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1. Introduction 
 
Let D be a domain in C and C∈a  and let S be a set of complex numbers. For f  
meromorphic on D, set 

 
( ) }.)(,:{, azfDzzfaE =∈=  

( ) }.)(,:{, SzfDzzfSE ∈∈=  
 

Two meromorphic functions f and g are said to share the value a in D if 
.),(),( gaEfaE =  Similarly, f and g are said to share the set S in D if 
.),(),( gSEfSE =  

 Let F be a family of meromorphic functions defined in D.  F  is said to be normal in 
D, in the sense of Montel (see Schiff [7] ), if, for any sequence ,F∈nf  there exists a 
subsequence 

jnf , such that 
jnf  converges spherically locally uniformly in D, to a 

meromorphic function or∞ . 
Schwick [8] seems to have been the first to draw a connection between normality 

criteria and shared values.  He proved 
 
Theorem A.   Let F  be a family of meromorphic functions defined in D, and let a, b, c be 
three distinct complex numbers.  If  f and f ′  share a, b, c in D for every ,F∈f  then F   
is normal in D. 
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This result has undergone various extensions [3,11,12], culminating in the following 
results due to Pang and Zalcman [5], and Chen and Fang [1], respectively. 
 
Theorem B.  ([5])  Let F  be the family of meromorphic functions in a domain D, and 
let ba,  be two distinct complex numbers.  If  f  and f ′  share a and b in D for each 

,F∈f  then F   is normal in D. 
 
Theorem C.  ([1]) Let F  be the family of meromorphic functions in a domain D, k              
a positive integer, and let a, b and c be complex numbers such that .ba ≠   If, for each 

,F∈f  f and )(kf  share a and b in D, and the zeros of czf −)(  are of multiplicity 
,1+≥ k  then F   is normal in D.  

 
Remark 1.  There is an example (see [1]) to show that the assumption on the zeros of 

czf −)(  is required for Theorem C to hold. 
 

In this paper, we obtain the following results. 
 
Theorem 1.  Let F   be the family of meromorphic functions in a domain D, let a, b and c 
be three distinct complex numbers, and let },{1 baS = and ,}{2 cS =  if,  for each 

,F∈f  f and )(kf  share the set 1S  and 2S   in D, then F   is normal in D. 
 
Theorem 2.  Let F be the family of meromorphic functions in a domain D, let 

)3,2,1( =iai  be three distinct complex numbers, if, for each ,F∈f  
)3,2,1( ==′⇒= iafaf ii   in D, then F   is normal in D. 

 
The second part of this paper is concerning on the result of Schwick [10].  In 1983, 

Yang [13] (see also [9]) proved 
 
Theorem D.   Let 0ψ  be a analytic function in a domain D and .N∈k   Let F   be 

the family of meromorphic functions in D such that f and ψ−)(kf  have no zeros for 
each ,F∈f  then F   is normal in D. 
 

In 1997, Schiwick extended ψ  to meromorphic case in Theorem D, as follows. 
 
Theorem E. ([10])   Let 0ψ  be a meromorphic function in a domain D and .N∈k  

Let F  be the family of meromorphic functions in D such that f and ψ−)(kf  have no 
zeros and f and ψ  have no common poles for each ,F∈f  then F   is normal   in D. 
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It is natural to ask: whether or not the above result holds if  f and ψ  have common 
poles in Theorem E?  In this paper, we obtain the following result. 

 
Theorem 3.   Let  0≡/ψ   be a meromorphic function in a domain D and ,N∈k  and 
let F   be the family of meromorphic functions in D.  If,  for each ,F∈f  f and 

ψ−)(kf  have no zeros, and the poles of ψ  are of multiplicity less than 1+k  whenever 
f and ψ  have common poles, then F   is normal in D. 
 
Remark  2.  The following example shows the condition that the poles of ψ  are of 
multiplicity less than 1+k  whenever f and ψ  have common poles in Theorem 3 is 
necessary, and the number 1+k  is sharp. 
 
Example 1. Let { } ,)(,,,2,1,)(:)( 2

11
znznn znzfzf ==== ψF  and 

}1||:{ <= zzD .  Obviously, 0)()(,0)( 22
11 ≠−−=−′≠
znznn zzfzf ψ , )(zfn  

and )(zψ  have the same pole ,0=z  and the pole of )(zψ  is of multiplicity 2.  But it is 
easy to see that F   is not normal in D. 
 
