On Contra-Precontinuous Functions

¹SAEID JAFARI AND ²TAKASHI NOIRI

¹Department of Mathematics and Physics, Roskilde University, Postbox 260, 4000 Roskilde, Denmark ²Department of Mathematics, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866-8501 Japan ¹e-mail: sjafari@ruc.dk and ²e-mail: noiri@as.yatsushiro-nct.ac.jp

Abstract. The notion of contra-continuity was introduced and investigated by Dontchev [3]. In this paper, we introduce and investigate a new generalization of contra-continuity called contra-precontinuity.

1. Introduction

Dontchev [3] introduced the notions of contra-continuity and strong S-closedness in topological spaces. He defined a function $f: X \to Y$ to be contra-continuous if the preimage of every open set of Y is closed in X. In [3], he obtained very interesting and important results concerning contra-continuity, compactness, S-closedness and strong S-closedness. Recently a new weaker form of this class of functions called contra-semicontinuous functions is introduced and investigated by Dontchev and Noiri [5]. They also introduced the notion of RC-continuity [5] between topological spaces which is weaker than contra-continuity and stronger than B-continuity [35]. Quite recently, the present authors [12] introduced and investigated a new class of functions called contra-super-continuous functions which lies between classes of RC-continuous functions and contra-continuous functions.

The aim of this paper is to introduce and investigate a new class of functions called contra-precontinuous functions which is weaker than contra-continuous functions. In Section 3, we obtain several basic properties of contra-precontinuous functions. In Section 4, we introduce contra-preclosed graphs and investigate relations between contra-precontinuity and contra-preclosed graphs. In Section 5, we obtain some properties of strongly *S*-closed spaces and compact spaces. Decompositions of *RC*-continuity and perfect continuity are also obtained. In the last section, we deal with strong forms of connectedness.

2. Preliminaries

In what follows, spaces X and Y are always topological spaces. C1(A) and Int(A) designate the closure and interior of A which is a subset of X. A subset A is said to be *regular open* (resp. *regular closed*) if A = Int(C1(A)) (resp. A = C1(Int(A))).

Definition 2.1. A subset A of a space X is called

- (*i*) preopen [16] if $A \subset \text{Int}(C1(A))$,
- (*ii*) semi-open [15] *if* $A \subset Cl(Int(A))$,
- (*iii*) α -open [22] *if* $A \subset Int(C1(Int(A))),$
- (*iv*) β -open [1] *if* $A \subset Cl(Int(Cl(A)))$.

The complement of a preopen (resp. semi-open, α -open, β -open) set is said to be *preclosed* (resp. *semi-closed*, α -*closed*, β -*closed*). The collection of all closed (resp. preopen, semi-open, α -open and β -open) subsets of X will be donted by C(X) (resp. PO(X), SO(X), $\alpha(X)$ and $\beta(X)$). We set $C(X, x) = \{V \in C(X) \mid x \in V\}$ for $x \in X$. We define similarly PO(X, x), SO(X, x), $\alpha(X, x)$ and $\beta(X, x)$.

Definition 2.2. A function $f: X \to Y$ is called perfectly continuous [23] (resp. RC-continuous [5]) if for each open set V of Y, $f^{-1}(V)$ is clopen (resp. regular-closed) in X.

Definition 2.3. A function $f: X \to Y$ is called precontinuous [16] (resp. semi-continuous [15], β -continuous [1]) if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in PO(X, x)$ (resp. $U \in SO(X, x), U \in \beta(X, x)$) such that $f(U) \subset V$.

Definition 2.4. A function $f: X \to Y$ is called almost precontinuous [20] if for each $x \in X$ and each open neighborhood V of f(x), there exists $U \in PO(X, x)$ such that $f(U) \subset Int(C1(V))$.

Definition 2.5. A function $f: X \to Y$ is called contra-precontinuous (resp. contra-continuous [3], contra-semicontinuous [5], contra- α -continuous [11], contra- β -continuous [3]) if $f^{-1}(V)$ is preclosed (resp. closed, semi-closed, α -closed, β -closed) in X for each open set V of Y.

