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Abstract.  For the class of strongly starlike functions, sharp bounds on the first four coefficients of 
the inverse functions are determined.  A sharp estimate for the Fekete-Szegö coefficient functional is 
also obtained.  These results were deduced from non-linear coefficient estimates of functions with 
positive real part. 

 
 
1.   Introduction 
 
An analytic function  in the open unit disk f }1:{ <= zzU  is said to be strongly 
starlike of order ,10  , ≤< αα  if  is normalized by f 1)0(0)0( −′== ff  and 
satisfies 
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The set of all such functions is denoted by ).(* αSS   This class has been studied by 
several authors   In [5] it was shown that an univalent function  
belongs to 
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)(* αSS  if and only if for every )(Ufw ∈  a certain lens-shaped region with 

vertices at the origin O  and  is contained in  w ).(Uf
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near  It is our purpose here to determine sharp bounds for the first four 
coefficients of 

.0=w
,nγ  and to obtain a sharp estimate for the Fekete-Szegö coefficient 

functional .2
23 γγ t−   

 
 
2.  Preliminary results 
 
Let us denote by P  the class of normalized analytic functions p  in the unit disk U with 

positive real part so that and 1)0( =p .  ,0)(Re Uzzp ∈>   It is clear that  

if and only if there exists a function  so that .  By equating 

coefficients, each coefficient of   can be expressed in 

terms of coefficients of a function  in the class                  
For example, 
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Using representations (1) and (2) together with  or wwff =− ))(( 1
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we obtain the relationships 
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Thus coefficient estimates for the class )(* αSS  and its inverses become non-linear 
coefficient problems for the class   Our principal tool is given in the following lemma. .P
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Lemma 1 [3].   A function  belongs to ∑∞
=+= 11)( k

k
k zczp P  if and only if 
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for every sequence  of complex numbers which satisfy }{ kz .1suplim /1 <∞→

k
kk z  

 
Lemma 2.   If  hen ∑∞
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If 0<μ  or ,2>μ  equality holds if and only if .1  ,)1()1()( =−+= εεε zzzp                 

If ,20 << μ  then equality holds if and only if  .1  ,)1()1()( 22 =−+= εεε zzzp  
For ,0=μ  equality holds if and only if 
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For ,2=μ  equality holds if and only if p  is the reciprocal of .  2p
 
Remark.  Ma and Minda [6] had earlier proved the above result.  We give a different 
proof. 
 
Proof.  Choose the sequence  of complex numbers in Lemma 1 to be }{ kz

,210 cz μ−=   and  if   This yields ,11 =z 0=kz .1>k
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that is, 
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If 0<μ  or ,2>μ  the expression on the right of inequality (5) is bounded above by 

.   Equality holds if and only if )1(4 2−μ ,21 =c  i.e., )1()1()( zzzp −+=  or its 
rotations.  If ,20 << μ  then the right expression of inequality (5) is bounded above          
by 4.  In this case, equality holds if and only if 01 =c  and ,22 =c  i.e., 

)1()1()( 22 zzzp −+=  or its rotations.  Equality holds when 0=μ  if and only if 
,22 =c  i.e., [8, p. 41] 
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Finally, when ,2=μ  then 22

12 =− cc  if and only if p  is the reciprocal of  .2p

 
Another interesting application of Lemma 1 occurs by choosing the sequence  

to be  

}{ kz

,2
2

10 ccz βδ −= ,11 cz γ−=   and ,12 =z 0=kz  if   In this case, we 
find that 
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Lemma 3.   Let f ∑∞

= ∈+= 1 .1)( k
k

k Pzczp   I 10 ≤≤ β  and ,)12( βδββ ≤≤−  
then 
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Proof.  If ,0=β  then 0=δ  and the result follows since .23 ≤c   If ,1=β  then 

1=δ  and the inequality follows from a result of [4]. 
 We may assume that 10 << β  so that .0)1( <−ββ   With ,βγ =  we find from 
(6) that 
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with ,]4,0[2

1 ∈= cx  ,)1(4 −= ββb  and ).1()( 22 −−−= βββδc  Since 
 it follows that  provided ,0≥c )0()( hxh ≤ ,0)4()0( ≥− hh  i.e., .04 ≤+ cb   This 

condition is equivalent to ),1(2 βββδ −≤−  which completes the proof.   

 
 With βδ =  in Lemma 3, we obtain an extension of Libera and Zlotkiewicz [4] 

result that .22 3
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When ,0=β  equality holds if and only if  
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,0≥kλ  with .1321 =++ λλλ  If ,1=β  equality holds if and only if p  is the 

reciprocal of  If .3p ,10 << β  equality holds if and only if  

,1||  ,)1)1()( =−+= εεε zzzp  or .1  ,)1()1()( 33 =−+= εεε zzzp  
 
Proof.   We only need to find the extremal functions.  If ,0=β  then equality holds if 
and only if ,23 =c  i.e., p  is the function  [8, p. 41].  If 3p ,1=β  then equality holds 
if and only if p  is the reciprocal of   When .3p ,10 << β we deduce from (6) that 
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Equality occurs in the last inequality if and only if either 01 =c  or .21 =c                     

If ,01 =c  then ,02 =c  i.e., .1  ,)1()1()( 33 =−+= εεε zzzp   If ,21 =c  then 

.1  ),1()1()( =−+= εεε zzzp  
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Proof. For ,10 ≤≤ μ  the inequality follows from Lemma 3 with ,μδ =  and 

.12 += μβ   For the second estimate, choose ,μβ =  ,1=γ and μδ =  in (6).  Since 
,0)1( >−μμ  we conclude from (5) and (6) that 
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3.   Coefficient bounds 
 
Theorem 1.  Let  and .  Then  )(* αSSf ∈ +++=− 3
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For ,5/1>α  extremal functions are given by (7).  If ,5/10 << α  equality holds if 
and only if  
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while if ,5/1=α  equality holds if and only if 
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Moreover, 
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For ,31/1≥α  extremal functions are given by (7), while for ,3110 ≤< α  
equality holds if and only if 
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Proof.  The following relations are obtained from (3) and (4): 
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The bound on 2γ  follows immediately from the well-known inequality .21 ≤c  

Lemma 2 with αμ 51 +=  yields the bound on 3γ  and the description of the extremal 
functions. 
 For the fourth coefficient, we shall apply Lemma 3 with αβ 512 +=  and 
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 It remains to determine the estimate for .15/1 ≤< α   Appealing to Lemma 4 with 
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Theorem 2.   Let  and .  Then )(* αSSf ∈ +++=− 3
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The result now follows from Lemma 2.   
 
Remark.   An equivalent result for the Fekete-Szegö coefficient functional over the class 

)(* αSS  was also given by Ma and Minda [5]. 
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