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Abstract. We present a numerical method of conformal mappings of unbounded                       
multiply-connected domains exterior to closed Jordan curves onto the three types of canonical  
domains of Nehari, i.e., the parallel slit domain, the circular slit domain and the radial slit domain.  
In the method, we express the mapping functions in terms of a pair of conjugate harmonic functions 
and approximate them, using the charge simulation method, by a linear combination of complex 
logarithmic functions.  The method is simple without integration and suited for domains with curved 
boundaries.  In particular, approximate mapping functions of an unbounded multiply-connected 
domain onto the three types of slit domains are obtained in a unified way by solving linear equations 
with a common coefficient matrix.  A typical example shows the effectiveness of the method. 
 
 

1. Introduction 
 
The numerical conformal mapping has been an attractive subject in computational 
mathematics [6, 10, 14, 24].  We are here concerned with conformal mappings of an 
unbounded multiply-connected domain exterior to closed Jordan curves, which is shown 
in Figure 1, onto the three types of canonical domains of Nehari [17], i.e., (a)  the parallel 
slit domain, (b) the circular slit domain and (c) the radial slit domain, which are shown in 
Figure 2.  They are familiar in science and engineering, particularly in two-dimensional 
potential flow problems, though simple method of computation has not been available.  
We present a numerical method for computing these conformal mappings using the 
charge simulation method, which is simple without integration and suited for domains 
with curved boundaries.  In particular, approximate mapping functions onto the three 
types of slit domains are obtained in a unified way by solving linear equations with a 
common coefficient matrix. 
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Figure 1.  An unbounded multiply-connected problem domain in the z-plane, together with charge points  
and collocation points used in the charge simulation method. 

  
 

 
 

             (a)                   (b)                  (c) 
 

Figure 2.  The unbounded canonical domains of Nehari [17], i.e.,  
(a) the parallel slit domain,  (b) the circular slit domain and (c) the radical slit domain 

 

 The charge simulation method is originally a solver for the Laplace equation 
.]20,18,16,15,13[  It approximates the solution by a linear combination of logarithmic 

potentials or fundamental solutions of the Laplace operator 
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where iQ  are unknown real coefficients (called the charges) and iζ  are given points 

(called the charge points) outside the problem domain.  The unknown charges iQ  are 

determined from the collocation condition,  i.e., the condition that the approximate 
solution (1) satisfies the boundary condition at a finite number of points (called the 
collocation points) placed on the boundary. 
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 In our method, first we express the mapping function in terms of a pair of conjugate 
harmonic functions .),(,),( yxhyxg   It is shown that the function ),( yxg   is subject to 

a boundary condition so that the boundary is mapped onto slits.  Second we approximate 
the functions ),( yxg , ),( yxh  using the charge simulation method.  Then we have an 

approximation of the function ),(),( yxihyxg +  by a linear combination of complex 

logarithmic functions 
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so that the approximate mapping function satisfies the boundary condition at the 
collocation points. 
 Historically, Symm ]23,22,21[  proposed an integral equation method of numerical 

conformal mappings of a domain interior to a closed Jordan curve  onto the unit disk, a 
domain exterior to a closed Jordan curve onto the exterior of the unit disk, and a doubly-
connected domain bounded by two closed Jordan curves onto a circular annulus.                  
He expressed the mapping functions in terms of a single-layer logarithmic potential and 
reduced the problems to a singular Fredholm integral equation of the first kind.  Gaier   

]8,7[  mathematically studied Symm’s integral equation, and proved the existence and 

uniqueness of the solution.  Symm approximated the source density by a step function in 
numerical computation, to which improvements have been made by using piecewise 
quadratic polynomials [9], cubic spline functions and singular functions ,]12,11[  

trigonometric polynomials [19], etc.  The charge simulation method ]2,1[  is also 

regarded as a discretization of the source density using an auxiliary boundary [5].               
This paper is a reformulation of our preceding works .]4,3[  

 
 
2. Mapping theorems 
 
Let D be an unbounded multiply-connected domain exterior to the closed Jordan curves 

nCC ,,1   in the plane-)( iyxz += shown in Figure 1.  We suppose that the origin 

0=z  is in D without loss of generality.  We consider a conformal mapping of the 
domain D onto a parallel slit domain (Figure 2(a)), which is the entire plane-)( ivuw +=  

with parallel rectilinear slits1.  The following theorem shows the existence of the 
conformal mapping [17]. 
 
