On Sums of Range Symmetric Matrices in Minkowski Space

AR. Meenakshi and D. Krishnaswamy
Department of Mathematics, Annamalai University, Annamalainagar - 608 002, Tamil Nadu, South India

Abstract

We give necessary and sufficient condition for the sums of range symmetric matrices to be range symmetric in Minkowski space m. As an application it is shown that the sum and parallel sum of parallel summable range symmetric matrices are range symmetric.

1. Introduction

Throughout we shall deal with $C^{n \times n}$, the space of $n \times n$ complex matrices. Let C^{n} be the space of complex n-tuples. We shall index the components of a complex vector in C^{n} from 0 to $n-1$. That is $u=\left(u_{0}, u_{1}, u_{2}, \cdots, u_{n-1}\right)$. Let G be the Minkowski metric tensor defined by $G u=\left(u_{0},-u_{1},-u_{2}, \cdots,-u_{n-1}\right)$. Clearly the Minkowski metric matrix $G=\left[\begin{array}{cc}1 & 0 \\ 0 & -I_{n-1}\end{array}\right]$ and $G^{2}=I_{n}$. Minkowski inner product on C^{n} is defined by $(u, v)=\langle u, G v\rangle$, where $\langle\cdot, \cdot\rangle$ denotes the conventional Hilbert space inner product. A space with Minkowski inner product is called a Minkowski space denoted as m . With respect to the Minkowski inner product the adjoint of a matrix $A \in C^{n \times n}$ is given by $A^{\sim}=G A^{*} G$, where A^{*} is the usual Hermitian adjoint. Naturally we call a matrix $A \in C^{n \times n} m$-symmetric in Minkowski space if $A^{\sim}=A$, and m-orthogonal if $A^{\sim} A=I$. As in unitary space m-orthogonal matrices form a group. For $A \in C^{n \times n}$, let $r k(A), R(A)$ and $N(A)$ denote the rank, range space and null space of A respectively.

Definition 1.1. A^{g} is said to be a generalized inverse (g-inverse) of A, if (1.1) $A A^{g} A=A$.

Definition 1.2. A^{r} is said to be a reflexive g inverse of A if (1.2) $A A^{r} A=A$ and $A^{r} A A^{r}=A^{r}$.

Definition 1.3. A^{n} is a right (left) normalized g-inverse of A if (1.3) $A A^{n}=A$, $A^{n} A A^{n}=A^{n}$ and $A A^{n}$ is m -symmetric ($A^{n} A$ is m -symmetric).

Definition 1.4. A^{M} is the Minkowski inverse of A if (1.4) $A A^{M} A=A$, $A^{M} A A^{M}=A^{M}, A A^{M}$ and $A^{M} A$ are m-symmetric.

In the sequel we shall repeatedly used the following results.
Theorem 1.5. (Theorem 2.2 of [6]) For $A \in C^{n \times n}$, the following are equivalent
(1) A is range symmetric in m
(2) $G A$ is $E P$
(3) $A G$ is $E P$
(4) $N\left(A^{*}\right)=N(A G)$
(5) $\quad R(A)=R\left(A^{\sim}\right)$
(6) $\quad A^{\sim}=H A=A K$ for some non-singular matrices H and K.
(7) $\quad R\left(A^{*}\right)=R(G A)$.

It is well known that in [8] for $A \in C^{n \times n}$, solution exits for equations (1.1) and (1.2). In unitary space for $A \in C^{n \times n}$, since $r k(A)=r k\left(A A^{*}\right)=r k\left(A^{*} A\right)$ solution exists for equation (1.3) and unique solution exists for equation (1.4) which is called the Moore Penrose inverse of $\mathrm{A}[8]$. However this fails in Minkowski space m, since $r k(A) \neq\left(A^{\sim} A\right) \neq r k\left(A A^{\sim}\right)$. In [5] equivalent conditions for the existence of Minkowski inverse for $A \in C^{n \times n}$ has been obtained.

