  there exist ),( xXPOU ∈  and 

),( yYCV ∈  such that .)( Ο/=∩ VUf  
 
Theorem 4.1. If YXf →:   is contra-precontinuous and Y  is Urysohn, then )( fG  
is contra-preclosed in .YX ×  
 
Proof. Let .)()(),( fGYXyx −×∈   Then )(xfy ≠  and there exist open sets        
V, W such that  WyVxf ∈∈ ,)(  and .)(1)(1 Ο/=∩ WCVC    Since f is                  
contra-precontinuous, there exists ),( xXPOU ∈  such that .)(1)( VCUf ⊂    
Therefore, we obtain .)(1)( Ο/=∩ WCUf   This shows that )( fG  is contra-preclosed. 
 
Definition 4.2. A space X  is said to be 
 (1) strongly compact [17] if every preopen cover of X has a finite subcover, 
 (2) S-closed [34] if every semi-open cover  }{ ∇∈ααV  of X, there exists a finite 

subset o∇  of ∇  such that ,})(1{ oU ∇∈= ααVCX  equivalently if every 
regular closed cover of X has a finite subcover, 

 (3) mildly compact [32] if every clopen cover of X has a finite subcover. 
 
Definition 4.3. A subset S of a space X  is said to be 
 (1) strongly compact relative to X [17]  if  every cover of S by preopen sets of X has 

a finite subcover, 
 (2) strongly S-closed [3] if the subspace S is strongly S-closed. 
 
Theorem 4.2. Let X  be submaximal.  If  YXf →:  has a contra-preclosed graph, 
then the inverse image of a strongly S-closed set K of Y is closed in X. 
 
Proof. Assume that K is a strongly S-closed set of Y and .)(1 Kfx −∉   For each 

.)(),(, fGkxKk ∉∈   By Lemma 4.1, there exists ),( xXPOU k ∈  and 
),( kYCVk ∈   such that .)( Ο/=∩ kk VUf   Since }{ KkVK k ∈∩   is a closed 

cover of the subspace K, there exists a finite subset KK ⊂1  such that  
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.}{ 1KkVK k ∈⊂ U   Set ,}{ 1KkUU k ∈= I  then U is open since X is 

submaximal.  Therefore Ο/=∩ KUf )(   and .)(1 Ο/=∩ − KfU   This shows that 

)(1 Kf −  is closed in  X. 
 
 A space X  is said to be weakly Hausdorff [31] if each point of X is an intersection of 
regular closed sets of  X. 
 
Corollary 4.1. Let X be submaximal and Y be strongly S-closed weakly Hausdorff.  
The following properties are equivalent for a function :: YXf →  

 (1) f  is contra-precontinuous; 
 (2) )( fG  is contra-preclosed; 

 (3) )(1 Kf −  is closed in X  for every strong S-closed set K of Y; 
 (4) f  is contra-continuous. 
 
Proof. :)2()1( ⇒   It is shown in [9, Theorem 3.7] that every S-closed weakly 
Hausdorff space is extremally disconnected.  Since a strongly S-closed space is                  
S-closed, Y  is extremally disconnected and hence every regular closed set of  Y  is 
clopen.  This shows that Y  is Urysohn.   By Theorem 4.1, )( fG  is contra-preclosed. 

:)3()2( ⇒   This is a result of Theorem 4.2. 
:)4()3( ⇒   First, we show that an open set of Y is strongly S-closed.  Let V be an open 

set of Y and }{ ∇∈ααH  be a cover of V by closed sets αH  of the subspace V.              
For each ,∇∈α  there exists a closed set αK of  X  such that .VKH ∩= αα   Then, 
the family )(}{ VYK −∪∇∈αα  is a closed cover of Y.  Since Y is strongly S-closed, 

there exists a finite subset ∇⊂∇ o  such that .)(}{ VYKY −∪∇∈= oU αα  

Therefore we obtain .}{)}{( oo UU ∇∈=∩∇∈= αα αα HVKV    This shows 

that V is strongly S-closed.  For any open set V, by (3) )(1 Vf −   is closed in X and  f         
is contra-continuous. 
 
 
5. Strong forms of compactness 
 
Theorem 5.1.  If YXf →:  is contra-precontinuous and K is strongly compact relative 
to X,  then )(Kf  is strongly S-closed in Y. 
 
Proof. Let  }{ ∇∈ααH  be any cover of )(Kf  by closed sets of the subspace 

.)(Kf   For each ,∇∈α   there exists a closed set αK  of Y such that 
.)(KfKH ∩= αα   For each ,Kx ∈  there exists  ∇∈)(xα   such that  
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)()( xKxf α∈  and by Theorem 3.1 there exists ),( xXPOU x ∈  such that 

.)( )(xx KUf α⊂    Since the family  }{ KxU x ∈   is a preopen cover of K, there exists 

a finite subset  0K  of K  such that }.{ oU KxUK x ∈⊂   Therefore, we obtain  

})({)( oU KxUfKf x ∈⊂  which is a subset of  .}{ )( oU KK x ∈αα  Thus, 

}{)( )( oU KxHKf x ∈= α   and hence )(Kf   is strongly S-closed. 
 
Corollary 5.1. If YXf →:  is contra-precontinuous surjection and X is strongly 
compact, then Y  is strongly S-closed. 
 
Theorem 5.2. A  function  YXf →:  is RC-continuous if and only if it is             
contra-precontinuous and semi-continuous. 
 
Proof.  “Necessity”.  Every RC-continuous function is contra-continuous and hence 
contra-precontinuous.  Since every regular closed set is semi-open, RC-continuous 
functions are semi-continuous. 
 “Sufficiency”.   For any open set V of Y,  )(1 Vf −  is preclosed and semi-open in X  and 

hence we have .)))(Int((1)()))((Int(1 111 VfCVfVfC −−− ⊂⊂   Therefore, we obtain  

)()))((Int(1 11 VfVfC −− =   and hence  f  is RC-continuous. 
 