 
 
 
 
1We suppose that the multiply-connected domain D and the slit domains appearing in this paper include the 
point at infinity. 
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Theorem 1.    For a given domain D and a given angle ,θ  there exists a unique analytic 
function )(zfw θ=  such that it (i) maps conformally the domain D onto a parallel slit 
domain whose slits form the angle θ  with the real axis and (ii) satisfies ∞=∞)(θf  and 
has the Laurent expansion near ∞=z  of the form 
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 The condition (ii) is called the normalization condition.  One of the purposes of this 
paper is to give a numerical method for computing the conformal mapping  )(zfw θ=  
in Theorem 1. 
 In particular we are interested in the two cases:  the conformal mapping 

)()( 2/ zfzfu π=  onto a domain with slits parallel to the imaginary axis and the 

conformal mapping )()( 0 zfzfv =   onto a domain with slits parallel to the real axis.  The 

conformal mapping )(zfθ  in the general case is given in terms of them, i.e., 

 

 .))(sin)((cos)( zfizfezf uv
i θθθ

θ −=  (4) 

 
The conformal mapping )(zfw u=  maps the boundary curves nCC ,,1  onto the slits 

parallel to the imaginary axis, i.e., 
 
 ,,,1,,)(Re nmCzuzf mmu =∈=  (5) 

 
and the conformal mapping )(zfw v=  maps the boundary curves nCC ,,1  onto the 

slits parallel to the real axis, i.e., 
 
 ,,,1,,)(Im nmCzvzf mmv =∈=  (6) 

 
where mu  and mv   are constants indicating the positions of the slits. 

 In addition, we consider a conformal mapping of the domain D onto a circular slit 
domain (Figure 2(b)), which is the entire w-plane with circular slits whose common 
center is the origin.  We also consider a conformal mapping of D onto a radial slit domain 
(Figure 2(c)), which is the entire w-plane with radial slits pointing at the origin.                  
The following theorems show the existence of the conformal mappings [17]. 
 
Theorem 2. For a given domain D, there exists a unique analytic function )(zfw c=  
such that it (i) maps conformally the domain D onto a circular slit domain and (ii) 
satisfies ∞=∞= )(,0)0( cc ff  and has the Laurent expansion near ∞=z  of the form 
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Theorem 3. For a given domain D, there exists a unique analytic function )(zfw r=  
such that it (i) maps conformally the domain D onto a radial slit domain and (ii) satisfies 

∞=∞= )(,0)0( rr ff and has the Laurent expansion near ∞=z  of the form 
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 The condition (ii) in Theorems 2 and 3  is also called the normalization condition.  
The conformal mapping )(zfw c=  maps the boundary curves nCC ,,1  onto the 

circular slits, i.e., 
 
 ,,,1,,)( nmCzrzf mmc =∈=  (9) 

 
and the conformal mapping )(zfw r=  maps the boundary curves nCC ,,1  onto the 

radial slits, i.e., 
 
 ,,,1,,)(arg nmCzzf mmr =∈= θ  (10) 

 
where mr  and mθ  are constants indicating the radii and the arguments of the slits, 

respectively. 
 The mapping functions )(,)(,)(,)( zfzfzfzfw rcvu=  are treated in a unified 

way as described in the followings.  We express the mapping functions as 
 

 ,)()()( zihzgzzf uuu ++=  (11) 

 ,))()(()( zihzgizzf vvv ++=  (12) 

 ,))()((exp)( zihzgzzf ccc +=  (13) 

 ,)))()(((exp)( zihzgizzf rrr +=  (14) 

 

where ))(,)((,))(,)((,))(,)((,))(,)(( zhzgzhzgzhzgzhzg rrccvvuu  are pairs of 

conjugate harmonic functions in D.  Then, from the boundary conditions (5), (6), (9), 
(10), we have 
 
 ,)( xuzg mu −=    ,,,1, nmCz m =∈  (15) 

 ,)( yvzg mv −=    ,,,1, nmCz m =∈  (16) 

 ,||loglog)( zrzg mc −=   ,,,1, nmCz m =∈  (17) 

 ,arg)( zzg mr −= θ    ,,,1, nmCz m =∈  (18) 
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Omitting the suffices of the functions ,)(,)(,)(,)(,)( zhzgzgzgzg urcvu  

,)(,)(,)( zhzhzh rcv  these conditions are rewritten into the unified form 

 
 ,)()( ztszg m −=   ,,,1, nmCz m =∈  (19) 

where 
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Besides, from the normalization conditions (3), (7), (8), we have 

 
 .0)()( =∞+∞ ihg    (21) 

 
The conditions 0)0(,)0( =rc ff  are obviously satisfied from the expressions (13),            

(14). Conversely, if the pair of functions ,))(,)(())(,)(( zhzgzhzg uu=  

,))(,)(( zhzg vv ))(,)((,))(,)(( zhzgzhzg rrcc  satisfy the conditions  (19), (21), the 

functions )(,)(,)(,)( zfzfzfzf rcvu  respectively given by (11), (12), (13), (14) are the 

mapping functions in question.  Therefore, from the unique existence of the mapping 
functions, our problems are reduced to the problem of finding a pair of conjugate 
harmonic functions ))(,)(( zhzg  subject to the conditions (19), (21) together with the 

constants nmsm ,,1, =   indicating the positions of the slits. 