2. Range symmetric matrices

A matrix $A \in C^{n \times n}$ is said to be range symmetric in unitary space (or) equivalently A is said to be $E P$ if $N(A)=N\left(A^{*}\right)$ (p. 163 [1]). For further properties of $E P$ matrices one may refer [1, $2 \& 7$]. In [6], the concept of a range symmetric matrix in m is introduced and developed. In this paper, conditions are obtained for sums of range symmetric matrices in m to be range symmetric in m .

It is shown that the sum and parallel sum of parallel summable range symmetric matrices in m is range symmetric in m
for $A \in C^{n \times n}, x, y \in C^{n}$, the Minkowski inner product

$$
\begin{aligned}
(A x, y) & =\langle A x, G y\rangle \\
& =\left\langle x, A^{*} G y\right\rangle \\
& =\left\langle x, G\left(G A^{*} G\right) y\right\rangle \\
& =\left(x, A^{\sim} y\right)
\end{aligned}
$$

$A^{\sim}=G A^{*} G$ is the Minkowski adjoint of A.

Definition 2.1. $A \in C^{n \times n}$ is range symmetric in m iff $N(A)=N\left(A^{\sim}\right)$.

Lemma 2.2. Let $A_{1}, A_{2}, \cdots, A_{m} \in C^{n \times n}$. If $A=\sum_{i=1}^{m} A_{i}$ then $A=\sum_{i=1}^{m} A_{i}^{\sim}$.

Proof. By Definition $A_{i}^{\sim}=G A_{i}^{*} G$, for $i=1,2, \cdots, m$, where G is Minkowski tensor of order n. To prove $A^{\sim}=\sum_{i=1}^{m} A_{i}^{\sim}$.

Given

$$
\begin{aligned}
A & =\sum_{i=1}^{m} A_{i} \\
\therefore A^{\sim} & =G\left(A_{1}+A_{2}+\cdots+A_{m}\right)^{*} G \\
& =G\left(A_{1}^{*}+A_{2}{ }^{*}+\cdots+A_{m}{ }^{*}\right) G \\
& =A_{1}^{\sim}+A_{2}^{\sim}+\cdots+A_{m}^{\sim} \\
A^{\sim} & =\sum_{i=1}^{m} A_{i}^{\sim} .
\end{aligned}
$$

Lemma 2.3. Let $A_{1}, A_{2} \in C^{n \times n}$, then
(i) $\quad\left(A_{1} A_{2}\right)^{\sim}=A_{2}^{\sim} A_{1}^{\sim}$ and
(ii) $\left(A_{1}^{\sim}\right)^{\sim}=A_{1}$.

Proof. By Definition $\quad\left(A_{1} A_{2}\right)^{\sim}=G\left(A_{1} A_{2}\right)^{*} G$

$$
\begin{aligned}
& =G\left(A_{2}^{*} A_{1}{ }^{*}\right) G \\
& =\left(G A_{2}^{*} G\right)\left(G A_{1}^{*} G\right) \quad \therefore G^{2}=I_{n} \\
& =A_{2}^{\sim} A_{1}^{\sim}
\end{aligned}
$$

(ii) follows from (i).

In the sequel, we shall make use of the following result obtained in [4].
Lemma 2.4. Let $A_{1}, A_{2}, \cdots, A_{m} \in C^{n \times n}$ and let $A=\sum_{i=1}^{m} A_{i}$ consider the following conditions.
(a) $\quad N(A) \subseteq N\left(A_{i}\right) ; i=1,2, \cdots, m$.
(b) $\quad N(A)=\bigcap_{i=1}^{m} N\left(A_{i}\right)$
(c) $\quad r k(A)=r k\left[\begin{array}{l}A_{1} \\ A_{2} \\ A_{m}\end{array}\right]$
(d) $\sum_{i=1}^{m} \sum_{j=1}^{n} A_{1}{ }^{*} A_{j}=0$
(e) $\quad r k(a)=\sum_{i=1}^{m} r k\left(A_{i}\right)$.