 
2.  Some lemmas 
 
To prove our results, we need the following lemma, which is the well-known Zalcman’s 
lemma. 
 
Lemma 1. ([15])   Let F  be a family of functions meromorphic in a domain D.  If F  is          
not normal at ,0 Dz ∈  then there exists a sequence of points ,, 0zzDz nn →∈                 
a sequence of positive numbers ,0→nρ  and a sequence of functions F∈nf  such 
that 
 

)()()( ζζρζ gzfg nnnn →+=  
 

locally uniformly with respect to the spherical metric, where g is a nonconstant 
meromorphic function on C. 
 
 
3.  Proof of theorems 
 
Proof of Theorem 1.  Suppose that F  is not normal at point Dz ∈0 .  Then by Lemma 
1, there exist a sequence of functions ,F∈nf  a sequence of complex numbers 

0zzn →  and a sequence of positive numbers ,0→nρ  such that 
 

)()( ζρζ nnnn zfg +=  
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converges locally uniformly with respect to the spherical metric to a non-constant 
function )(ζg . 

We claim that 0)()( ≠ζkg . 

Indeed, suppose that there exists a point 0ζ  such that 0)( 0
)( =ζkg .  Since 

  
)())(()( )()()( ζζρρρζ k

nn
k

n
k
n

k
n

k gazfag →−+=− , 
 

by Hurwitz’s theorem, there exist 0, ζζζ →nn , such that azf nnn
k

n =+ )()( ζρ               
(for n sufficiently large).  It follows from the hypotheses on F   that azf nnnn =+ )( ζρ  
or bzf nnnn =+ )( ζρ .  Thus 

 
borag ,)( 0 =ζ  (1) 

 
On the other hand, 

 
)())(()( )()()( ζζρρρζ k

nn
k

n
k
n

k
n

k gczfcg →−+=− . 
 

Then using the same argument as the above, we deduce that 
 

( ) cg =0ζ  (2) 
 

which contradicts (1). 
Now we prove that bag ,)( ≠ζ  and .c  Suppose there exists ∈1ζ C such that 

ag =)( 1ζ .  Then by Hurwitz’s theorem, there exist 1, ζζζ →nn  and 
 

( ) azfg nnnnnn =+= ζρζ )( , 
 

for sufficiently large n.  Since nf  and )(k
nf share the set ,1S  we have 

azf nnn
k

n =+ )()( ζρ  or  ,b  and then 
 

( ) 0lim)(lim)( )()(
1

)( =+==
∞→∞→

nnn
k

n
k
nnn

k
nn

k zfgg ζρρζζ , 

 
a contradiction.  Thus .)( ag ≠ζ  Similarly, we have bg ≠)(ζ and .c   By Nevanlinna 
second fundamental theorem, )(ζg  must be a constant, a contradiction.  This completes 
the proof of Theorem 1. 
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Proof of Theorem 2.   Suppose that F  is not normal at point .0 Dz ∈   Then by             
Lemma 1, there exist a sequence of functions ,F∈nf  a sequence of complex numbers 

0zzn →  and a sequence of positive numbers ,0→nρ  such that 
 

)()( ζρζ nnnn zfg +=  
 

converges locally uniformly with respect to the spherical metric to a non-constant 
function )(ζg . 
     Suppose that )31()( 00 0

≤≤= iag iζ .  Hurwitz’s theorem implies the existence of a 

sequence 0ζζ →n  with 
 

0
)()( innnnnn azfg =+= ζρζ . 

 
Since ,

00 inin afaf =′⇒=  we have .)( azf nnnn =+′ ζρ   Then  
 

0)(lim)(lim)( 0 =+′=′=′
∞→∞→

nnnnnnnnn
zfgg ζρρζζ , 

 
and hence the zeros of 

0
)( iag −ζ are of multiplicity at least 2. 