 
3. Numerical method 
 
We intend to obtain approximate mapping functions by applying the charge simulation 
method to the pair of conjugate harmonic functions .))(,)(( zhzg   The charge simulation 

method here approximates the function )(zg  by 
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where iQ  are unknown real coefficients (called the charges) and iζ  are given points 

(called the charge points) placed inside the boundary curves .C   Then we can 

approximate the function ,)(zh  which is the conjugate harmonic function of  ,)(zg  by 
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Consequently we have the approximation 
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where 0Q   is a complex constant. 

 The unknown constants nNiQQ i ,,1,,,1,,0 ==   are determined 

from the following three conditions. 
 
(i) Single-valuedness condition:  It is naturally required that the approximate mapping 

function is single-valued in the problem domain D.  This condition is equivalent to 
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 In fact, the single-valuedness condition is equivalent to the condition that, for any 

closed contour C~  surrounding each boundary curve C , the relation 
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 holds good.  Since we have 
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 from (23), the single-valuedness condition is equivalent to (25). 
 
(ii) Normalization condition: It is also naturally required that the approximate 

function )()( ziHzG +   satisfies the normalization condition (21), i.e., 

 
 .0)()( =∞+∞ iHG   (27) 
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 if the single-valuedness condition (25) is satisfied.  Therefore the approximation 
formula (24) is rewritten into 

 

 ,)(log)()()()(
1 1

i

n N

i
i zQziHzGzihzg ζ−=++ ∑ ∑

= =
  (29) 

 
 and the charges  ,,,1,,,1, nNiQ i ==  together with the constants 

,,,1, nmsm =  remain unknown. 

 
(iii) Collocation condition:  We suppose that the approximate function )(zG  satisfies 

the boundary condition (19) at a finite number of points, i.e., 
 

 ,,,1,,,1,,)( nmNjCztSzG mmmjmjmmj ==∈−=   (30) 

 where mjz  are given boundary points (called the collation points), mS  are 

approximate values of ms  and .)( mjmj ztt =   The equalities (30) are rewritten 

into 
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 The equalities (25), (31) constitute nNN n +++1  simultaneous linear 

equations for nNN n +++1  unknowns nniQ i ,,1,,,1, == and 

.,,1, nmSm =   We determine the unknown constants iQ  and mS  by solving these 

simultaneous linear equations and obtain the approximate function  )()( ziHzG +  by 

(29), which gives an approximate mapping function by substituting 
)()()()( ziHzGzihzg ++  into (11), (12), (13), (14). 

 In practical computations, however, we cannot use the approximation formula (29) 
as it is because of the following reason.  We usually employ the principal value of the 
logarithmic function , Log z  the branch of  zlog  such that ,arg ππ ≤<− z  for 

computing .log z   Then each term of )(log iz ζ−  on the right-hand side of (29) has a 

discontinuity of iπ2  on the half-infinite straight line parallel to the real axis 
,]Im( ii ζ+−∞  which causes discontinuities of the function )()( ziHzG +  in the 

domain D.  Therefore we have to rewrite the expression (29) into forms which  are 
mathematically equivalent to (29) and are continuous in the domain D even if the 
principal value  z Log is employed for computing .log z   We will call approximate 

mapping functions using rewritten expressions of  )()( ziHzG +  satisfying the above 

properties continuous schemes. 
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3.1. Starlike case 
 
If each boundary curve nC ,,1, =   is starlike with respect to its inside point ,0ζ  

remarking (25), we subtract )(log0 011 ζ−∑∑= == zQ i
N
i

n  from the both sides of (29) 

and obtain the expression 
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The term of  ))/()((log 0ζζ −− zz i  on the right-hand side of (32) has a discontinuity 

on a finite straight line connecting the two points ,  and  0 iζζ  which is included inside 

the boundary curve .C   Therefore the expression (32) is continuous using the principal 

value of logarithmic function.  Consequently we have the following algorithm. 
 