Then the following statement hold:
(i) conditions (a), (b), (c) are equivalent
(ii) conditions (d) implies (a) but not the converse.
(iii) conditions (e) implies (a) but not the converse.

Theorem 2.5. Let $A_{i}(i=1,2, \cdots, m)$ be range symmetric in m. If any one of the conditions of Lemma 2.4 holds, then $A=\sum_{i=1}^{m} A_{i}$ is range symmetric in m .

Proof. Since each A_{i} is range symmetric in m, by Definition 2.1, $N\left(A_{i}\right)=N\left(A_{i}^{\sim}\right)$ for each $i=1,2, \cdots, m$. By the given condition

$$
N(A) \subseteq N\left(A_{i}\right),
$$

we get

$$
N(A) \subseteq \bigcap_{i=1}^{m} N\left(A_{i}\right)=\bigcap_{i=1}^{m} N\left(A_{i}^{\sim}\right) .
$$

Now,

$$
\begin{align*}
& x \in \bigcap_{i=1}^{m} N\left(A_{i}^{\sim}\right) \Rightarrow x \in N\left(A_{i}^{\sim}\right), \text { for } i=1 \text { to } m . \\
& \Rightarrow A_{i}^{\sim} x=0, \text { for } i=1 \text { to } m . \\
& \Rightarrow\left(A_{1}^{\sim}+A_{2}^{\sim}+\cdots+A_{m}^{\sim}\right) x=0 . \\
& \Rightarrow A^{\sim} x=0 \tag{ByLemma2.2}\\
& \bigcap_{i=1}^{m} N\left(A_{i}^{\sim}\right) \subseteq N\left(A^{\sim}\right) \\
& N(A) \subseteq \bigcap_{i=1}^{m} N\left(A_{i}^{\sim}\right) \subseteq N\left(A^{\sim}\right) \text { and } r k(A)=r k\left(A^{\sim}\right) \text { implies } \\
& N(A)=N\left(A^{\sim}\right) . \text { Thus } A=\bigcap_{i=1}^{n} A_{i} \text { is range symmetric in } m .
\end{align*}
$$

Remark 2.7. The converse of the Theorem 2.5 is not true. For $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, $B=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right], \quad A+B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ are range symmetric in m but $N(A+B) \nsubseteq N(A)$.

If A and B are range symmetric in m by Theorem 1.5; $A^{\sim}=H_{1} A$ and $B^{\sim}=H_{2} B$, where H_{1}, H_{2} are non-singular $n \times n$ matrices. If $H_{1}=H_{2}$ then $(A+B)^{\sim}=A^{\sim}+B^{\sim}=H_{1}(A+B)$. Again by Theorem 1.5. $A+B$ is range symmetric in m . If $H_{1}-H_{2}$ is non-singular then the above conditions are also necessary for the sum of range symmetric to be range symmetric in m .

Theorem 2.8. Let A and B be range symmetric in $m \quad A^{\sim}=H_{1} A$ and $B^{\sim}=H_{2} B$ such that $H_{1}-H_{2}$ is a non-singular matrix. Then $A+B$ is range symmetric iff $N(A+B) \subseteq N(B)$.

Proof. Since $A^{\sim}=H_{1} A$ and $B^{\sim}=H_{2} B, A$ and B are range symmetric follows from Theorem 1.5. Since $N(A+B) \subseteq N(B)$ we can see that $N(A+B) \subseteq N(A)$. Hence by Theorem $2.5, A+B$ is range symmetric in m.

Conversely, let us assume that $A+B$ is range symmetric in m. Now by Theorem 1.5, $(A+B)^{\sim}=A^{\sim}+B^{\sim}=H_{1} A+H_{2} B$

$$
\begin{aligned}
& H(A+B)=H_{1} A+H_{2} B \\
& \left(H_{1}-H\right) A=\left(H-H_{2}\right) B \\
& T A=L B
\end{aligned}
$$

where, $T=H_{1}-H$ and $L=H-H_{2}$ such that $T+L=H_{1}-H_{2}$.

$$
\begin{aligned}
T A+L A & =L B+L A \\
(T+L) A & =L(A+B)
\end{aligned}
$$

By hypothesis $T+L=H_{1}-H_{2}$ is non-singular. $N(A+B) \subseteq N[L(A+B)]$ $=N[(T+L) A]=N(A)$. Similarly we can see that $N(A+B) \subseteq N(B)$. Thus $A+B$ is range symmetric in m implies $N(A+B) \subseteq N(A)$ and $N(B)$. Hence the Theorem.

