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Abstract.  We give necessary and sufficient condition for the sums of range symmetric matrices to 
be range symmetric in Minkowski space m.  As an application it is shown that the sum and parallel 
sum of parallel summable range symmetric matrices are range symmetric. 

 
 
1. Introduction 
.

Throughout we shall deal with nnC × , the space of nn×  complex matrices.  Let nC  be 
the space of complex n-tuples.  We shall index the components of a complex vector in 

nC  from 0 to .1−n   That is .),,,,( 1210 −= nuuuuu L  Let G be the Minkowski 
metric tensor defined by .),,,,( 1210 −−−−= nuuuuGu L  Clearly the Minkowski 

metric matrix ⎥⎦
⎤

⎢⎣
⎡=

−− 10
01

nI
G  and .2

nIG =  Minkowski inner product on nC  is 

defined by ,,),( ><= Gvuvu where >⋅⋅< ,  denotes the conventional Hilbert space 
inner product.  A space with Minkowski inner product is called a Minkowski space               
denoted as m.   With respect to the Minkowski inner product the adjoint of a matrix  

nnCA ×∈   is given by ,~ GGAA ∗=  where ∗A  is the usual Hermitian adjoint.  

Naturally we call a matrix nnCA ×∈  m-symmetric in Minkowski space if ,~ AA =  

and m-orthogonal if .~ IAA =   As in unitary space m-orthogonal matrices form a 

group.   For nnCA ×∈ ,  let )(),( ARArk  and )(AN  denote the rank, range space and 
null space of A respectively. 
 
Definition 1.1. gA  is said to be a generalized inverse (g-inverse) of A, if (1.1)  

.AAAA g =  
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Definition 1.2. rA  is said to be a reflexive g inverse of A  if  (1.2)  AAAAr =   and  

.rrr AAAA =  
 
Definition 1.3. nA   is a right (left) normalized g-inverse of A if (1.3) ,AAAn =  

nnn AAAA =  and  nAA  is  m-symmetric ( AAn  is  m-symmetric). 
 
Definition 1.4. MA is the Minkowski inverse of A if (1.4) ,AAAAM =  

,MMM AAAA =  MAA   and AAM  are  m-symmetric. 
 
 In the sequel we shall repeatedly used the following results. 
 
Theorem 1.5.  (Theorem 2.2 of [6])   For ,nnCA ×∈   the following are equivalent 

(1) A is range symmetric in m 
(2) GA is EP  
(3) AG is EP 
(4) )()( AGNAN =∗  

(5) )()( ~ARAR =  

(6) AKHAA ==~   for some non-singular matrices H and K.   
(7) .)()( GARAR =∗  

 
It is well known that in [8] for nnCA ×∈ , solution exits for equations (1.1) and 

(1.2).  In unitary space for nnCA ×∈ , since )()()( AArkAArkArk ∗∗ ==  solution 
exists for equation (1.3) and unique solution exists for equation (1.4) which is called                  
the Moore Penrose inverse of A[8].  However this fails in Minkowski space m, since  

.)()()( ~~ AArkAAArk ≠≠  In [5] equivalent conditions for the existence of 

Minkowski inverse for nnCA ×∈   has been obtained. 
 
 
2.  Range symmetric matrices 
 
A matrix nnCA ×∈  is said to be range symmetric in unitary space (or) equivalently A is 

said to be EP if )()( ∗= ANAN  (p.163 [1]).  For further properties of EP matrices one 
may refer [1, 2 & 7].  In [6], the concept of a range symmetric matrix in m is introduced 
and developed.  In this paper, conditions are obtained for sums of range symmetric 
matrices in m  to be range symmetric in m.  
 It is shown that the sum and parallel sum of parallel summable range symmetric 
matrices in m is range symmetric in m  
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for  ,,, nnn CyxCA ∈∈ ×  the Minkowski inner product 
 
 GyAxyAx ,),( =  

 GyAx ∗= ,  

 yGGAGx )(, ∗=  

 ),( ~ yAx=  
 

GGAA ∗=~   is the Minkowski adjoint of A. 
 
Definition 2.1. nnCA ×∈  is range symmetric in m  iff  ).()( ~ANAN =  
 
Lemma 2.2.  Let  .,,, 21

nn
m CAAA ×∈L   If  i

m
i AA 1=∑=   then ~

1 i
m
i AA =∑= . 