116

For the functions defined above, we have the following diagram:

perfectly continuous \implies *RC*-continuous \implies contra-continuous \downarrow contra- α -continuous \implies contra-precontinuous \downarrow contra-semicontinuous \implies contra- β -continuous

Remark 2.1. It should be noticed that contra-precontinuity and precontinuity are independent notions as shown by the following examples due to Dontchev [2].

Example 2.1. A continuous function need not be contra-precontinuous. The identity function on the real line with the usual topology is an example of a continuous function which is not contra-precontinuous.

Example 2.2. A contra-precontinuous function need not be precontinuous. Let $X = \{a, b\}$ be the Sierpinski space by setting $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, X\}$. The identity function $f : (X, \tau) \to (X, \sigma)$ is contra-precontinuous. But it is neither precontinuous nor semi-continuous.

3. Some properties

Definition 3.1. Let A be a subset of a space (X, τ) .

- (1) The set $\bigcap \{U \in \tau \mid A \subset U\}$ is called the kernel of A [19] and is denoted by ker (A),
- (2) The set $\bigcap \{F \in X \mid A \subset F, F : preclosed\}$ is called the preclosure of A [7] and is denoted by pC1(A).

Lemma 3.1. The following properties hold for subsets A, B of a space X:

- (1) $x \in \ker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$.
- (2) $A \subset \ker(A)$ and $A = \ker(A)$ if A is open in X.
- (3) If $A \subset B$, then ker $(A) \subset ker(B)$.

Theorem 3.1. The following are equivalent for a function $f : X \rightarrow Y$:

- (1) f is contra-precontinuous;
- (2) for every closed subset F of Y, $f^{-1}(F) \in PO(X)$;
- (3) for each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in PO(X, x)$ such that $f(U) \subset F$;
- (4) $f(pC1(A)) \subset \ker(f(A))$ for every subset A of X;
- (5) $pCl(f^{-1}(B)) \subset f^{-1}(\ker(B))$ for every subset of B of Y.

Proof. The implications $(1) \Leftrightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (2): Let *F* be any closed set of *Y* and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in PO(X, x)$ such that $f(U_x) \subset F$. Therefore, we obtain $f^{-1}(F) = \bigcup \{U_x \mid x \in f^{-1}(F)\} \in PO(X)$.

 $(2) \Rightarrow (4)$: Let *A* be any subset of *X*. Suppose that $y \notin \ker(f(A))$. Then by Lemma 3.1 there exists $F \in C(X,Y)$ such that $f(A) \cap F = \emptyset$. Thus, we have $A \cap f^{-1}(F) = \emptyset$ and $pCl(A) \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(pCl(A)) \cap F = \emptyset$ and $y \notin f(pCl(A))$. This implies that $f(Cl(A)) \subset \ker(f(A))$.

(4) \Rightarrow (5): Let *B* be any subset of *Y*. By (4) and Lemma 3.1, we have $f(pC1(f^{-1}(B))) \subset \ker(f(f^{-1}(B))) \subset \ker(B)$ and $pC1(f^{-1}(B)) \subset f^{-1}(\ker(B))$.

 $(5) \Rightarrow (1)$: Let V be any open set of Y. Then, by Lemma 3.1 we have $pCl(f^{-1}(V)) \subset f^{-1}(\ker(V)) = f^{-1}(V)$ and $pCl(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is preclosed in X.

Theorem 3.2. The following are equivalent for a function $f : X \to Y$:

- (i) f is contra- α -continuous;
- *(ii) f* is contra-precontinuous and contra-semicontinuous.

Proof. This follows from the fact that $A \in \alpha(X)$ if and only if $A \in PO(X) \cap SO(X)$ [28, Lemma 1].

Theorem 3.3. If a function $f: X \to Y$ is contra-precontinuous and Y is regular, then f is precontinuous.