3. Parallel summable range symmetric matrices

In this section we shall show that the sum and parallel sum of parallel summable range symmetric matrices in m are range symmetric. First we shall give the Definitions and some properties of parallel summable (p.s) matrices (p. 188 [9]).

Definition 3.1. For complex matrices A and B are said to be p.s in unitary space if $N(A+B) \subseteq N(B)$ and $N(A+B)^{*} \subseteq N\left(B^{*}\right)$ (or) Equivalently $N(A+B)$ $\subseteq N(A)$ and $N(A+B)^{*} \subseteq N\left(A^{*}\right)$.

Definition 3.2. If A and B are p.s then parallel sum of A and B denoted by $A: B$ is defined as $A: B=A(A+B)^{-} B$.
[The product $A(A+B)^{-} B$ is invariant for all choices of generalized inverse $(A+B)^{-}$of $A+B$ under the conditions that A and B are p.s. (p. 21 [9])].

In general for any $A \in C^{n \times n}, N\left(A^{*}\right) \neq N\left(A^{\sim}\right)$ for instance let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), A^{*}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) ; A^{\sim}=G A^{*} G=\left(\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right) \quad N\left(A^{*}\right)=\left\{y: y=\binom{x}{-x}\right\}$; $N\left(A^{\sim}\right)=\left\{y: y=\binom{x}{x}\right\}$. Therefore $N\left(A^{*}\right) \neq N\left(A^{\sim}\right)$.

Lemma 3.3. Let A and B be matrices in m. Then $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ iff $N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$.

Proof. Let us assume that $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$. We need to prove $N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$. Let us choose

$$
\begin{aligned}
x \in N\left(A^{\sim}\right) & \Rightarrow A^{\sim} x=0 \\
& \Rightarrow G A^{*} G x=0 \\
& \Rightarrow A^{*} G x=0 \\
& \Rightarrow A^{*} y=0 \quad \text { where } \quad y=G x \\
& \Rightarrow y \in N\left(A^{*}\right) \subseteq N\left(B^{*}\right) \\
& \Rightarrow B^{*} y=0 \\
& \Rightarrow B^{*} G x=0 \\
& \Rightarrow B^{\sim} x=0 \\
& \Rightarrow x \in N\left(B^{\sim}\right) . \text { Thus } \quad N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)
\end{aligned}
$$

Conversely let us assume that $N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$. We need to show that $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$. Let us choose

$$
\begin{array}{rlr}
x \in N\left(A^{*}\right) & \Rightarrow A^{*} x=0 & \\
& \Rightarrow\left(G A^{*} G\right) G x=0 & \\
& \Rightarrow A^{\sim} G x=0 & \\
& \Rightarrow A^{\sim} y=0 & \\
& \Rightarrow y \in N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right) & \\
& \Rightarrow B^{\sim} y=0 & \\
& \Rightarrow G B^{*} G G x=0 & \\
& \Rightarrow G B^{*} x=0 & \\
& \Rightarrow B^{*} x=0 & \\
& \Rightarrow x \in N\left(B^{*}\right) &
\end{array}
$$

Thus $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$. Hence the Lemma.
By using Lemma 3.3, Definition 3.1 can be modified as follows.

Definition 3.1'. A pair of matrices A and B are said to be p.s. in m if $N(A+B) \subseteq N(B)$ and $N(A+B)^{\sim} \subseteq N\left(B^{\sim}\right)$ or equivalently $N(A+B) \subseteq N(A)$ and $N(A+B)^{\sim} \subseteq N\left(A^{\sim}\right)$.