    Without loss of generality, we assume that 01 ≠a  and 02 ≠a .  Next we prove that 
.)2,1()( =≠ iag iζ   Suppose that 0ζ  is a 1a -point of )(ζg of multiplicity )2( ≥kk , 

then 0)( 0
)( ≠ζkg .  Thus there exists a positive number ,δ  such that 

 
0)(,0)(,)( )(

1 ≠≠′≠ ζζζ kggag ,        (3) 
 

on }||0:{ 0
0 δζζζδ <−<=D .  Since 0ζ  is a 1a -point of )(ζg  of                

multiplicity k, by Rouché theorem, there exists ),,2,1(}{ )( kii
n =ζ  on 

}2/||:{ 02/ δζζζδ <−=D  such that .0)( 1
)( =− ag i

nn ζ   Since 
 

),,2,1(0)()( 1
)()( kiazfg n

i
nnnnn

i
nn =≠=+′=′ ρζρρζ , 

 
so each )(i

nζ is a simple zero of 1)( agn −ζ , that is, 
 

),()()()( )()(
1

)()2()1( jiaggg j
n

i
n

k
nnnnn ≠≠==== ζζζζζ . 

 
On the other hand 
 

,0lim)(lim )( ==′
∞←∞→

ag nn

i
nnn

ρζ  
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then, from (3), we obtain 
 

),,2,1(lim 0
)( kii

nn
==

∞→
ζζ . 

 
Note that (3) and 1)( ag nn ρζ −′  has k zeros )()2()1( ,,, k

nnn ζζζ  in 
}2/||:{ 02/ δζζζδ <−=D , then 0ζ  is a zero of )(ζg ′  of multiplicity k, and thus 

.0)( 0
)( =ζkg  This contradicts (3). Hence .)( 1ag ≠ζ  Similarly, .)( 2ag ≠ζ  By 

Nevanlinna second fundamental theorem, we arrive at a contradiction.  This completes 
the proof of Theorem 2. 
 
Remark 3.   Some idea in the proof of Theorem 2 has its roots in Pang [4]. 

 
Proof of Theorem 3.   Suppose .)()( 00 Dzz ∈∞≠ψ   This means that  f and ψ  have 
no common poles in D.  By Theorem E, F   is normal at 0z . 

If ,)( 0 ∞=zψ  then there exists a positive number ,δ  such that )(zψ  has no poles 
on }||0:{ 0 δ<−< zzz .  Thus F   is normal on }||0:{ 0 δ<−< zzz .  Hence, 
for each function sequence ,F∈nf  there exists a subsequence of )(zfn  (without loss 
of generality, we still denote by ,))(zfn  such that 

 
)()( 0 zfzfn → , 

 
locally uniformly with respect to the spherical metric to )(0 zf  on 

}||0:{ 0 δ<−< zzz . 
 

We consider two cases. 
 

Case 1.  .0)(0 zf   
Since ,0)( ≠zfn  by Hurwitz’s theorem, )(0 zf  has no zeros on 

.}||0:{ 0 δ<−< zzz   Then there exists a positive number m such that 
 

.
2

min 0020
mezf i >⎟

⎠
⎞

⎜
⎝
⎛ +

<≤

θ

πθ

δ  

 
Thus there exists a positive integer N, such that 
 
 

,
22

min 020

mezf i
n >⎟

⎠
⎞

⎜
⎝
⎛ +

<≤

θ

πθ

δ  
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for .Nn ≥   Note that 0)( ≠zfn  on D, by the minimum modulus theorem, we have 
 

2
)(min

2
|| 0

mzfn
zz

>
≤−
δ

. 

 
Thus F   is normal at .0z  
 
Case 2.  .0)(0 ≡zf  

Then ψ/)(k
nf  and )/( )( ′ψk

nf  converges locally uniformly to 0 on 
,}||0:{ 0 δ<−< zzz  so we have 

 

1
1

2
1

1

1,,
2

1,,
2 )(

)(

2
||)(0

)(

0
0

<

−

′

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ∫ =−

dz
f

f

if
zn

f
zn k

n

k
n

zzk
n

k
n

ψ

ψ

π
ψ

δ
ψ

δ
δ  

 
for sufficiently large .n   Since the poles of ψ  are of multiplicity less than 1+k  

whenever nf  and ψ  have common poles, and note that ,)( ψ≠k
nf  then 

 

.0
1

1,,
2

1,,
2

,,
2 )(0

)(

00 =

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≤⎟

⎠
⎞

⎜
⎝
⎛

ψ

δ
ψ

δδ
k

n

k
n

n f
znz

f
znfzn  

 
It shows that )(zfn  is holomorphic on }2/||:{ 0 δ<− zzz for sufficiently large n. 
Thus )(zfn  converges locally uniformly to 0 on }2/||:{ 0 δ<− zzz , and hence F  is 
normal at .0z   This completes the proof of Theorem 3. 
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