Proof. Let x be an arbitrary point of X and V be an open set of Y containing f(x). Since Y is regular, there exists an open set W in Y containing f(x) such that $C1(W) \subset V$. Since f is contra-precontinuous, so by Theorem 3.1 there exists $U \in PO(X, x)$ such that $f(U) \subset C1(W)$. Then $f(U) \subset C1(W) \subset V$. Hence, f is precontinuous.

Remark 3.1. By Example 2.1, a precontinuous functions $f: X \to Y$ is not always contra-precontinuous even if Y is regular.

Recall that a function $f: X \to Y$ is called *M*-preopen [17] if the image of each preopen set is preopen.

Theorem 3.4. If $f: X \to Y$ is an M-preopen contra-precontinuous function, then f is almost precontinuous.

Proof. Let x be any arbitrary point of X and V be an open neighborhood f(x). Since f is contra-precontinuous, then by Theorem 3.1 (3), there exists $U \in PO(X, x)$ such that $f(U) \subset Cl(V)$. Since f is M-preopen, f(U) is preopen in Y. Therefore $f(U) \subset Int(Cl(f(U))) \subset Int(Cl(V))$. This shows that f is almost precontinuous.

Definition 3.2. A function $f: X \to Y$ is said to be almost weakly continuous [13] if $f^{-1}(V) \subset \text{Int}(C1(f^{-1}(C1(V))))$ for every open set V of Y.

It is shown in [25, Theorem 3.1] that a function $f: X \to Y$ is almost weakly continuous if and only if for each $x \in X$ and each open neighborhood V of f(x), there exists $U \in PO(X, x)$ such that $f(U) \subset C1(V)$.

Remark 3.2. The following implications are obvious:

precontinuity \Rightarrow almost precontinuity \Rightarrow almost weak continuity,

where the converses are false as shown in Examples 2.1 and 2.2 [10].

As shown in Example 2.2, a contra-precontinuous function need not be precontinuous. However, every contra-precontinuous function is necessarily almost weakly continuous.

Theorem 3.5. If a function $f: X \rightarrow Y$ is contra-precontinuous, then f is almost weakly continuous.

Proof. Let V be any open set of Y. Since C1(V) is closed in Y, $f^{-1}(C1(V))$ is preopen in X and we have $f^{-1}(V) \subset f^{-1}(C1(V)) \subset Int(C1(f^{-1}(C1(V))))$. This shows that f is almost weakly continuous.

The *prefrontier* [26] pFr(A) of A, where $A \subset X$, is defined by pFr(A) = $pC1(A) \cap pC1(X - A)$.

Theorem 3.6. The set of all points of x of X at which $f: X \to Y$ is not contra-precontinuous is identical with the union of the prefrontier of the inverse images of closed sets of Y containing f(x).

Proof. "Necessity". Suppose that f is not contra-precontinuous at $x \in X$. There exists $F \in C(Y, f(x))$ such that $f(U) \cap (Y - F) \neq \emptyset$ for every $U \in PO(X, x)$. This implies that $U \cap f^{-1}(Y - F) \neq \emptyset$. Therefore, we have $x \in pCl(f^{-1}(Y - F)) = pCl(X - f^{-1}(F))$. However, since $x \in f^{-1}(F), x \in pCl(f^{-1}(F))$. Therefore, we obtain $x \in pFr(f^{-1}(F))$.

"Sufficiency". Suppose that $x \in pFr(f^{-1}(F))$ for some $F \in C(Y, f(x))$. Now, we assume that f is contra-precontinuous at x. Then there exists $U \in PO(X, x)$ such that $f(U) \subset F$. Therefore, we have $x \in U \subset f^{-1}(F)$ and hence $x \in pInt(f^{-1}(F)) \subset X - pFr(f^{-1}(F))$. This is a contradiction. This means that fis not contra-precontinuous.

Recall that a family E of subsets of a space (X, τ) is called a *network* for a topology τ on (X, τ) if every set in τ is the union of some subfamily of E.