Properties. Let A and B a pair of p.s. matrices in m . Then the following holds.
P. 1 : $A: B$
P. 2 : $\quad A^{\sim}$ and B^{\sim} are p.s. in m and $(A: B)^{\sim}=A^{\sim}: B^{\sim}$.
P. 3 : If U is non-singular then $U A$ and $U B$ are p.s. and $U A: U B=U(A: B)$
P. 4 : $\quad N(A: B)=N(A)+N(B)$

Proof. P.1, P. 3 and P.4, have been proved in (P. 188 [9]). Here we shall prove only P.2, A and B are p.s. in m. A^{\sim} and B^{\sim} are p.s. in m follows from Lemma 2.2 and Lemma 2.3.

$$
\begin{array}{rlr}
A^{\sim}: B^{\sim} & =A^{\sim}\left(A^{\sim}+B^{\sim}\right)^{\sim} B^{\sim} & \text { [By Definition 3.2] } \\
& =A^{\sim}\left[(A+B)^{\sim}\right]^{-} B^{\sim} & \\
& =A^{\sim}\left[(A+B)^{-}\right]^{\sim} B^{\sim} & \\
& =\left[B(A+B)^{-} A\right]^{\sim} & \text { [By Definition 2.2] } \\
& =\left[A(A+B)^{-} B\right]^{\sim} & \\
& =[A: B]^{\sim} &
\end{array}
$$

Lemma 3.4. Let A and B be range symmetric in m. Then A and B are p.s. range symmetric in m iff $N(A+B) \subseteq N(A)$.

Proof. A and B are parallel summable, by Definition 3.1, it follows that $N(A+B) \subseteq N(A)$.

Conversely, if $N(A+B) \subseteq N(A)$, then $N(A+B) \subseteq N(B)$. Since A and B are range symmetric in $\mathrm{m} . \quad A+B$ is range symmetric in m by Theorem 2.5. Hence $N(A+B)=N(A+B)^{\sim}$ and $N(A+B) \subseteq N(A)$ implies $N(A+B)^{\sim} \subseteq N\left(A^{\sim}\right)$. Therefore by Definition 3.1' A and B are p.s. range symmetric in m. Hence the Lemma.

Remark 3.5. Lemma 3.4 fails if we relax the condition that A and B are range symmetric in m . Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ be range symmetric in $\mathrm{m}, B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ is not range symmetric
in m. $\quad A^{\sim}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \quad B^{\sim}=\left[\begin{array}{rr}0 & -1 \\ 0 & 0\end{array}\right], \quad A+B=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right], \quad(A+B)^{\sim}=\left[\begin{array}{rr}1 & -1 \\ 0 & 0\end{array}\right]$. $N(A+B) \subseteq N(A)$ and $N(B)$ but $N(A+B)^{\sim} \nsubseteq N\left(A^{\sim}\right)$ and $N\left(B^{\sim}\right)$. Hence A and B are not p.s.

Theorem 3.6. Let A and B be p.s. range symmetric in m. Then $A: B$ and $A+B$ are range symmetric in m .

Proof. Since A and B are p.s. range symmetric in m. $N(A+B) \subseteq N(A)$ and $N(A+B) \subseteq N(B)$, follows from Lemma 3.4. Now the fact that $A+B$ is range symmetric in m follows from Theorem 2.5. $A: B$ is range symmetric in m runs as follows.

$$
\begin{array}{rlr}
N(A: B)^{\sim} & =N\left(A^{\sim}: B^{\sim}\right) & {[\text { By P.2] }} \\
& =N\left(A^{\sim}\right)+N\left(B^{\sim}\right) & {[B y P .4]} \\
& =N(A)+N(B) & \text { [By definition 2.1] } \\
& =N(A: B) & {[B y P .4]}
\end{array}
$$

Thus $A: B$ is range symmetric in m whenever A and B are p.s. range symmetric in m . Hence the Theorem.

