BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

A Note on Some Results of Schwick

YAN XU AND MINGLIANG FANG

Department of Mathematics, Nanjing Normal University, Nanjing 210097, P.R. China e-mail: xuyan@njnu.edu.cn and e-mail: mlfang@pine.njnu.edu.cn

Abstract. In this paper, we obtain some normality criteria of families of meromorphic functions, which improve and generalize the related results of Schwick [8, 10]. Some examples are given to show the sharpness of our results.

2000 Mathematics Subject Classification: 30D35.

1. Introduction

Let D be a domain in C and $a \in C$ and let S be a set of complex numbers. For f meromorphic on D, set

$$\overline{E}(a, f) = \{z : z \in D, f(z) = a\}.$$
$$\overline{E}(S, f) = \{z : z \in D, f(z) \in S\}.$$

Two meromorphic functions f and g are said to share the value a in D if $\overline{E}(a, f) = \overline{E}(a, g)$. Similarly, f and g are said to share the set S in D if $\overline{E}(S, f) = \overline{E}(S, g)$.

Let *F* be a family of meromorphic functions defined in *D*. *F* is said to be normal in *D*, in the sense of Montel (see Schiff [7]), if, for any sequence $f_n \in F$, there exists a subsequence f_{n_j} , such that f_{n_j} converges spherically locally uniformly in *D*, to a meromorphic function or ∞ .

Schwick [8] seems to have been the first to draw a connection between normality criteria and shared values. He proved

Theorem A. Let F be a family of meromorphic functions defined in D, and let a, b, c be three distinct complex numbers. If f and f' share a, b, c in D for every $f \in F$, then F is normal in D.

This result has undergone various extensions [3,11,12], culminating in the following results due to Pang and Zalcman [5], and Chen and Fang [1], respectively.

Theorem B. ([5]) Let F be the family of meromorphic functions in a domain D, and let a, b be two distinct complex numbers. If f and f' share a and b in D for each $f \in F$, then F is normal in D.

Theorem C. ([1]) Let F be the family of meromorphic functions in a domain D, k a positive integer, and let a, b and c be complex numbers such that $a \neq b$. If, for each

 $f \in F$, f and $f^{(k)}$ share a and b in D, and the zeros of f(z) - c are of multiplicity $\geq k + 1$, then F is normal in D.

Remark 1. There is an example (see [1]) to show that the assumption on the zeros of f(z) - c is required for Theorem C to hold.

In this paper, we obtain the following results.

Theorem 1. Let F be the family of meromorphic functions in a domain D, let a, b and c be three distinct complex numbers, and let $S_1 = \{a, b\}$ and $S_2 = \{c\}$, if, for each $f \in F$, f and $f^{(k)}$ share the set S_1 and S_2 in D, then F is normal in D.

Theorem 2. Let *F* be the family of meromorphic functions in a domain *D*, let $a_i(i = 1, 2, 3)$ be three distinct complex numbers, if, for each $f \in F$, $f = a_i \Rightarrow f' = a_i(i = 1, 2, 3)$ in *D*, then *F* is normal in *D*.

The second part of this paper is concerning on the result of Schwick [10]. In 1983, Yang [13] (see also [9]) proved

Theorem D. Let $\psi \circledast 0$ be a analytic function in a domain D and $k \in N$. Let F be the family of meromorphic functions in D such that f and $f^{(k)} - \psi$ have no zeros for each $f \in F$, then F is normal in D.

In 1997, Schiwick extended ψ to meromorphic case in Theorem D, as follows.

Theorem E. ([10]) Let $\psi \circledast 0$ be a meromorphic function in a domain D and $k \in N$. Let F be the family of meromorphic functions in D such that f and $f^{(k)} - \psi$ have no zeros and f and ψ have no common poles for each $f \in F$, then F is normal in D. It is natural to ask: whether or not the above result holds if f and ψ have common poles in Theorem E? In this paper, we obtain the following result.

Theorem 3. Let $\psi \neq 0$ be a meromorphic function in a domain D and $k \in N$, and let F be the family of meromorphic functions in D. If, for each $f \in F$, f and $f^{(k)} - \psi$ have no zeros, and the poles of ψ are of multiplicity less than k + 1 whenever f and ψ have common poles, then F is normal in D.

Remark 2. The following example shows the condition that the poles of ψ are of multiplicity less than k + 1 whenever f and ψ have common poles in Theorem 3 is necessary, and the number k + 1 is sharp.

Example 1. Let $F = \{f_n(z) : f_n(z) = \frac{1}{nz}, n = 1, 2, \dots, \}, \psi(z) = \frac{1}{z^2}, \text{ and } D = \{z : |z| < 1\}.$ Obviously, $f_n(z) \neq 0, f'_n(z) - \psi(z) = -\frac{1}{nz^2} - \frac{1}{z^2} \neq 0, f_n(z)$ and $\psi(z)$ have the same pole z = 0, and the pole of $\psi(z)$ is of multiplicity 2. But it is easy to see that F is not normal in D.