Definition 3.3. A space (X, τ) is said to be

- (1) extremally disconnected [33] if the closure of every open set of X is open in X,
- (2) locally indiscrete [21] if every open set of X is closed in X.
- (3) submaximal [29] if every dense set of X is open in X, equivalently if every preopen set is open,
- (4) strongly irresolvable [8] if no nonempty open set is resolvable, equivalently if every preopen subset is α-open,
- (5) mildly Hausdorff [6] if the δ -closed sets form a network for its topology τ , where a δ -closed set is the intersection of regular closed sets,
- (6) strongly S-closed [3] if every closed cover of X has a finite subcover,
- (7) door space [4] if every subset of X is either open or closed.

Remark 3.3. It should be noted that every door space X is submaximal [4, Theorem 2.7] and every mildly Hausdorff strongly *S*-closed space is locally indiscrete [6].

The following results follow immediately from Definition 3.3 and Remark 3.3:

Theorem 3.7. If a function $f: X \to Y$ is continuous and X is locally indiscrete, then f is contra-continuous.

Corollary 3.1. If a function $f: X \to Y$ is continuous and X is mildly Hausdorff strongly S-closed, then f is contra-continuous.

Theorem 3.8. Let $f: X \to Y$ be a contra-precontinuous function.

- (1) If X is submaximal, then f is contra-continuous,
- (2) If X is strongly irresolvable, then f is contra- α -continuous.

Corollary 3.2. If a function $f: X \to Y$ is contra-precontinuous and X is a door space, then f is contra-continuous.

Lemma 3.2. For a subset A of a space X, the following are equivalent:

- (1) A is regular closed;
- (2) A is preclosed and semi-open;
- (3) A is α -closed and β -open.

Proof. (1) \Rightarrow (2): Let A be regular closed. Then A = Cl(Int(A)) and A is preclosed and semi-open.

 $(2) \Rightarrow (3)$: Let *A* be preclosed and semi-open. Then $Cl(Int(A)) \subset A$ and $A \subset Cl(Int(A))$. Therefore, we have Cl(Int(A)) = Cl(A) and hence $Cl(Int(Cl(A))) = Cl(Int(Cl(Int(A)))) = Cl(Int(A)) \subset A$. This shows that *A* is α -closed. Since $SO(X) \subset \beta O(X)$, it is obvious that *A* is β -open.

(3) \Rightarrow (1): Let A be α -closed and β -open. Then A = C1(Int(C1(A))) and hence C1(Int(A)) = C1(Int[C1(Int(C1(A)))]) = C1(Int(C1(A))) = A. Therefore, A is regular closed.

As a consequence of the above lemma, we have the following result:

Theorem 3.9. The following statements are equivalent for a function $f : X \to Y$:

- (1) f is RC-continuous;
- (2) f is contra-precontinuous and semi-continuous;
- (3) f is contra- α -continuous and β -continuous.

4. Contra-preclosed graphs

We begin with the following notion:

Definition 4.1. The graph G(f) of a function $f: X \to Y$ is said to be contra-preclosed if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in PO(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 4.1. The graph G(f) of $f: X \to Y$ is contra-preclosed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in PO(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \emptyset$.

Theorem 4.1. If $f: X \to Y$ is contra-precontinuous and Y is Urysohn, then G(f) is contra-preclosed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$ and there exist open sets V, W such that $f(x) \in V$, $y \in W$ and $Cl(V) \cap Cl(W) = \emptyset$. Since f is contra-precontinuous, there exists $U \in PO(X, x)$ such that $f(U) \subset Cl(V)$. Therefore, we obtain $f(U) \cap Cl(W) = \emptyset$. This shows that G(f) is contra-preclosed.

Definition 4.2. A space X is said to be

- (1) strongly compact [17] if every preopen cover of X has a finite subcover,
- (2) S-closed [34] if every semi-open cover $\{V_{\alpha} \mid \alpha \in \nabla\}$ of X, there exists a finite subset ∇_{\circ} of ∇ such that $X = \bigcup \{C1(V_{\alpha}) \mid \alpha \in \nabla_{\circ}\}$, equivalently if every regular closed cover of X has a finite subcover,
- *(3) mildly compact* [32] *if every clopen cover of X has a finite subcover.*

Definition 4.3. A subset S of a space X is said to be

- (1) strongly compact relative to X [17] if every cover of S by preopen sets of X has a finite subcover,
- (2) strongly S-closed [3] if the subspace S is strongly S-closed.