Definition 3.7. Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ be an $n \times n$ matrix. The schur complement of A in M, denoted by M / A is defined as $D-C A^{-} B$, where A^{-}is a generalized inverse of A (p. 291 [3]).

Theorem 3.8. Let A and B be range symmetric in m of rank r_{1} and r_{2} respectively, such that $N(A+B) \subseteq N(B)$. Then there exists a $2 n \times 2 n$ range symmetric matrix M of rank r, with schur complement of C in M is $E P$, where $r_{1}+r_{2}=r, C=A+B$.

Proof. Since A and B are range symmetric in m, by Theorem $1.5 G A$ and $G B$ are $E P_{1}$ and $E P r_{2}$ matrices. By Theorem 1 [7] there exists unitary matrices U and V of order n, such that $G A=U^{*} D U$ and $G B=V^{*} E V$, where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
H & 0 \\
0 & 0
\end{array}\right], H \text { is } r_{1} \times r_{1} \text {, non-singular matrix } \\
& E=\left[\begin{array}{ll}
K & 0 \\
0 & 0
\end{array}\right], K \text { is } r_{2} \times r_{2} \text {, non-singular matrix }
\end{aligned}
$$

Let us define $\quad P=\left[\begin{array}{cc}V & 0 \\ U & I\end{array}\right]$.
Now $\quad P^{*}\left[\begin{array}{cc}E & 0 \\ 0 & D\end{array}\right] P=\left[\begin{array}{cc}V^{*} & U^{*} \\ 0 & I\end{array}\right]\left[\begin{array}{cc}E & 0 \\ 0 & D\end{array}\right]\left[\begin{array}{cc}V & 0 \\ U & I\end{array}\right]$
$=\left[\begin{array}{cc}V^{*} E & U^{*} D \\ 0 & D\end{array}\right]\left[\begin{array}{cc}V & 0 \\ U & I\end{array}\right]$
$=\left[\begin{array}{ll}V^{*} E V+U^{*} D U & G A U^{*} \\ U G A & U G A U^{*}\end{array}\right]$
$=\left[\begin{array}{ll}G A+G B & G A U^{*} \\ U G A & U G A U^{*}\end{array}\right]=\bar{M}$
\bar{M} is $2 n \times 2 n$ matrix, $r k(\bar{M})=r k D+r k E=r_{1}+r_{2}=r$.
Let us define $Q=\left[\begin{array}{rr}G & 0 \\ -U & -I_{n}\end{array}\right], Q$ is non-singular matrix.
Since A and B are range symmetric in m and $G A, B G$ are $E P$ by Theorem 1.5 and $U G A U^{*}$ is $E P$ [2], we can express \bar{M} as follows.

$$
\begin{align*}
\bar{M} & =Q^{*}\left[\begin{array}{cc}
B G & 0 \\
0 & U G A U^{*}
\end{array}\right] Q \\
& =\left[\begin{array}{cc}
G & -U^{*} \\
0 & -I_{n}
\end{array}\right]\left[\begin{array}{cc}
B G & 0 \\
0 & U G A U^{*}
\end{array}\right]\left[\begin{array}{cc}
G & 0 \\
-U & -I_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
G B G & -G A U^{*} \\
0 & -U G A U^{*}
\end{array}\right]\left[\begin{array}{cc}
G & 0 \\
-U & -I_{n}
\end{array}\right] \\
\bar{M} & =\left[\begin{array}{cc}
G B+G A & G A U^{*} \\
U G A & U G A U^{*}
\end{array}\right]=\left[\begin{array}{cc}
G(A+B) & G A U^{*} \\
U G A & U G A U^{*}
\end{array}\right] \tag{3.1}
\end{align*}
$$

Since $B G, U G A U^{*}$ are $E P, \mathrm{Q}$ is non-singular, \bar{M} is $E P$. Since \bar{M} is of $r k r, \bar{M}$ is EPr. Thus we have proved the existence of the EP matrix \bar{M}. Define $M=\bar{G} \bar{M}$ where \bar{G} is Minkowski tensor of order $2 n$.

