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Abstract. The purpose of this article is to introduce a new class of sequence spaces, namely
semi-Hahn spaces. It is shown that the intersection of all semi-Hahn spaces is the Hahn space.
There are already semi-conservative and semi-replete spaces in literature. However, there is no
relation among these spaces. Some properties of the Hahn space which are not included in [2] and
[3] are given, before introducing semi-Hahn spaces. In fact, conditions for inclusion of the Hahn

space h in an FK-space, AB-property of h, and inclusion of the distinguished subspace BF (h) are
studied.

1. Introduction

This paper is a continuation of the papers by K. Chandrasekhara Rao [2] and by
K. Chandrasekhara Rao and T.G. Srinivasalu [3].

We use the following notation:
A (complex) sequence whose k™ term is X, will be denoted by (x, ) or x.
Let

0] = the set of all finite sequences.

L., = the Banach space of all bounded sequences .

w = all complex sequences.

cs = the Banach space of all sequences x = (x,) such that
o1 X, converges.

bs = the Banach space of all sequences x = (x,) such that

sup ‘Zﬂzl xk‘ exists .
(n)
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bv = the Banach space of all sequences x = (x,) such that

Y| X = Xeua| converges.

o(¢,) = the Cesarospaceof ¢

XXt X o k2123 }
k ] 1 1 .

= { X = (%) (Vi) € Lo, Yy =
h = The Hahn space is the BK space of all sequences x = (x,) such that
Y k| X = Xy,q| converges and lim x, = 0.
—o©

The normon h is givenby | x| = i KX = Xyl
k=1

= k|ax|

k=1
where  Ax, = (X¢ — Xgu1), kK =12,3,---.

Given a  sequence X = (Xy) its nth section is the sequence
xM = {x;, -, X,, 0, 0, ---}.

s®=1{0,0,---,1,0,0,---} fork =1, 2,3, ---.
k™ place

We recall the following definitions (see [1] ).

An FK-space is a locally convex Fréchet space which is made up of sequences and
has the property that coordinate projections are continuous.

A BK-space is a locally convex Banach space which is made up of sequences and
has the property that coordinate projections are continuous.

A BK-space X is said to have AK (or Sectional convergence) if and only if

| xX™ - x| - 0as n— [5].

Let X be an FK-space. A sequence (x,) in X is said to be weakly Cesaro bounded

if {f(xl) i f(XZ)k+ S f(xk)} is bounded for each f e X', the dual space of X.

The space X is said to have AD (or) be an AD space if @ is dense in X.

We note that
AK = AD by [8].
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An FK-space X > @ is said to have AB if (x() is a bounded set in X for each
X e X.

Let X be a BK-space. Then X is said to have monotone norm if ||x(™ || > ||x™ ||

for m > n and ||x|| = sup || x™ ||.
(n)

Let X be an FK-space > ®. Then
B* = X'7 =B*(X) ={z e w: (z") isbounded in X}
—{zew:(z,f6M)ebs Vv feX?}
Also we write
B=B"N X.

Let X be a BK-space. Then X is an AB-space if and only if B = X. Any space
with monotone norm has AB (see Theorem 10.3.12 of [1] )

If X is a sequence space, we define

(i) X' = thecontinuous dual of X.

(i) X% ={a=(a): |ax] <o foreach x e X};
k=1

(i) X? ={a-= (ay) : z a, X, isconvergent, foreach x e X};
k=1

n
Zak Xk

k=1

(iv) X7 ={a=(a): stjr))

(v) Let X beanFK-space >®. Then X ' = {(f(6™): f e X'}
X% X#, X7 arecalled the

< oo, for each x € X}.

a - (or Kéthe-Toeplitz), dual of X.
B - (or generalized Kothe-Toeplitz), dual of X.
e

- dual of X.

X s called the f-dual of X. Notethat X% = X# < X 7.
If X <Y then Y# < X#, for u=a,p, or y.
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Lemmal. (See Theorem 7.2.7.in[1]). Let X be an FK-space > ®. Then
(i) XPcex’cx’.

(i) If XhasAK, X? = x ',

(iii) IfXhasAD, X? =X7.

The following facts reveal the importance of the Hahn sequence space:

1.  The Hahn sequence is the smallest semi replete space (see [3]).

2. The Hahn sequence space is an example of a Banach space which is not rotund
(see Proposition-2 of [2]).

3. by, ndl=dh
where  d/ = {x = (x,) : i' A
k=1
bvy = {x = (x¢) : i |xk - xk+1| < o and lim=0} x,
=1 k—o0

X :
kil < o and lim x, = 0}
1 k—o

dh = {x=(x): 3 K e
k=1

(See Theorem 3.2 of [5]).

As pointed out by Wilansky in [1], because of the historical roots of summability in
convergence, conservative space and matrices play a special role in its theory. However,
the results seem mainly to depend on a weaker assumption, that the spaces be semi
conservative.

Snyder and Wilansky introduced the concept of semi conservative spaces in [6].
Snyder studied the properties of semi conservative spaces in [7]. Later on, in the
year 1996 K. Chandrasekhara Rao and T.G. Srinivasalu introduced the semi replete
spaces in [3].

Given the Hahn sequence space h it is our aim to find a sequence space X such
that h is the intersection of all such X . Such a space X is called a semi-Hahn space.