Algorithm (Continuous scheme) 1.   Suppose that each boundary curve 

nC ,,1, =  of the domain D is starlike with respect to its inside point .0ζ                
We intend to find approximate mapping functions in the forms 

 
 ,)()()()( ziHzGzzFzf uuuu ++=  (33) 

 ,))()(()()( ziHzGizzFzf vvvv ++=  (34) 

 ,))()((exp)()( ziHzGzzFzf cccc +=  (35) 

 ,)))()(((exp)()( ziHzGizzFzf rrrr +=  (36) 

 

where ))(,)((,))(,)((,))(,)((,))(,)(( zHzGzHzGzHzGzHzG rrccvvuu are pairs of 
conjugate harmonic functions in D.  Then, omitting the suffices of ,))(,)(( zHzG uu etc., 
the pair of conjugate harmonic functions are given by 
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where nNii ,,1,,,1, ==ζ  are given charge points inside C  and 

nNiQ i ,,1,,,1, ==  are unknown real coefficients. The unknown 
coefficients, the charges, iQ  are determined, together with the unknown constants 

nmsS mm ,,1,)( =  indicating the positions of the slits, by the simultaneous linear 
equations 
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where mjz   are given collocation points on mC  and  
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Besides, using the constants mS  obtained by solving the linear equations, 
 
(1) in the case of the mapping ,)(zFw u=  each slit parallel to the imaginary axis lies 

approximately on ,,,1,,Re nmSUUw mmm ===  
(2) in the case of the mapping ,)(zFw v=  each slit parallel to the real axis lies 

approximately on ,,,1,,Im nmSVVw mmm ===  
(3) in the case of the mapping ,)(zFw c=  each circular slit lies approximately on 

,,,1,log,|| nmSRRw mmm ===  
(4) in the case of the mapping ,)(zFw r=  each radial slit lies approximately on 

.,,1,,arg nmSw mmm ==θθ=  
 
3.2. General case 
 
In general cases where the boundary curves nCC ,,1  are not necessarily starlike, 

remarking (25), we change the unknowns from the charges iQ  to their sums iQ  such 

that 
 

 ,,,1,1,,1,
1

nNiQQ
i

k
k

i =−== ∑
=

  (41) 

 ,,,1,0 nQ N ==   (42) 

 
 



Numerical Conformal Mappings of Unbounded Multiply-Connected Domains  45

and rewrite (29) into the following expression 
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The term of ))()((log 1+−− ii zz ζζ   on the right-hand side of (43) has a discontinuity 
on a finite straight line connecting the two charge points iζ  and ,1+iζ  which is 
included inside the boundary curve  if the charge points are so placed that the straight 
line does not intersect   Then the expression (43) is continuous using the principal 
value of the logarithmic function.  Consequently we have the following algorithm. 

C
.C

 
Algorithm (Continuous scheme) 2.  We also intend to find approximate mapping 
functions in the same forms as (33), (34), (35), (36) in Algorithm 1.  In this case,                   
the pair of conjugate harmonic functions are given by 
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where nNii ,,1,,,1, ==ζ  are given charge points inside  and 

  are unknown real coefficients.  The unknown 

coefficients, sums of the charges,   are determined, together with the unknown 
constants 

C

nNiQi ,,1,1,,1, =−=
iQ

nmsS mm ,,1,)( =  indicating the positions of the slits, by the 
  simultaneous linear equations nNN ++1
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where  are given collocation points on  and   are the same as those in 
Algorithm 1. 

mjz mC ,mjt mS
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 Algorithms 1 and 2 give the same results if they are applied to the problem domain 
whose boundary curves are starlike as stated previously. 
 From the maximum modulus theorem for analytic functions and the normalization 
conditions for the pair of conjugate harmonic functions (21), (27), though the problem 
domain D is not bounded, the absolute error of the approximate mapping functions onto 
the parallel slit domains, i.e., 
 
 ,))()(()()()()()( zhzHizgzGzfzFzE uuuuuuu −+−=−=   (46) 
 
 ,))()(()()()()()( zhzHizgzGzfzFzE vvvvvvv −+−=−=   (47) 
 
and the relative error of the approximate mapping functions onto the circular and the 
radial slit domains, i.e., 
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take their maximum values somewhere on the boundary curves.   
 Once the approximate mapping functions  are obtained, from (4), the 
approximate mapping function in the general case   is given by 

)(,)( zFzF vu

)(zFθ
 
  (50) ))(sin)(cos()( zFivFezF uv

i θθθ
θ −=

 
for any θ   without solving another set of linear equations; and the error is estimated by 
 
 )()()( zfzFzE p θθ −=  

  .)()()()()()( zEzEzfzFzfzF vuvvuu +=−+−≤  (51) 
 