Theorem 4.2. Let X be submaximal. If $f: X \rightarrow Y$ has a contra-preclosed graph, then the inverse image of a strongly S-closed set K of Y is closed in X.

Proof. Assume that K is a strongly S-closed set of Y and $x \notin f^{-1}(K)$. For each $k \in K$, $(x,k) \notin G(f)$. By Lemma 4.1, there exists $U_k \in PO(X,x)$ and $V_k \in C(Y,k)$ such that $f(U_k) \cap V_k = \emptyset$. Since $\{K \cap V_k | k \in K\}$ is a closed cover of the subspace K, there exists a finite subset $K_1 \subset K$ such that

 $K \subset \bigcup \{V_k \mid k \in K_1\}$. Set $U = \bigcap \{U_k \mid k \in K_1\}$, then U is open since X is submaximal. Therefore $f(U) \cap K = \emptyset$ and $U \cap f^{-1}(K) = \emptyset$. This shows that $f^{-1}(K)$ is closed in X.

A space X is said to be *weakly Hausdorff* [31] if each point of X is an intersection of regular closed sets of X.

Corollary 4.1. Let X be submaximal and Y be strongly S-closed weakly Hausdorff. The following properties are equivalent for a function $f: X \rightarrow Y$:

- (1) f is contra-precontinuous;
- (2) G(f) is contra-preclosed;
- (3) $f^{-1}(K)$ is closed in X for every strong S-closed set K of Y;
- (4) f is contra-continuous.

Proof. (1) \Rightarrow (2): It is shown in [9, Theorem 3.7] that every *S*-closed weakly Hausdorff space is extremally disconnected. Since a strongly *S*-closed space is *S*-closed, *Y* is extremally disconnected and hence every regular closed set of *Y* is clopen. This shows that *Y* is Urysohn. By Theorem 4.1, *G*(*f*) is contra-preclosed.

 $(2) \Rightarrow (3)$: This is a result of Theorem 4.2.

(3) \Rightarrow (4): First, we show that an open set of Y is strongly S-closed. Let V be an open set of Y and $\{H_{\alpha} \mid \alpha \in \nabla\}$ be a cover of V by closed sets H_{α} of the subspace V. For each $\alpha \in \nabla$, there exists a closed set K_{α} of X such that $H_{\alpha} = K_{\alpha} \cap V$. Then, the family $\{K_{\alpha} \mid \alpha \in \nabla\} \cup (Y - V)$ is a closed cover of Y. Since Y is strongly S-closed, there exists a finite subset $\nabla_{\circ} \subset \nabla$ such that $Y = \bigcup \{K_{\alpha} \mid \alpha \in \nabla_{\circ}\} \cup (Y - V)$. Therefore we obtain $V = (\bigcup \{K_{\alpha} \mid \alpha \in \nabla_{\circ}\}) \cap V = \bigcup \{H_{\alpha} \mid \alpha \in \nabla_{\circ}\}$. This shows that V is strongly S-closed. For any open set V, by (3) $f^{-1}(V)$ is closed in X and f is contra-continuous.

5. Strong forms of compactness

Theorem 5.1. If $f : X \to Y$ is contra-precontinuous and K is strongly compact relative to X, then f(K) is strongly S-closed in Y.

