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1. Introduction

Let D be a domain in C and a € C and let S be a set of complex numbers. For f
meromorphic on D, set

m

(a, f)={z:2eD, f(z) = a}.

mj

(s, f)={z:2€eD, f(z) € S}

Two meromorphic functions f and g are said to share the value a in D if
E(a, f)=E(a, g). Similarly, f and g are said to share the set S in D if
E(S, f) = E(S, 9).

Let F be a family of meromorphic functions defined in D. F is said to be normal in
D, in the sense of Montel (see Schiff [7] ), if, for any sequence f, € F, there exists a
subsequence fnj, such that fnJ converges spherically locally uniformly in D, to a
meromorphic function or oo .

Schwick [8] seems to have been the first to draw a connection between normality
criteria and shared values. He proved

Theorem A. Let F be a family of meromorphic functions defined in D, and let a, b, ¢ be
three distinct complex numbers. If fand f' sharea, b, cinD forevery f € F, then F

is normal in D.
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This result has undergone various extensions [3,11,12], culminating in the following
results due to Pang and Zalcman [5], and Chen and Fang [1], respectively.

Theorem B. ([5]) Let F be the family of meromorphic functions in a domain D, and
let a,b be two distinct complex numbers. If f and f’ share a and b in D for each

f e F, thenF isnormalin D.

Theorem C. ([1]) Let F be the family of meromorphic functions in a domain D, k
a positive integer, and let a, b and ¢ be complex numbers such that a = b. If, for each

f eF, fand f® share aand b in D, and the zeros of f(z)—c are of multiplicity
> k +1, then F isnormal in D.

Remark 1. There is an example (see [1]) to show that the assumption on the zeros of
f (z) — c is required for Theorem C to hold.

In this paper, we obtain the following results.
Theorem 1. Let F be the family of meromorphic functions in a domain D, leta, b and ¢
be three distinct complex numbers, and let S, = {a,b}and S, = {c}, if, for each
f eF, fand f® sharetheset S, and S, inD,then F isnormal in D.

Theorem 2. Let F be the family of meromorphic functions in a domain D, let
8;(i=12,3) be three distinct complex numbers, if, for each f eF,

f=a = f'=24(=1273) inD,thenF isnormal in D.

The second part of this paper is concerning on the result of Schwick [10]. In 1983,
Yang [13] (see also [9]) proved
Theorem D. Let w #0 be a analytic function in a domain D and k € N. Let F be

the family of meromorphic functions in D such that f and f®) — w have no zeros for
each f € F, then F isnormalin D.

In 1997, Schiwick extended  to meromorphic case in Theorem D, as follows.

Theorem E. ([10]) Let w %0 be a meromorphic function in a domain D and k € N.

Let F be the family of meromorphic functions in D such that f and f® —y have no
zeros and fand w have no common poles for each f € F, then F isnormal inD.
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It is natural to ask: whether or not the above result holds if fand w have common
poles in Theorem E? In this paper, we obtain the following result.

Theorem 3. Let y # 0 be a meromorphic function in a domain D and k € N, and
let F be the family of meromorphic functions in D. |If, for each f e F, f and

£ ) _ 1 have no zeros, and the poles of i are of multiplicity less than k + 1 whenever
fand y have common poles, then F is normal in D.

Remark 2. The following example shows the condition that the poles of y are of
multiplicity less than k +1 whenever f and  have common poles in Theorem 3 is
necessary, and the number k + 1 is sharp.

Example 1. Let F ={f,(2): f,(@=2<, n=12-}, p(2)= L, and
D={z:|z|<1}. Obviously, f,(z) =0, fi(z)-w(z)= —ni—z—z% =0, f,(2)
and w(z) have the same pole z = 0, and the pole of (z) is of multiplicity 2. But itis
easy to see that F is not normal in D.

2. Some lemmas

To prove our results, we need the following lemma, which is the well-known Zalcman’s
lemma.

Lemmal. ([15]) Let F be a family of functions meromorphic in a domain D. If F is
not normal at z, € D, then there exists a sequence of points z, € D, z, — z,,

a sequence of positive numbers p, — 0, and a sequence of functions f, € F such
that

gn(é’) = 1:n(zn + pné/) - g(é/)
locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C.
3. Proof of theorems

Proof of Theorem 1. Suppose that F is not normal at point z, € D. Then by Lemma
1, there exist a sequence of functions f, € F, a sequence of complex numbers
Z, — Zz, and a sequence of positive numbers p, — 0, such that

gn(él) = fn(zn +pn§)
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converges locally uniformly with respect to the spherical metric to a non-constant
function g(¢).