 
Proof.  By Definition ,~ GGAA ii

∗=  for ,,,2,1 mi L=  where G is Minkowski tensor 

of order  n.  To prove ~
1

~
i

m
i AA =∑= . 

 

Given  ∑
=

=
m

i
iAA

1
 

            GAAAGA m
∗+++=∴ )( 21

~ L  

  GAAAG m )( 21
∗∗∗ +++= L  

  ~~
2

~
1 mAAA +++= L  

      .
1

~~ ∑
=

=
m

i
iAA  

 
Lemma 2.3.    Let ,, 21

nnCAA ×∈  then  

(i) ~
1

~
2

~
21 )( AAAA =  and   

(ii) 1
~~

1 )( AA = . 
 
Proof.  By Definition      GAAGAA ∗= )()( 21

~
21  

    GAAG )( 12
∗∗=  

    ))(( 12 GGAGGA ∗∗=  nIG =∴ 2  

    ~
1

~
2 AA=  

 
 (ii) follows from (i). 
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 In the sequel, we shall make use of the following result obtained in [4]. 
 
Lemma 2.4.   Let nn

m CAAA ×∈,,, 21 L  and let i
m
i AA 1=∑=  consider the following 

conditions. 
 

(a) .,,2,1);()( miANAN i L=⊆    

(b) I
m

i
iANAN

1
)()(

=
=  

(c) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

mA
A
A

rkArk 2

1

)(      

(d) ∑ ∑
= =

∗ =
m

i

n

j
jAA

1 1
1 0  

(e) .)()(
1
∑
=

=
m

i
iArkark    

Then the following statement hold: 

 (i) conditions (a), (b), (c) are equivalent 
 (ii) conditions (d) implies (a) but not the converse. 
 (iii) conditions (e) implies (a) but not the converse. 
 

Theorem 2.5.  Let ),,2,1( miAi L=  be range symmetric in m.  If any one of the 

conditions of Lemma 2.4  holds, then  i
m
i AA 1=∑=  is range symmetric in m.  

 
Proof.  Since each iA  is range symmetric in m, by Definition 2.1, )()( ~

ii ANAN =  for 
each .,,2,1 mi L=    By the given condition 

 
,)()( iANAN ⊆  

 
we get 
 

.)()()(
1 1

~I I
m

i

m

i
ii ANANAN

= =
=⊆  

 
 
 
 
 



On Sums of Range Symmetric Matrices in Minkowski Space 141

Now,  
 

I
m

i
ii ANxANx

1

~~ ,)()(
=

∈⇒∈   for  1=i  to m. 

,0~ =⇒ xAi   for  1=i   to m. 

.0)( ~~
2

~
1 =+++⇒ xAAA mL  

0~ =⇒ xA    (By Lemma 2.2) 

 I
m

i
i ANAN

1

~~ )()(
=

⊆   

 I
m

i
i ANANAN

1

~~ )()()(
=

⊆⊆ and  )()( ~ArkArk =  implies   

 .)()( ~ANAN =   Thus I
n

i
iAA

1=
=  is range symmetric in m.  

 

Remark 2.7. The converse of the Theorem 2.5 is not true.  For ⎥⎦
⎤

⎢⎣
⎡=

00
01A , 

,
00
11
⎥⎦
⎤

⎢⎣
⎡= −B  ⎥⎦

⎤
⎢⎣
⎡=+

00
01BA  are range symmetric in  m but .)()( ANBAN ⊆/+  

 If A and B are range symmetric in m by Theorem 1.5; AHA 1
~ =   and 

,2
~ BHB =  where 21 , HH  are non-singular nn ×  matrices.  If 21 HH =   then 

)()( 1
~~~ BAHBABA +=+=+ .  Again by Theorem 1.5. BA +  is range 

symmetric in m.  If 21 HH −   is non-singular then the above conditions are also 
necessary for the sum of range symmetric to be range symmetric in m.  
 
Theorem 2.8.   Let A and B be range symmetric in  m AHA 1

~ =  and BHB 2
~ =  

such that 21 HH −  is a non-singular matrix.  Then BA +  is range symmetric iff  
.)()( BNBAN ⊆+  

 
Proof. Since AHA 1

~ =  and ,2
~ BHB =   A and B are range symmetric follows from 

Theorem 1.5.   Since  )()( BNBAN ⊆+  we can see that .)()( ANBAN ⊆+   Hence 
by Theorem 2.5, BA +  is range symmetric in m.  
 
 Conversely, let us assume that BA +  is range symmetric in m.  Now by Theorem 

1.5, BHAHBABA 21
~~~)( +=+=+   
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 BHAHBAH 21)( +=+  
 BHHAHH )()( 21 −=−  
 LBTA =  
 