Proof. Let $\{H_{\alpha} \mid \alpha \in \nabla\}$ be any cover of f(K) by closed sets of the subspace f(K). For each $\alpha \in \nabla$, there exists a closed set K_{α} of Y such that $H_{\alpha} = K_{\alpha} \cap f(K)$. For each $x \in K$, there exists $\alpha(x) \in \nabla$ such that

 $f(x) \in K_{\alpha(x)}$ and by Theorem 3.1 there exists $U_x \in PO(X, x)$ such that $f(U_x) \subset K_{\alpha(x)}$. Since the family $\{U_x | x \in K\}$ is a preopen cover of K, there exists a finite subset K_0 of K such that $K \subset \bigcup \{U_x | x \in K_\circ\}$. Therefore, we obtain $f(K) \subset \bigcup \{f(U_x) | x \in K_\circ\}$ which is a subset of $\bigcup \{K_{\alpha(x)} | \alpha \in K_\circ\}$. Thus, $f(K) = \bigcup \{H_{\alpha(x)} | x \in K_\circ\}$ and hence f(K) is strongly S-closed.

Corollary 5.1. If $f: X \rightarrow Y$ is contra-precontinuous surjection and X is strongly compact, then Y is strongly S-closed.

Theorem 5.2. A function $f: X \rightarrow Y$ is RC-continuous if and only if it is contra-precontinuous and semi-continuous.

Proof. "Necessity". Every *RC*-continuous function is contra-continuous and hence contra-precontinuous. Since every regular closed set is semi-open, *RC*-continuous functions are semi-continuous.

"Sufficiency". For any open set V of Y, $f^{-1}(V)$ is preclosed and semi-open in X and hence we have $Cl(Int(f^{-1}(V))) \subset f^{-1}(V) \subset Cl(Int(f^{-1}(V)))$. Therefore, we obtain $Cl(Int(f^{-1}(V))) = f^{-1}(V)$ and hence f is RC-continuous.

Remark 5.1. It follows from Examples 2.1 and 2.2 that contra-precontinuity and semi-continuity are independent of each other. Therefore, by Theorem 5.2 we had a decomposition of RC-continuity.

Theorem 5.3. If $f: X \to Y$ is an *RC*-continuous surjection and X is S-closed, then Y is compact.

Proof. Let $\{V_{\alpha} \mid \alpha \in \nabla\}$ be any open cover of Y. Then $\{f^{-1}(V_{\alpha}) \mid \alpha \in \nabla_{\circ}\}$ is a regular closed cover of X and we have $X = \bigcup \{f^{-1}(V_{\alpha}) \mid \alpha \in \nabla_{\circ}\}$ for some finite subset ∇_{\circ} of ∇ . Since f is surjective, $Y = \bigcup \{V_{\alpha} \mid \alpha \in \nabla_{\circ}\}$ and Y is compact.

A function $f: X \to Y$ is said to be α -continuous [18] if $f^{-1}(V) \in \alpha(X)$ for every open set V of Y. In [2, Theorem 2.9], Dontchev obtained decompositions of perfect continuity. The following is also a decomposition of perfect continuity.

Theorem 5.4. A function $f: X \rightarrow Y$ is perfectly continuous if and only if it is contra-precontinuous and α -continuous.

Proof. "Necessity". This is obvious.

"Sufficiency". Let f be contra-precontinuous and α -continuous. Let V be any open set of Y. Then $f^{-1}(V)$ is preclosed and α -open in X. Therefore, we have

$$\operatorname{Int}(C1(\operatorname{Int}(f^{-1}(V)))) \subset C1(\operatorname{Int}(f^{-1}(V))) \subset f^{-1}(V)$$
$$\subset \operatorname{Int}(C1(\operatorname{Int}(f^{-1}(V)))) \subset C1(\operatorname{Int}(f^{-1}(V))).$$

This implies that $f^{-1}(V)$ is clopen in X. Thus, f is perfectly continuous.

Remark 5.2. Contra-precontinuity and α -continuity are independent of each other as shown by Examples 2.1 and 2.2.

Corollary 5.2. (Dontchev [3]). For a functor $f : X \to Y$ the following are equivalent:

- (1) f is perfectly continuous;
- (2) f is conitnuous and contra-continuous;
- (3) f is α -continuous and contra-continuous.

Theorem 5.5. If $f: X \to Y$ is a perfectly continuous surjection and X is mildly compact, then Y is compact.