We claim that g® () = 0.
Indeed, suppose that there exists a point ¢ such that g (¢;,) = 0. Since

g™ (&) - pra= pk (19, + prd) - a) —» gM (),

by Hurwitz’s theorem, there exist ¢, ¢, — ¢, such that f®(z, + p,¢y) = a
(for n sufficiently large). It follows from the hypotheses on F that f,(z, + p,¢,) = a
or f,(z, + pn¢,) =b. Thus

g(¢o) =a,or b @)
On the other hand,
990 - pre = P (F9(z, + pad) —©) > g4 (O).
Then using the same argument as the above, we deduce that
9(¢o) =c e

which contradicts (1).
Now we prove that g(¢) = a, b and c. Suppose there exists ¢; €C such that

g(¢1) = a. Then by Hurwitz’s theorem, there exist ¢, ¢, — ¢; and
gn(gn) = 1:n(zn +pn§n): a,

for sufficiently large n.  Since f, and f{share the set S;, we have
f8(z, + p,¢,) =a or b, and then

g% (¢y) = lim gf9(5,) = lim pr £ (2, + pogn) = 0,
n—oo n—oo
a contradiction. Thus g(¢{) = a. Similarly, we haveg(¢) = band c¢. By Nevanlinna

second fundamental theorem, g(¢) must be a constant, a contradiction. This completes
the proof of Theorem 1.
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Proof of Theorem 2.  Suppose that F is not normal at point z, € D. Then by
Lemma 1, there exist a sequence of functions f, € F, a sequence of complex numbers
Z, — o and a sequence of positive numbers p, — 0, such that

gn(g) = fn(Zn + png)

converges locally uniformly with respect to the spherical metric to a non-constant
function g(¢).

Suppose that g(&y) = a;, (1 < iy < 3). Hurwitz’s theorem implies the existence of a

sequence ¢, — &, with
9n (&) = falzn + Pudh) = &, -
Since f, =a; = f; =a; , wehave f (z, + p,¢,) = a. Then
9'(Go) = lim g}(6n) = lim p, (2, + pdy) = 0,

and hence the zeros of g(¢) — a;, are of multiplicity at least 2.

Without loss of generality, we assume that a; = 0 and a, # 0. Next we prove that
g(¢) = a;(i =1, 2). Suppose that ¢ is a a;-point of g(&) of multiplicity k(k > 2),
then g (¢,) = 0. Thus there exists a positive number &, such that

9(¢) = a, 9'¢€) =0, g =0, (3)

on Dg ={J:0<|¢-¢y | <0} Since ¢, is a a-point of g({) of
multiplicity k, by Rouché theorem, there exists {¢"} (i=12--,k) on
Ds;, ={&:|&—¢y | <812} suchthat g, (<) —a, =0. Since

9n(C") = o fa(zy + pa?) = pray # 0 (I =1.2,-,K),
so each ¢ is a simple zero of g, (¢) — a,, that is,

0 (CP) = 9P = =g, = a (¢ = ¢V, i = ).
On the other hand

lim g;(¢{") = lim p,a =0,
n—o0 N<—o
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then, from (3), we obtain

lim ¢ = £ =1,2,-,k).

Note that (3) and g,(¢)-p,a has k zeros (0, @ ....c0 in
Ds;o ={¢: 14—y | <612}, then &, is a zero of g'(¢) of multiplicity k, and thus

g™ (&) = 0. This contradicts (3). Hence g(¢) # a,. Similarly, g(¢) = a,. By

Nevanlinna second fundamental theorem, we arrive at a contradiction. This completes
the proof of Theorem 2.

Remark 3. Some idea in the proof of Theorem 2 has its roots in Pang [4].

Proof of Theorem 3. Suppose y(z,) # «(z, € D). This means that fand y have
no common poles in D. By Theorem E, F is normal at z,.

If w(zy) = o, then there exists a positive number &, such that y(z) has no poles
on{z:0<|z-2y|<6}. ThusF isnormalon {z:0<|z-2,|< 8}. Hence,
for each function sequence f, € F, there exists a subsequence of f,(z) (without loss
of generality, we still denote by f,(z)), such that

fn(2) = 0 (2),

locally uniformly with respect to the spherical metric to fy(z) on
{z:0<|z-25|<d}.

We consider two cases.

Casel. fy(z) #*0.
Since  f,(z) #0, by Hurwitz’s theorem, f,(z) has no zeros on
{z:0<|z-12y|< 8}. Then there exists a positive number m such that

5 .
fo ( Z, +Ee'9)

Thus there exists a positive integer N, such that

5 .
fn(zo +Ee|9j

min
0<0<2r7

> m.

min
0<6<2r

m
> —,
2
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for n > N. Notethat f,(z) # 0 on D, by the minimum modulus theorem, we have

. m
min | f.(2)| > —.
l2-2lsS 2

Thus F is normal at z; .

Case 2. fy(z) =0.
Then f%/y and (f/y) converges locally uniformly to 0 on
{z:0<|z-25|< 8} sowehave

’

0
£ ()
n é,zo, L —1{-n é,zo,% = ij 5+dz <1
2 174 2 fn 2 |Z—Zo|_5 fn _1

% %

for sufficiently large n. Since the poles of y are of multiplicity less than k +1

whenever f, and y have common poles, and note that %) = i, then

(k)
ﬁ(é,zo,fnjgn é Zg, fy z-1|=n é zo,; =0.
2 2 v 2 .0

-1

7

It shows that f,(z) is holomorphic on {z : |z -z, |< & /2}for sufficiently large n.
Thus f,(z) converges locally uniformlytoOon {z :| z—-z, | < 6 /2}, and hence F is
normal at z,. This completes the proof of Theorem 3.
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