
 BULLETIN of the Bull. Malaysian Math. Sc. Soc. (Second Series) 25 (2002)  163-171 
     MALAYSIAN  

MATHEMATICAL  
     SCIENCES  

     SOCIETY 
 
 
 

The Hahn Sequence Space-III 
 

1K. CHANDRASEKHARA RAO AND  2N. SUBRAMANIAN 
1Department of  Mathematics, Mohamed Sathak Engineering College, Kilakarai - 623 806, India 

2Department of Mathematics, Shanmugha Arts, Science, Technology and Research Academy,                       
Deemed University, Tanjore - 613 402, India 

1e-mail:  kcraoin2002@yahoo.co.in  and   2e-mail:  nsmaths@yahoo.com  
 
 

Abstract.   The purpose of this article is to introduce a new class of sequence spaces, namely     
semi-Hahn spaces.  It is shown that the intersection of all semi-Hahn spaces is the Hahn space.        
There are already semi-conservative and semi-replete spaces in literature.  However, there is no 
relation among these spaces.  Some properties of the Hahn space which are not included in [2] and 
[3] are given, before introducing semi-Hahn spaces.   In fact, conditions for inclusion of the Hahn 

space h in an FK-space, AB-property of  h, and inclusion of the distinguished subspace )(hB+  are 
studied. 

 
 

1.   Introduction 
 
This paper is a continuation of the papers by K. Chandrasekhara Rao [2] and by                   
K. Chandrasekhara Rao and T.G. Srinivasalu [3].  
 
We use the following notation: 
A (complex) sequence whose thk  term is kx  will be denoted by .or  )( xxk  
Let 
 
    Φ    =  the set of all finite sequences. 

 ∞    =   the Banach space of all bounded sequences . 

    w      =   all complex sequences. 

 cs     =    the Banach space of all sequences )( kxx =  such that                        

kk x∞
=∑ 1  converges.   

 

    bs     =    the Banach space of all sequences )( kxx =  such that 

exists sup 1
   )(

k
n
k

n
x=∑ . 
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    bv   = the Banach space of all sequences )( kxx =  such that  

 11 +
∞
= −∑ kkk xx  converges. 

 
   ( )∞σ   =  the  Cesàro space of  ∞  

               = 
⎭
⎬
⎫

⎩
⎨
⎧

=
++

=∈ ∞ ,3,2,1for  
+

 ,)(:)( =   21
) k

k
xxx

yyxx k
kkk . 

 
 h      =  The Hahn space is the BK space of all sequences  )( kxx =  such that 

11 +
∞
= −∑ kkk xxk  converges and 0 lim =

∞→
kk

x .   

    The norm on h  is given by  ∑
∞

=
+−=

1
1

k
kk xxkx  

                                                     ∑
∞

=
Δ=

1k
kxk  

  where      .,3,2,1,)( 1 =−=Δ + kxxx kkk   
 
Given a sequence )( kxx =  its nth section is the sequence 

},0,0,, ,{ 1
)(

n
n xxx = . 

 

{ },0,0,1,,0,0)( =kδ   for ,3,2,1=k . 

         thk  place 
 

We recall  the following definitions (see [1] ). 
  

An FK-space is a locally convex Fréchet space which is made up of sequences and 
has the property that coordinate projections are continuous.  
 A BK-space is a locally convex Banach space which is made up of sequences and 
has the property that coordinate projections are continuous. 
 A BK-space X is said to have AK (or Sectional convergence) if and only if        

0|||| )( →− xx n  as  [ ]5∞→n . 
 
 Let X be an FK-space.   A sequence )( kx  in X is said to be weakly Cesàro bounded  

if { }k
xfxfxf k )()()( 21 +++   is bounded for each  Xf ′∈ ,  the dual space of X. 

  The space X  is said to have AD (or) be an AD space if Φ  is dense in X. 
 
We note that    

AK ⇒AD   by  [8] . 
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 An FK-space Φ⊃X  is said to have AB if )( )(nx  is a bounded set in X  for each  
.Xx ∈  

 Let X be a BK-space.  Then X  is said to have monotone norm  if |||||||| )()( nm xx ≥  

for nm >  and ||||sup|||| )(

)(

n

n
xx = . 