Proof. Let $f: X \to Y$ be a perfectly continuous surjection and X be mildly compact. Let $\{V_{\alpha} \mid \alpha \in \nabla\}$ be any open cover of Y. Then $\{f^{-1}(V_{\alpha}) \mid \alpha \in \nabla\}$ is a clopen cover of X. Since X is mildly compact, there exists a finite subset ∇_{\circ} of ∇ such that $X = \bigcup \{f^{-1}(V_{\alpha}) \mid \alpha \in \nabla_{\circ}\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha} \mid \alpha \in \nabla_{\circ}\}$ and Y is compact.

A space X is said to be *almost compact* [30] or *quasi H-closed* [27] if every open cover has a finite subfamily the closures of whose members cover X. We have the following implications:

strongly S-closed \Rightarrow S-closed \Rightarrow almost compact \Rightarrow mildly compact.

Corollary 5.3. (Dontchev [3]). The image of an almost compact space under contra-continuous nearly continuous (precontinuous) function is compact.

Proof. It is shown in [3, Theorem 2.9] that a function is contra-continuous and nearly continuous if and only if it is perfectly continuous. Then, the proof follows from Theorem 5.5.

6. Strong forms of connectedness

Definition 6.1. A space X is said to be

- (1) hyperconnected [33] if C1(V) = X for every nonempty open set V of X,
- (2) θ -irreducible [14] if every two nonempty regular closed sets intersect,
- (3) preconnected [24] if X cannot be expressed as the union of two nonempty preopen sets.

Theorem 6.1. Let X be preconnected and Y be T_1 . If $f: X \to Y$ is contraprecontinuous, then f is constant.

Proof. Since *Y* is T_1 -space, $U = \{f^{-1}(y) | y \in Y\}$ is a disjoint preopen partition of *X*. If $|U| \ge 2$, then *X* is the union of two nonempty preopen sets. Since *X* is preconnected, |U| = 1. Therefore, *f* is constant.

A function $f: X \to Y$ is said to be *preclosed* [7] if the image f(A) is preclosed in Y for every closed set A of X.

Theorem 6.2. Let $f: X \to Y$ be a contra-precontinuous and preclosed surjection. If X is submaximal, then Y is locally indiscrete.

Proof. Let V be any open set of Y. Since f is contra-continuous and X is submaximal, $f^{-1}(V)$ is closed in X and hence V is preclosed in Y. Therefore, $C1(V) = C1(Int(V)) \subset V$ and V is closed in Y. This shows that Y is locally indiscrete.

Theorem 6.3. If $f : X \rightarrow Y$ is a contra-precontinuous semi-continuous surjection and *X* is θ -irreducible, then *Y* is hyperconnected.

Proof. Suppose that Y is not hyperconnected. Then, there exists two disjoint nonempty open sets V, W and Y. By Theorem 5.2, f is an RC-continuous surjection and $f^{-1}(V)$, $f^{-1}(W)$ are disjoint nonempty regular closed sets of X. Therefore, X is not θ -irreducible.

Theorem 6.4. If $f: X \to Y$ is a contra-precontinuous α -continuous surjection and X is connected, then Y has an indiscrete topology.

Proof. Suppose that there exists a proper open set V of Y. By Theorem 5.4, f is a perfectly continuous surjection and $f^{-1}(V)$ is a proper clopen set of X. This shows that X is not connected. Therefore, Y has an indiscrete topology.

Acknowledgement. The authors are very grateful to the referee for his careful work.