Remark 5.1. It follows from Examples 2.1 and 2.2 that contra-precontinuity and 
semi-continuity are independent of each other.  Therefore, by Theorem 5.2 we had a 
decomposition of RC-continuity. 
 
Theorem 5.3. If  YXf →:  is an RC-continuous surjection and X is S-closed, then 
Y  is compact. 
 
Proof. Let }{ ∇∈ααV   be any open cover of Y.  Then })({ 1

o∇∈− ααVf  is a regular 

closed cover of X and we have  })({ 1
oU ∇∈= − ααVfX  for some finite subset o∇  

of  .∇   Since  f  is surjective, }{ oU ∇∈= ααVY   and Y  is compact. 
 
 A function  YXf →: is said to be α-continuous [18]  if )()(1 XVf α∈−  for 
every open set V  of Y.  In [2, Theorem 2.9], Dontchev obtained decompositions of 
perfect continuity.  The following is also a decomposition of perfect continuity. 
 
Theorem 5.4. A function YXf →:  is perfectly continuous if and only if it is 
contra-precontinuous and α-continuous. 
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Proof. “Necessity”.  This is obvious. 
“Sufficiency”.  Let  f  be contra-precontinuous and α-continuous.  Let V  be any open set 
of  Y.  Then )(1 Vf −   is preclosed and α-open in X.  Therefore, we have  
 

)()))((Int(1))))((Int(1(Int 111 VfVfCVfC −−− ⊂⊂  

              .)))((Int(1))))((Int(1(Int 11 VfCVfC −− ⊂⊂  
 
 This implies that  )(1 Vf −  is clopen in X.  Thus,  f  is perfectly continuous. 
 
Remark 5.2. Contra-precontinuity and α-continuity are independent of each other as 
shown by Examples 2.1 and 2.2. 
 
Corollary 5.2. (Dontchev [3]).  For a functon YXf →:  the following are equivalent: 
 (1) f  is perfectly continuous; 
 (2) f  is conitnuous and contra-continuous; 
 (3) f  is α-continuous and contra-continuous. 
 
Theorem 5.5. If YXf →:  is a perfectly continuous surjection and X is mildly 
compact, then Y  is compact. 
 
Proof. Let  YXf →:  be a perfectly continuous surjection and X be mildly compact.  

Let }{ ∇∈ααV  be any open cover of Y.  Then })({ 1 ∇∈− ααVf   is a clopen cover of 
X.  Since X is mildly compact, there exists a finite subset o∇  of ∇   such that 

.})({ 1
oU ∇∈= − ααVfX   Since  f  is surjective, }{ oU ∇∈= ααVY  and Y is 

compact. 
 
 A space X  is said to be almost compact [30] or quasi H-closed [27] if every open 
cover  has a  finite subfamily the closures of whose members cover X.  We have the 
following implications: 
 
 strongly S-closed ⇒ S-closed ⇒ almost compact ⇒ mildly compact. 
 
 
Corollary 5.3. (Dontchev [3]).  The image of an almost compact space under            
contra-continuous nearly continuous (precontinuous) function is compact. 
 
Proof. It is shown in [3, Theorem 2.9] that a function is contra-continuous and              
nearly continuous if and only if it is perfectly continuous.  Then, the proof follows            
from Theorem 5.5.  
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6. Strong forms of connectedness 
 
Definition 6.1. A space X  is said to be  
(1) hyperconnected [33]  if XVC =)(1  for every nonempty open set V of  X, 
(2) θ-irreducible [14]  if every two nonempty regular closed sets intersect, 
(3) preconnected [24]  if X cannot be expressed as the union of two nonempty  

preopen sets. 
 
Theorem 6.1. Let X be preconnected and Y be .1T   If YXf →:  is contra-
precontinuous, then  f  is constant. 
 
Proof. Since Y  is  1T -space, })({ 1 Yyyf ∈= −U  is a disjoint preopen partition of X.  

If  ,2≥U   then X is the union of two nonempty preopen sets.  Since X is 

preconnected,  .1=U   Therefore,  f  is constant. 
 
 A function YXf →:  is said to be preclosed [7] if the image )(Af  is preclosed in 
Y   for every closed set A of X. 
 
Theorem 6.2. Let YXf →:  be a contra-precontinuous and preclosed surjection.           
If  X  is submaximal, then Y is locally indiscrete. 
 
Proof. Let V be any open set of Y.   Since  f  is contra-continuous and X  is submaximal, 

)(1 Vf −  is closed in X and hence V is preclosed in Y. Therefore,  
VVCVC ⊂= ))(Int(1)(1  and V  is closed in Y.   This shows that Y  is locally indiscrete. 

 
Theorem 6.3. If YXf →:  is a contra-precontinuous semi-continuous surjection and 
X is θ-irreducible, then Y  is hyperconnected. 
 
Proof. Suppose that Y  is not hyperconnected.  Then, there exists two disjoint nonempty 
open sets V, W and Y.  By Theorem 5.2, f is an RC-continuous surjection and 

)(,)( 11 WfVf −−  are disjoint nonempty regular closed sets of X.  Therefore, X is not        
θ-irreducible. 
 
Theorem 6.4. If  YXf →:   is a contra-precontinuous α-continuous surjection and 
X  is connected, then Y  has an indiscrete topology. 
 
Proof. Suppose that there exists a proper open set V of Y.  By Theorem 5.4,  f  is a 
perfectly continuous surjection and )(1 Vf −  is a proper clopen set of  X.   This shows 
that  X is not connected.  Therefore, Y has an indiscrete topology. 
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