 
4. An example 
 
The problem domain is the exterior to three circles with different radii, i.e., 
 

,3,2,1,
3

)1(2exp2,: 00 =
−
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  .5.1,5.0,1 321 === ρρρ  
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Table 1.  Numerical results of the conformal mappings  )(,)(,)(,)( zFzFzFzFw rcvu=

(cond = 4.7E4, ). ,64=N 8.0=q

 
 uE  U  vE  V  

1C  7.1E-8   1.32203175 5.0E-8 −0.326576607 

2C  2.2E-8 −0.787052952 3.0E-8   0.99641470 

3C  1.2E-7 −0.697257057 8.1E-8 −1.478338666 

 
 cE  R  rE  θ  

1C  2.1E-7    2.69585239 6.7E-8 −0.23582973 

2C  3.9E-8   2.91217882 2.1E-8 2.246730504 

3C  8.6E-5 2.265373689 2.5E-5 −2.005025898 

 
 
Collocation points and charge points are placed by 
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N
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where   is a parameter for charge placement.  Since exact solutions are 
unknown, deviations of the approximate mapping functions from the slits are computed 
as an indication of errors, i.e., 

10 << q
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where   is the middle point on  between the two successive collocation points 
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Figure 3.  Numerical conformal mappings of the domain D exterior to three circles in the z-plane onto a parallel 
slit domain by onto a circular slit domain by  and onto a radial slit 

domain by . 

,)3/()( πθθ == zFw )(zFw c=

)(zFw r=

 

 Figure 3 and Table 1 show the numerical results, where cond is the  condition 
number of the coefficient matrix of the linear equations to be solved.  The values of  

  are shown until a nonzero digit appears in  etc., where 
 and   mean the numbers of simulation charges used.  High accuracy is 

obtained, which is naturally expected from the fact that the charge simulation method 
gives a highly accurate result for domains with circular  boundary curves

1L

θ,,, RVU ,)2()( NN UU −
)(N )2( N

2. 
 Figure 4 shows contour lines of  and  |)(|,)3/())((Im zFzFe c

i πθθ
θ =− .)(arg zFr

They illustrate the streamlines of a uniform flow, a vortex flow and a point-source               
(or sink) flow around obstacles.  A vortex or a point-source is located at the origin, and 
the disks are cross sections of cylindrical objects.   
 
 
2In general, it is known that, if boundary curves and boundary values are analytic, error in the charge simulation 
method decays exponentially as a function of the number of simulation charges [13]. 
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Figure 4.  Contour lines of )(,)3/())(Im( zFzFe c
i πθθ
θ =−  and  which illustrate the streamlines 

of a uniform flow, a vortex flow and a point-source (or sink) flow around obstacles, respectively. 
,)(arg zFr

 
 
 Charge points as well as collocation points play an important role in the charge 
simulation method.  The optimal arrangement is still an open problem.  However, a 
practical method is available for charge placement in the case of  problem domains with 
non-circular boundary curves, which is given by 
 

nNjzziqz jjjj ,,1,,,1,)( 11 ==−+= −+ζ  
 
as shown in Figure 5, where ,, 110 zzzz NN == + and   is a parameter.  It is 
easy to find a nearly optimal value of q since the error first decreases exponentially as a 
function of q, and then turns to increase.  See [1, 2, 3, 4] for numerical examples of 
conformal mappings of various shapes of problem domains by the charge simulation 
method.  High accuracy is obtained if the problem domain has no reentrant corners. 

0>q
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Figure 5.  A practical method for charge placement. 

 
 
5. Concluding remarks 
 
We have presented a numerical method of conformal mappings of unbounded            
multiply-connected domains exterior to closed Jordan curves onto the three types of slit 
domains, i.e., the parallel slit domain, the circular slit domain and the radial slit domain.  
The method is simple without integration, and suited for domains with curved 
boundaries.  In particular, the approximate mapping functions of a problem domain onto 
the three types of slit domains are obtained in a unified way by solving linear equations 
with a common coefficient matrix.  The two schemes of approximate mapping functions 
are continuous and analytic as they are using the principal value of logarithmic function 
in practical computation. 
 These conformal mappings are familiar as a mathematical tool in two-dimensional 
potential flow analysis.  Complex flow potentials of the uniform flow, the vortex flow 
and the point-source (or sink) flow around obstacles are described in terms of the 
mapping functions onto the parallel slits domain, the circular slit domain and the radial 
slit domain, respectively.  The numerical method of conformal mappings using the charge 
simulation method also has some desirable features in applications, e.g., super positions 
of the flows are easily available, flow velocity is analytically given in terms of derivative 
of the approximate mapping functions, etc. 
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