References

- M.E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- M. Caldas and S. Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi Univ. (Math.) 22 (2001), 19–28.
- 3. J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19 (1996), 303–310.
- 4. J. Dontchev, On door spaces, Indian J. Pure Appl. Math. 26 (1995), 873-881.
- 5. J. Dontchev and T. Noiri, Contra-semicontinuous functions, *Math. Pannonica* **10** (1999), 159–168.
- J. Dontchev, S. Popvassilev and D. Stavrova, On the η-expansion topology for the co-semi-regularization and mildly Hausdorff spaces, *Acta Math. Hungar.* 80 (1998), 9–19.
- N. El-Deeb, I.A. Hasanein, A.S. Mashhour and T. Noiri, On *p*-regular spaces, *Bull. Math. Soc. Sci. Math. R. S. Roumanie* 27 (1983), 311–315.
- 8. J. Foran and P. Liebnitz, A characterization of almost resolvable spaces, *Rend. Circ. Mat. Palermo* **40** (1991), 136–141.
- 9. R.A. Herrmann, RC-convergence, Proc. Amer. Math. Soc. 75 (1979), 311-317.
- 10. S. Jafari and T. Noiri, On almost precontinuous functions, *Internat. J. Math. Math. Sci.* 24 (2000), 193–201.
- S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, Iranian Int. J. Sci. 2 (2001), 153–167.
- 12. S. Jafari and T. Noiri, Contra-super-continuous functions, *Annales Univ. Sci. Budapest* **42** (1999), 27–34.
- 13. D.S. Jankovic, θ-regular spaces, Internat. J. Math. Math. Sci. 8 (1985), 615–619.
- 14. D. Jankovic and P.E. Long, θ-irreducible spaces, Kyungpook Math. J. 26 (1986), 63–66.
- 15. N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly* **70** (1963), 36–41.
- A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt* 53 (1982), 47–53.
- 17. A.S. Mashhour, M.E. Abd El-Monsef, I.A. Hasanein and T. Noiri, Strongly compact spaces, *Delta J. Sci.* 8 (1984), 30–46.
- 18. A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, α-continuous and α-open mappins, *Acta Math. Hungar.* **41** (1983), 213–218.
- M. Mrsevic, On pariwise R_o and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie **30** (1986), 141–148.
- 20. A.A. Nasef and T. Noiri, Some weak forms of almost continuity, *Acta Math. Hungar*. **74** (1997), 211–219.
- T. Nieminen, On ultrapseudocompact and related spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), 185–205.
- 22. O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- 23. T. Noiri, Super-continuity and some strong forms of continuity, *Indian J. Pure Appl. Math.* **15** (1984), 241–250.
- 24. V. Popa, Properties of H-almost continuous functions, *Bull. Math. Soc. Sci. Math. R.S. Roumanie* **31** (78) (1987), 163–168.
- 25. V. Popa and T. Noiri, Almost weakly continuous functions, *Demonstratio Math.* 25 (1992), 241–251.
- V. Popa, T. Noiri and M. Ganster, On upper and lower almost precontinuous multifunctions, Far East J. Math. Sci. Special Vol. I (1997), 49–68.

- 27. J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, *Trans. Amer. Math. Soc.* **138** (1969), 159–170.
- 28. I.L. Reilly and M.K. Vamanamurthy, Connectedness and strong semi-continuity, *Casopis Pest. Mat.* **109** (1984), 261–265.
- 29. I.L. Reilly and M.K. Vamanamurthy, On some questions concerning preopen sets, *Kyungpook Math. J.* **30** (1990), 87–93.
- 30. M.K. Singal and A. Mathur, On nearly-compact spaces, *Boll. Un. Mat. Ital.* (4) 2 (1969), 702–710.
- T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, General Topology and its Relations to Modern Analysis and Algebra III, *Proc. Conf. Kampur* (1968), *Academia, Prague* (1971), 301–306.
- 32. R. Staum, The algebra of bounded continuous functions into a nonarchimedian field, *Pacific J. Math.* **50** (1974), 169–185.
- 33. L.A. Steen and J.A. Seebach Jr., *Counterexamples in Topology*, Holt, Rinehart and Wiston, New York, 1970.
- 34. T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335-338.
- 35. J. Tong, On decomposition of continuity in topological spaces, *Acta Math. Hungar.* **54** (1998), 51–55.

Keywords and phrases: contra-precontinuous, preopen set, mildly compact.

1991 AMS Subject Classification: 54C08