Thus semi-Hahn spaces are introduced and their properties are studied.

As a prelude, some properties of the Hahn sequence space are also given for the
sake of completeness of the paper. These properties did not appear in [2] and [3].
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2. Results
Lemma2. h' = & (¢,).

Proof: h” = o(¢,)) by Theorem 3.1 in [5]. But h has AK. (see Goes and Goes [5]).
Hence h” = h'. Therefore h' =& (¢,). This completes the proof.

Theorem 1. LetY be any FK-space D ® . Then Y o h if and only if the sequence
{5"} is weakly Cesaro bounded.

Proof. We know that h has AK. But every AK-space is AD (see [8]). Now the
following implications establish the result.

Y oh < Y" < h' since h has AD and hence by using Theorem 8.6.1 of [1].
s YP co(r,) by Lemma2.
< foreach f e Y’, the topological dual of Y, f(6™) € o(¢,.).

0 "

- { FE9) + £(5@) + L(5(3)) M- f(5<k>)} _,

- { FEDQ) + £(6P) + £(6D) + - + (W)

} is bounded.
k

< The sequence {5™} is weakly Cesaro bounded. This completes the
proof.

Theorem 2.  Suppose that h is a closed subspace of an FK-space X.  Then
B*(X) < h.

Proof. Note that ¢, has AK. Hence o(c,) has AK. Consequently o(c,) has AD.
Therefore by Lemma 1, [o(c,) |” = [o(cy)]”. By Theorem 10.3.5 of [1] we have

B*(X) = B"(h)

=hfr

=(h"y ={o(t,)}”, by Lemma  2.But
(0(t,))” < (o(cy))” =(o(cy))” and (o(cq))” = h. (see page 97 of [5]). Hence

B*(X) < h. This completes the proof.
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Theorem 3. Let X be an AK-space>®. Then X o h ifandonlyif B*(X) o h.
Proof. (Necessity). Suppose that X o> h. Then

B*(X) o B*(h) (3.2)
by the monotonicity Theorem 10.2.9 of [1]. By Theorem 10.3.4 of [1] we have

B*(h) = h'” =h (3.2)

From (3.1) and (3.2) we obtain B*(X) > B*(h) = h.
(Sufficiency). Suppose that B*(X) o h. We have

h” o [B*(X)]” (3.3)
But h has AK and so h has AD. Therefore
h? =h” =hf (3.9)

But always
B*(X) = X" (3.5)

From (3.3) and (3.5) h” (X )" = (X ") = X'. Thus from 3.4) h" > x ',
Now by Theorem 8.6.1 of [1]; since h has AD we conclude that X > h. This
completes the proof.

Theorem 4. The space h has monotone norm.

Proof. Let m > n. It follows from
|Xn| < |Xn = Xj +l| + |Xn a — Xna2l oo F Xy — Xm| + |Xm|

that

g

n-1
< (I(Zk|xk — Xy +1|j + 0[Xy = Xg | Hoot (M=D)[ Xy 3 =Xy | + M| Xp| = “x(m )”
=1
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The sequence (]|x™ ||) being monotone increasing, it thus follows from x = lim x™

n—ow

that

Ix|| = tim ”x(” )

n —oo

| = sup |

This completes the proof.

Definition. An FK-space X is called “semi-Hahn™ if X f e o(l,). Inother words

f6)eo(,)V feX'.

- { f(5@)+ f(5(2|i)+...+ f(5<k>)} .

- { FEDY+ £ (5P) 4ot £(50)

" } is bounded for each f e X'.

Example.  The Hahn space is semi-Hahn. Indeed, if h be Hahn space, then by
Lemma2, h' = o(r,).

We recall
Lemma 3. (4.3.7 of [1]). Let z be a sequence. Then (z”, p) is an AK space with
p=(p:k=012--) where

Po(X) = sup P () =[xl
m

m
D Ik X
k=1

For any k such that z, = 0, p, may be omitted. If z € ®, p, may be omitted.

Theorem 5. z# issemi-Hahn ifand onlyif z € o (7,)).

Proof.

Step 1. Suppose that z” is semi-Hahn. z” has AK by Lemma 3. Hence z” = z'.
Therefore 2 = (z”)" by Theorem 7.2.7 of [1]. So z” is semi-Hahn if and only if

# < o(r,). Butthen z € 2% < o(0.).
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Step 2. Conversely, let z € o(¢,)). Then z# > {o(¢, )} and z# < {o(¢.,)}"
=h? =o(r,). But (z%)" = z#. Hence (z°)" < o(¢,) = 27 is semi-Hahn.
This completes the proof.

Theorem 6. Every semi-Hahn space contains h.
Proof. Let X be any semi-Hahn space.

= X' c o(l,).

= f(6W)eo(,)V feX'.

= {5(k) } is weakly Cesaro bounded w.r. to X.

= X > h by Theorem 1.

This completes the proof.
Theorem 7. The intersection of all semi-Hahn spaces is h.

Proof. Let | be the intersection of all semi-Hahn spaces. Then the intersection

I <N {zﬁ: ZGO'(ZOO)}

= {o(t.)y
=h (7.1)

By Theorem 6,
hcl (7.2)

From (7.1) and (7.2) we get

This completes the proof.

Corollary. The smallest semi-Hahn space is h.
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