 Let X be an FK-space Φ⊃ .   Then  
 

}in   bounded is )(:{)( )(  XzwzXBXB nf ∈=== ++ γ  

    }   )((:{ )( Xfbsfzwz n
n ′∈∀∈∈= δ  

 
Also  we write 
 

.XBB ∩+=  
 
Let X  be a BK-space.   Then X  is an AB-space if and only if  .XB =   Any space 
with monotone norm has AB (see Theorem 10.3.12 of [1] )          
 
If X is a sequence space, we define 
 
 (i)  . of dual  continuous the XX =′   

 (ii) ∑
∞

=
∈∞<==

1
};each for  ,:)({

k
kkk  XxxaaaX α  

(iii) ∑
∞

=
∈==

1
};each   for   ,convergent is  :)({

k
kkk XxxaaaX β  

(iv)  sup:)({
1)(
∑
=

==
n

k
kk

n
k xaaaX γ }.each  for     , Xx ∈∞<  

(v)  Let X  be an FK-space  .Φ⊃  Then }.:)({( )( XffX nf ′∈= δ  

           , , βα XX γX   are called the  

           α  -  (or Köthe-Toeplitz), dual of X. 
          β  -  (or generalized Köthe-Toeplitz), dual of X. 

         γ   -  dual of X.   
 

fX is called the f-dual of X.  Note that .γβα XXX ⊂⊂  
If  .or    , , for    ,    then   γβαμμμ =⊂⊂ XYYX  
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Lemma 1.   (See Theorem 7.2.7. in [1]).  Let X  be an FK-space .Φ⊃    Then   

 (i) .fXXX ⊂⊂ γβ  
 (ii) If  X has AK, .fXX =β  

 (iii) If X has AD, .γβ XX =  
 
 The following facts reveal the importance of the Hahn sequence space: 
 
 1.  The Hahn sequence is the smallest semi replete space (see [3]). 
 

 2.  The Hahn sequence space is an example of a Banach space which is not rotund 
(see Proposition-2 of [2]). 

 

 3.    dhdbv =∩0  

       where  ∑
∞

=
∞==

1
}.<:)({

k

k
k k

x
xxd        

 

                 :)({
1

10 ∞<−== ∑
∞

=
+

k
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                 ∑
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x
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kxxdh  and  }0lim
k

=
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kx  

(See Theorem 3.2 of [5]). 
 
       As pointed out by Wilansky in [1], because of the historical roots of summability in 
convergence, conservative space and matrices play a special role in its theory.  However, 
the results seem mainly to depend on a weaker assumption, that the spaces be semi 
conservative. 
 Snyder and Wilansky introduced the concept of semi conservative spaces in [6].   
Snyder studied the properties of semi conservative spaces in [7].  Later on, in the             
year 1996  K. Chandrasekhara Rao and T.G. Srinivasalu introduced the semi replete 
spaces in [3]. 
       Given the Hahn sequence space h  it is our aim to find a sequence space X  such 
that  h  is the intersection of all such X .   Such a space X  is called a semi-Hahn space.   
       Thus semi-Hahn spaces are introduced and their properties are studied. 
 
       As  a prelude, some properties of the Hahn sequence space are also given for the 
sake of completeness of the paper.  These properties did not appear in [2] and [3]. 
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2. Results 
 
Lemma 2.   .)(   = ∞σfh    
 
Proof:  )( ∞= σβh  by Theorem 3.1 in [5].   But h has AK.  (see Goes and Goes [5]).  

Hence .fhh =β   Therefore .)( ∞= σfh  This completes the proof. 
 
Theorem 1.   Let Y be any FK-space ⊃ Φ .  Then hY ⊃  if and only if  the sequence 

}{ )(kδ  is weakly Cesàro bounded. 
 
Proof.   We know that h  has AK.  But every AK-space is AD (see [8]).  Now the 
following implications establish the result. 
 

ff hYhY ⊂⇔⊃   since  h  has AD and hence by using Theorem 8.6.1 of [1]. 

)( ∞⊂⇔ σfY  by Lemma 2. 

 ⇔  for each Yf ′∈ ,  the topological dual of Y, )()( )(
∞∈ σδ kf . 

 ⇔  ∞∈
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ++++

k
ffff k )()()()( )()3()2()1( δδδδ

. 

 ⇔  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ++++

k
ffff k )()()()( )()3()2()1( δδδδ

  is bounded. 

 ⇔  The sequence }{ )(kδ  is weakly Cesàro bounded.   This completes the 
proof. 
 
Theorem 2.   Suppose that  h  is a closed subspace of an FK-space X.   Then  

.)( hXB ⊂+  
 
Proof. Note that 0c  has AK.  Hence )( 0cσ  has AK.  Consequently )( 0cσ  has AD.  