where, HHT −= 1  and 2HHL −=   such that  .21 HHLT −=+  

 
LALBLATA +=+  

)()( BALALT +=+  

 
 By hypothesis 21 HHLT −=+  is non-singular.  )( BAN +  )]([ BALN +⊆  

.)(])[( ANALTN =+=  Similarly we can see that .)()( BNBAN ⊆+   Thus 
BA +  is range symmetric in m implies )()( ANBAN ⊆+  and .)(BN   Hence the 

Theorem. 
 
 
3.  Parallel summable range symmetric matrices  
 
In this section we shall show that the sum and parallel sum of parallel summable range 
symmetric matrices in m are range symmetric.  First we shall give the Definitions and 
some properties of parallel summable (p.s) matrices (p.188 [9]). 
 
Definition 3.1. For complex matrices A and B are said to be p.s in unitary  space                
if )()( BNBAN ⊆+  and )()( ∗∗ ⊆+ BNBAN  (or) Equivalently )( BAN +  

)(AN⊆  and .)()( ∗∗ ⊆+ ANBAN  
 
Definition 3.2. If A and B are p.s then parallel sum of A and B denoted by BA :  is 

defined as .)(: BBAABA −+=  
 
 [The product BBAA −+ )(  is invariant for all choices of generalized inverse 

−+ )( BA  of BA +  under the conditions that A and B are p.s. (p.21 [9])]. 

 In general for any ,nnCA ×∈  )()( ~* ANAN ≠  for instance let                  

⎟
⎠
⎞

⎜
⎝
⎛=

11
11A , ⎟

⎠
⎞

⎜
⎝
⎛=∗

11
11A ; ⎟

⎠
⎞

⎜
⎝
⎛==
−

−∗
11
11~ GGAA  ;:)(

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==∗

x
x

yyAN  

.:)( ~

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

x
x

yyAN   Therefore .)()( ~ANAN ≠∗  
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Lemma 3.3.  Let A and B be matrices in m. Then )()( ∗∗ ⊆ BNAN  iff  

.)()( ~~ BNAN ⊆  
 
Proof.  Let us assume that  )()( ∗∗ ⊆ BNAN .   We need to prove .)()( ~~ BNAN ⊆   
Let us choose 
 
 0)( ~~ =⇒∈ xAANx  

 0=⇒ ∗GxGA  

 0=⇒ ∗GxA  

 0=⇒ ∗ yA    where  Gxy =  

 )()( ∗∗ ⊆∈⇒ BNANy    

 0=⇒ ∗ yB  

 0=⇒ ∗GxB  

 0~ =⇒ xB  

 .)( ~BNx ∈⇒   Thus  )()( ~~ BNAN ⊆  
 
 Conversely let us assume that .)()( ~~ BNAN ⊆   We need to show that 

.)()( ∗∗ ⊆ BNAN   Let us choose 
 
 0)( =⇒∈ ∗∗ xAANx  

  0)( =⇒ ∗ GxGGA   [By ]2 InG =  

  0~ =⇒ GxA  

 0~ =⇒ yA    where  Gxy =  

 )()( ~~ BNANy ⊆∈⇒  

 0~ =⇒ yB  

 0=⇒ ∗GGxGB  

 0=⇒ ∗xGB  

 0=⇒ ∗xB  

 .)( ∗∈⇒ BNx  
 

Thus .)()( ∗∗ ⊆ BNAN   Hence the Lemma. 
 