2. Some lemmas

To prove our results, we need the following lemma, which is the well-known Zalcman's lemma.

Lemma 1. ([15]) Let F be a family of functions meromorphic in a domain D. If F is not normal at $z_0 \in D$, then there exists a sequence of points $z_n \in D$, $z_n \to z_0$, a sequence of positive numbers $\rho_n \to 0$, and a sequence of functions $f_n \in F$ such that

$$g_n(\zeta) = f_n(z_n + \rho_n \zeta) \rightarrow g(\zeta)$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C.

3. Proof of theorems

Proof of Theorem 1. Suppose that F is not normal at point $z_0 \in D$. Then by Lemma 1, there exist a sequence of functions $f_n \in F$, a sequence of complex numbers $z_n \to z_0$ and a sequence of positive numbers $\rho_n \to 0$, such that

$$g_n(\zeta) = f_n(z_n + \rho_n \zeta)$$

Y. Xu and ML Fang

converges locally uniformly with respect to the spherical metric to a non-constant function $g(\zeta)$.

We claim that $g^{(k)}(\zeta) \neq 0$.

Indeed, suppose that there exists a point ζ_0 such that $g^{(k)}(\zeta_0) = 0$. Since

$$g^{(k)}(\zeta)-\rho_n^ka=\rho_n^k(f_n^{(k)}(z_n+\rho_n\zeta)-a)\to g^{(k)}(\zeta)$$

by Hurwitz's theorem, there exist $\zeta_n, \zeta_n \to \zeta_0$, such that $f_n^{(k)}(z_n + \rho_n \zeta_n) = a$ (for *n* sufficiently large). It follows from the hypotheses on *F* that $f_n(z_n + \rho_n \zeta_n) = a$ or $f_n(z_n + \rho_n \zeta_n) = b$. Thus

$$g(\zeta_0) = a, \text{ or } b \tag{1}$$

On the other hand,

$$g^{(k)}(\zeta) - \rho_n^k c = \rho_n^k (f_n^{(k)}(z_n + \rho_n \zeta) - c) \to g^{(k)}(\zeta).$$

Then using the same argument as the above, we deduce that

$$g(\zeta_0) = c \tag{2}$$

which contradicts (1).

Now we prove that $g(\zeta) \neq a, b$ and c. Suppose there exists $\zeta_1 \in C$ such that $g(\zeta_1) = a$. Then by Hurwitz's theorem, there exist $\zeta_n, \zeta_n \to \zeta_1$ and

$$g_n(\zeta_n) = f_n(z_n + \rho_n \zeta_n) = a,$$

for sufficiently large *n*. Since f_n and $f_n^{(k)}$ share the set S_1 , we have $f_n^{(k)}(z_n + \rho_n \zeta_n) = a$ or *b*, and then

$$g^{(k)}(\zeta_1) = \lim_{n \to \infty} g_n^{(k)}(\zeta_n) = \lim_{n \to \infty} \rho_n^k f_n^{(k)} \big(z_n + \rho_n \zeta_n \big) = 0 ,$$

a contradiction. Thus $g(\zeta) \neq a$. Similarly, we have $g(\zeta) \neq b$ and *c*. By Nevanlinna second fundamental theorem, $g(\zeta)$ must be a constant, a contradiction. This completes the proof of Theorem 1.

Proof of Theorem 2. Suppose that F is not normal at point $z_0 \in D$. Then by Lemma 1, there exist a sequence of functions $f_n \in F$, a sequence of complex numbers $z_n \to z_0$ and a sequence of positive numbers $\rho_n \to 0$, such that

$$g_n(\zeta) = f_n(z_n + \rho_n \zeta)$$

converges locally uniformly with respect to the spherical metric to a non-constant function $g(\zeta)$.

Suppose that $g(\zeta_0) = a_{i_0} (1 \le i_0 \le 3)$. Hurwitz's theorem implies the existence of a sequence $\zeta_n \to \zeta_0$ with

$$g_n(\zeta_n) = f_n(z_n + \rho_n \zeta_n) = a_{i_0}.$$

Since $f_n = a_{i_0} \Rightarrow f'_n = a_{i_0}$, we have $f'_n(z_n + \rho_n \zeta_n) = a$. Then

$$g'(\zeta_0) = \lim_{n \to \infty} g'_n(\zeta_n) = \lim_{n \to \infty} \rho_n f'_n(z_n + \rho_n \zeta_n) = 0,$$

and hence the zeros of $g(\zeta) - a_{i_0}$ are of multiplicity at least 2.