$$
\begin{align*}
& M=\bar{G} \bar{M}=\left[\begin{array}{cc}
G & 0 \\
0 & -I_{n}
\end{array}\right]\left[\begin{array}{cc}
G(A+B) & G A U^{*} \\
U G A & U G A U^{*}
\end{array}\right] \\
& M=\left[\begin{array}{cc}
A+B & A U^{*} \\
-U G A & -U G A U^{*}
\end{array}\right]=\left[\begin{array}{cc}
C & A U^{*} \\
-U G A & -U G A U^{*}
\end{array}\right] \tag{3.2}
\end{align*}
$$

By Theorem 1.5 M is range symmetric in m of rank r. The schur complement of C in M is

$$
\begin{array}{rlr}
M / C & =-U G A U^{*}+U G A(A+B)^{-} A U^{*} & \\
& =-U G A U^{*}+U(G A+G B)(A+B)^{-} A U^{*}-U G B(A+B)^{-} A U^{*} \\
& =-U G A U^{*}+U G A U^{*}-U G B(A+B)^{-} A U^{*} & \\
& =-U G(B: A) U^{*} & \text { [By Definition 3.2] } \\
& =-U G(A: B) U^{*} & \text { [By P.1] } \\
& =-U(G A: G B) U^{*} & \text { [By P.3] }
\end{array}
$$

Since A, B are range symmetric in $\mathrm{m}, G A, G B$ are $E P$ by Theorem 1.5. By Theorem 4 of [4] $G A: G B$ is $E P$. Therefore $-U(G A: G B) U^{*}$ is $E P$. Hence M / C is $E P$.

Theorem 3.9. A and B are range symmetric in m satisfying the conditions of Theorem 3.8, then $M / C+\bar{G} M / G C$, where G, \bar{G} are Minkowski tensor of order n and $2 n$ respectively.

Proof. From (3.1), the schur complement of $G C$ in \bar{M} is

$$
\begin{array}{rlr}
\bar{M} / G C & =U G A U^{*}-U G A\left[G(A+B)^{-}\right] G A U^{*} & \\
& =U G A U^{*}-U(G A+G B)[G(A+B)]^{-} G A U^{*}+U G B[G(A+B)]^{-} G A U^{*} \\
& =U G A U^{*}-U G A U^{*}+U G B(A+B)^{-} A U^{*} & \\
& =U G(B: A) U^{*} & \text { [By Definition 3.2] } \\
& =U G(A: B) U^{*} & \text { [By P.1] } \\
& =U(G A: G B) U^{*} & \text { [By P.3] }
\end{array}
$$

Since $M=\bar{G} \bar{M}, \bar{M}=\bar{G} M$. From (3.2) $M / C=-U(G A: G B) U^{*}$.
Now $\bar{M} / G C=\bar{G} M / G C=U(G A: G B) U^{*}$.
Hence $M / C+\bar{G} M / G V=0$.

References

1. A. Ben Israel and T.N.E. Greville, Generalized Inverses, Theory and Applications, Wiley and Sons, New York, 1974.
2. I.J. Katz and M.H. Pearl, On EP_{r} and Normal EP_{r} Matrices, J. Res. NBS 70 (1966), 47-77.
3. G. Marsaglia and G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Alg. 2 (1974), 269-292.
4. AR. Meenakshi, On sums of EP matrices, Houstan Journal of Mathematics 9 (1983), 63-69.
5. AR. Meenakshi, Generalized inverses of matrices in Minkowski space, Proc. Nat. Seminar, Alg. Appl. (2000), 1-14.
6. AR. Meenakshi, Range symmetric matrices in Minkowski space, Bull. Malaysian Math. Soc. 1 (2000), 45-52.
7. M.H. Pearl, On Normal and EP_{r} Matrices, Michigan Math. J. 6 (1959), 1-5.
8. R. Penrose, A generalized inverse for matrices, Proc. Cambridge Phil. Soc. 51 (1955), 406-413.
9. C.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and its Application, Wiley and Sons, New York, 1971.