 By using Lemma 3.3, Definition 3.1 can be modified as follows. 
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Definition 13. ′ . A pair of matrices A and B are said to be p.s. in m if 
)()( BNBAN ⊆+  and )()( ~~ BNBAN ⊆+  or equivalently )()( ANBAN ⊆+  and 

.)()( ~~ ANBAN ⊆+  
 
Properties.  Let A and B a pair of p.s. matrices in m.  Then the following holds. 
 
 P.1 : BA :  
 P.2 : ~A  and ~B  are p.s. in m  and .:):( ~~~ BABA =  
 P.3  : If U  is non-singular then UA and UB are p.s. and ):(: BAUUBUA =  
 P.4 : )()():( BNANBAN +=  
 
Proof. P.1, P.3 and P.4, have been proved in (P.188 [9]).  Here we shall prove only P.2, 
A and B are p.s. in m.  ~A  and ~B  are p.s. in  m  follows from Lemma 2.2 and            
Lemma 2.3. 
 
 ~~ : BA   ~~~~~ )( BBAA +=      [By Definition 3.2] 

 ~~~ ])([ BBAA −+=      [By Definition 2.2] 

 ~~~ ])([ BBAA −+=  

 ~])([ ABAB −+=  [By Lemma 2.3] 

 ~])([ BBAA −+=  [By P.1] 

  ~]:[ BA=  
 
Lemma 3.4.  Let A and B be range symmetric in m.  Then A and B are p.s. range 
symmetric in m  iff .)()( ANBAN ⊆+  
 
Proof. A and B are parallel summable, by Definition 3.1, it follows that 

.)()( ANBAN ⊆+  
 Conversely, if ,)()( ANBAN ⊆+  then .)()( BNBAN ⊆+   Since A  and B are 
range symmetric in m.  BA +  is range symmetric in m by Theorem 2.5.  Hence 

~)()( BANBAN +=+  and )()( ANBAN ⊆+  implies .)()( ~~ ANBAN ⊆+  
Therefore by Definition 1.3 ′  A and B are p.s. range symmetric in m.  Hence the Lemma. 
 
Remark 3.5.  Lemma 3.4 fails if we relax the condition that A and B are range symmetric 

in m. Let ⎥⎦
⎤

⎢⎣
⎡=

00
01A   be range symmetric in m, ⎥⎦

⎤
⎢⎣
⎡=

01
00B  is not range symmetric 
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in m. ,
00
01~
⎥⎦
⎤

⎢⎣
⎡=A  ,

0  0
10~
⎥⎦
⎤

⎢⎣
⎡= −B  ,

01
01
⎥⎦
⎤

⎢⎣
⎡=+ BA  .)(

00
11~
⎥⎦
⎤

⎢⎣
⎡=+ −BA   

)()( ANBAN ⊆+  and )(BN  but )()( ~~ ANBAN ⊆/+  and  .)( ~BN   Hence A 
and B are not p.s. 
       
Theorem 3.6.  Let A and B be p.s. range symmetric in m.  Then BA :  and BA +  are 
range symmetric in m.  
 
Proof. Since A and B are p.s. range symmetric in m. )()( ANBAN ⊆+  and 

,)()( BNBAN ⊆+  follows from Lemma 3.4.  Now the fact that BA +  is range 
symmetric in m follows from Theorem 2.5. BA :  is range symmetric in m runs as 
follows. 
 

 ~):( BAN  ):( ~~ BAN=     [By P.2] 

 )()( ~~ BNAN +=    [By P.4] 
 )()( BNAN +=  [By definition 2.1] 
 ):( BAN=     [By P.4] 
 
Thus BA :  is range symmetric in  m whenever A and B are p.s. range symmetric in m.  
Hence the Theorem. 
 

Definition 3.7.   Let ⎥⎦
⎤

⎢⎣
⎡=

DC
BAM   be an nn×  matrix.  The schur complement of                 

A  in M, denoted by M/A is defined as ,BCAD −−  where −A  is a generalized inverse 
of  A (p.291 [3]). 
 