Therefore by Lemma 1, [ ] .])([)( 00
γβ σσ cc =   By Theorem 10.3.5 of [1] we have 

 
  )()( hBXB ++ =  

  γfh=  

  γ)( fh=   { }γσ )( ∞= , by Lemma 2.But  
βγγ σσσ ))(())(())(( 00 cc =⊂∞  and .))(( 0 hc =βσ  (see page 97 of [5]).  Hence  

.)( hXB ⊂+   This completes the proof. 
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Theorem 3.  Let X be an AK-space .Φ⊃   Then hX ⊃  if and only if  .)( hXB ⊃+  
 
Proof.  (Necessity).  Suppose that .hX ⊃  Then 
 
 )()( hBXB ++ ⊃  (3.1) 
 
by the monotonicity Theorem 10.2.9 of [1].  By Theorem 10.3.4 of [1] we have 
 
 hhhB f ==+ γ)(  (3.2) 
 
From (3.1) and (3.2) we obtain .)()( hhBXB =⊃ ++  

(Sufficiency).  Suppose that .)( hXB ⊃+   We have 
 
 γγ )]([ XBh +⊃  (3.3) 
 
But  h  has AK and so  h  has AD.   Therefore 
 
 fhhh == γβ  (3.4) 
 
But always  
 γfXXB =+ )(  (3.5) 
 
From (3.3) and (3.5) fff XXXh ⊃=⊃ γγγγγ )()( .  Thus from (3.4) .ff Xh ⊃   
Now by Theorem 8.6.1 of [1]; since h has AD we conclude that .hX ⊃   This 
completes the proof. 
 
Theorem 4.   The space h  has monotone norm. 
 
Proof.   Let .nm >   It follows from 
 

mmmnnnnn xxxxxxxx +−++−+−≤ −+++ 1  2  1  1   . . .  
 
that 
 

( ) ( ) ( )  
1  1  

1  
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1  1. . . m
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k
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The sequence )||||( )(xx  being monotone increasing, it thus follows from )(lim n

n
xx

∞→
=   

that  
( )

( )
( ) . suplim

  

  
  

n

n

n
n

xxx ==
∞→

 

 
This completes the proof. 
                                                                   
Definition.   An FK-space X is called “semi-Hahn” if  .)( ∞⊂ σfX   In other words 

 
  Xff k ′∈∀∈ ∞ )()( )( σδ . 

 

 ∞∈
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ +++

⇔
k

fff k )()()( )()2()1( δδδ  

 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ +++

⇔
k

fff k )()()( )()2()1( δδδ  is bounded for each .Xf ′∈  

 
 
Example.   The Hahn space is semi-Hahn.  Indeed, if h be Hahn space, then by               
Lemma 2, .)( ∞= σfh  
                                                                   
We recall  
Lemma 3. (4.3.7 of  [1] ).  Let  z  be a sequence.  Then ),( pz β  is an AK space with 

),2,1,0:( == kpp k  where 
 

 . )(  ,  sup)(
1 

0 nn

m

k
kk

m
xxpxzxp == ∑

=
 

 
For any k such that kk pz ,0≠  may be omitted.  If 0, pz Φ∈  may be omitted. 
 
Theorem 5.  βz  is semi-Hahn if and only if .)( ∞∈ σz  
 
Proof. 

Step 1.  Suppose that βz is semi-Hahn. βz  has AK by Lemma 3.  Hence .fzz =β   

Therefore fzz )( βββ =  by Theorem 7.2.7 of [1].  So βz  is semi-Hahn if and only if 

.)( ∞⊂ σββz   But then .)( ∞⊂∈ σββzz  
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Step 2.   Conversely,  let .)( ∞∈ σz   Then ββ σ )}({ ∞⊃z and ββββ σ )}({ ∞⊂z  

)( ∞== σβh .  But βββ zz f =)( .  Hence )()( ∞⊂ σβ fz βz⇒  is semi-Hahn.  
This completes the proof. 
 
Theorem 6.  Every semi-Hahn space contains h. 
 
Proof.  Let X be any semi-Hahn space.   
 
 .)( ∞⊂⇒ σfX  

 Xff k ′∈∀∈⇒ ∞ )()( )( σδ . 

 { })(kδ⇒   is weakly Cesàro bounded w.r. to X. 

 hX ⊃⇒  by Theorem 1. 
 
This completes the proof. 
 
Theorem 7.  The intersection of all semi-Hahn spaces is h. 
 
Proof.  Let  I  be the intersection of all semi-Hahn spaces.  Then the intersection 
 

  { })(: ∞∈⊂ ∩ σβ zzI  

  { }βσ )( ∞=  

  h=  (7.1) 
 
By Theorem 6, 

 
 Ih ⊂  (7.2) 

 
From (7.1) and (7.2) we get 
 
 .hI =   
 
This completes the proof. 
 
Corollary.   The smallest semi-Hahn space is  h. 
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