Theorem 3.8.  Let A and B be range symmetric in m of rank 1r  and 2r  respectively, such 
that .)()( BNBAN ⊆+   Then there exists a nn 22 ×  range symmetric matrix M of 
rank r, with schur complement of C in M is EP, where ,21 rrr =+ .BAC +=    
 
Proof. Since A and B are range symmetric in m, by Theorem 1.5 GA and GB are 1PrE  
and  2PrE  matrices.  By Theorem 1 [7] there exists unitary matrices U and V of order n, 

such that DUUGA ∗= and  ,EVVGB ∗=  where 
 

  ⎥
⎦

⎤
⎢
⎣

⎡
=

00
0H

D ,  H  is  11 rr × , non-singular matrix 

  ⎥
⎦

⎤
⎢
⎣

⎡
=

00
0K

E ,   K  is 22 rr × , non-singular matrix 
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Let us define  .0
⎥⎦
⎤

⎢⎣
⎡=

IU
VP   

 

Now   ⎥
⎦

⎤
⎢
⎣

⎡∗

D
E

P
0

0
   ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∗∗

IU
V

D
E

I
UVP

0
0

0
  0

  

 ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∗∗

IU
V

D
DUEV 0

0
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
= ∗

∗∗∗

UGAUUGA
GAUDUUEVV

                   
     

 M
UGAUUGA
GAUGBGA

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
= ∗

∗

      
     

 
M   is  nn 22 ×  matrix,  .)( 21 rrrErkDrkMrk =+=+=  
   

Let us define ⎥
⎦

⎤
⎢
⎣

⎡
=

−− nIU
G

Q
  0

,  Q  is non-singular matrix. 

 
 Since A and B are range symmetric in m and GA, BG are EP by Theorem 1.5 and 

∗UGAU  is  EP [2], we can express  M  as follows. 
 
 

  Q
UGAU

BG
QM ⎥

⎦

⎤
⎢
⎣

⎡
= ∗

∗

0
0

 

 ⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

= ∗

∗

nn IU
G

UGAU
BG

I
UG 0

0
0

0
 

 ⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

= ∗

∗

nIU
G

UGAU
GAUGBG 0

0
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
= ∗

∗

∗

∗

UGAUUGA
GAUBAG

UGAUUGA
GAUGAGBM )(  (3.1) 

 

 Since BG, ∗UGAU are EP, Q is non-singular, M  is EP.   Since M   is of ,rrk  M   

is .PrE   Thus we have proved the existence of the EP matrix .M   Define MGM =   

where G  is Minkowski tensor of order 2n. 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
⎥
⎦

⎤
⎢
⎣

⎡
−

== ∗

∗

UGAUUGA
GAUBAG

I
G

MGM
n

)(
0

0
 

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
+

= ∗

∗

∗

∗

UGAUUGA
AUC

UGAUUGA
AUBAM  (3.2) 

 

By Theorem 1.5  M is range symmetric in m of rank r.  The schur complement of C in   
M is 

 
  ∗−∗ ++−= AUBAUGAUGAUCM )(/  

 ∗−∗−∗ +−+++−= AUBAUGBAUBAGBGAUUGAU )()()(  

 ∗−∗∗ +−+−= AUBAUGBUGAUUGAU )(  

 ∗−= UABUG ):(   [By Definition 3.2] 

 ∗−= UBAUG ):(   [By P.1] 

 ∗−= UGBGAU ):(   [By P.3] 
 
Since A, B are range symmetric in m, GA, GB are EP by Theorem 1.5.  By Theorem 4 of 
[4] GBGA :   is  EP.   Therefore ∗− UGBGAU ):(  is EP.  Hence CM /  is  EP. 
 
Theorem 3.9.  A and B are range symmetric in m satisfying the conditions of          
Theorem 3.8, then GCMGCM // + , where G, G  are Minkowski tensor of order n and 

n2  respectively. 
 
Proof. From (3.1), the schur complement of GC in M  is 
 
 ∗−∗ +−= GAUBAGUGAUGAUGCM ])([/  

∗−∗−∗ ++++−= GAUBAGUGBGAUBAGGBGAUUGAU )]([)]([)(
∗−∗∗ ++−= AUBAUGBUGAUUGAU )(  

∗= UABUG ):(  [By Definition 3.2] 
∗= UBAUG ):(  [By P.1] 
∗= UGBGAU ):(  [By P.3] 
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Since  ,MGM =  .MGM =   From (3.2)  ∗−= UGBGAUCM ):(/ . 

Now  ∗== UGBGAUGCMGGCM ):(// . 

Hence  .0// =+ GVMGCM  
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