Without loss of generality, we assume that $a_1 \neq 0$ and $a_2 \neq 0$. Next we prove that $g(\zeta) \neq a_i (i = 1, 2)$. Suppose that ζ_0 is a a_1 -point of $g(\zeta)$ of multiplicity $k(k \ge 2)$, then $g^{(k)}(\zeta_0) \neq 0$. Thus there exists a positive number δ , such that

$$g(\zeta) \neq a_1, \ g'(\zeta) \neq 0, \ g^{(k)}(\zeta) \neq 0,$$
 (3)

on $D_{\delta}^{0} = \{ \zeta : 0 < |\zeta - \zeta_{0}| < \delta \}$. Since ζ_{0} is a a_{1} -point of $g(\zeta)$ of multiplicity k, by Rouché theorem, there exists $\{\zeta_{n}^{(i)}\}$ ($i = 1, 2, \dots, k$) on $D_{\delta/2} = \{ \zeta : |\zeta - \zeta_{0}| < \delta/2 \}$ such that $g_{n}(\zeta_{n}^{(i)}) - a_{1} = 0$. Since

$$g'_n(\zeta_n^{(i)}) = \rho_n f'_n(z_n + \rho_n \zeta_n^{(i)}) = \rho_n a_1 \neq 0 \ (i = 1, 2, \dots, k),$$

so each $\zeta_n^{(i)}$ is a simple zero of $g_n(\zeta) - a_1$, that is,

$$g_n(\zeta_n^{(1)}) = g(\zeta_n^{(2)}) = \dots = g_n(\zeta_n^{(k)}) = a_1(\zeta_n^{(i)} \neq \zeta_n^{(j)}, i \neq j).$$

On the other hand

$$\lim_{n\to\infty}g'_n(\zeta_n^{(i)})=\lim_{n\leftarrow\infty}\rho_n a=0,$$

then, from (3), we obtain

$$\lim_{n\to\infty}\zeta_n^{(i)}=\zeta_0(i=1,2,\cdots,k)\,.$$

Note that (3) and $g'_n(\zeta) - \rho_n a_1$ has k zeros $\zeta_n^{(1)}, \zeta_n^{(2)}, \dots, \zeta_n^{(k)}$ in $D_{\delta/2} = \{\zeta : |\zeta - \zeta_0| < \delta/2\}$, then ζ_0 is a zero of $g'(\zeta)$ of multiplicity k, and thus $g^{(k)}(\zeta_0) = 0$. This contradicts (3). Hence $g(\zeta) \neq a_1$. Similarly, $g(\zeta) \neq a_2$. By Nevanlinna second fundamental theorem, we arrive at a contradiction. This completes the proof of Theorem 2.

Remark 3. Some idea in the proof of Theorem 2 has its roots in Pang [4].

Proof of Theorem 3. Suppose $\psi(z_0) \neq \infty(z_0 \in D)$. This means that f and ψ have no common poles in D. By Theorem E, F is normal at z_0 .

If $\psi(z_0) = \infty$, then there exists a positive number δ , such that $\psi(z)$ has no poles on $\{z : 0 < |z - z_0| < \delta\}$. Thus F is normal on $\{z : 0 < |z - z_0| < \delta\}$. Hence, for each function sequence $f_n \in F$, there exists a subsequence of $f_n(z)$ (without loss of generality, we still denote by $f_n(z)$), such that

$$f_n(z) \to f_0(z)$$
,

locally uniformly with respect to the spherical metric to $f_0(z)$ on { $z: 0 < |z - z_0| < \delta$ } .

We consider two cases.

Case 1. $f_0(z) \not\equiv 0$. Since $f_n(z) \neq 0$, by Hurwitz's theorem, $f_0(z)$ has no zeros on $\{z: 0 < |z - z_0| < \delta\}$. Then there exists a positive number *m* such that

$$\min_{0 \le \theta < 2\pi} \left| f_0 \left(z_0 + \frac{\delta}{2} e^{i\theta} \right) \right| > m.$$

Thus there exists a positive integer N, such that

$$\min_{0 \le \theta < 2\pi} \left| f_n \left(z_0 + \frac{\delta}{2} e^{i\theta} \right) \right| > \frac{m}{2},$$

for $n \ge N$. Note that $f_n(z) \ne 0$ on D, by the minimum modulus theorem, we have

$$\min_{|z-z_0|\leq\frac{\delta}{2}} \left| f_n(z) \right| > \frac{m}{2}$$

Thus F is normal at z_0 .

Case 2. $f_0(z) \equiv 0$. Then $f_n^{(k)} / \psi$ and $(f_n^{(k)} / \psi)'$ converges locally uniformly to 0 on $\{z: 0 < |z - z_0| < \delta\}$, so we have

$$\left| n\left(\frac{\delta}{2}, z_0, \frac{f_n^{(k)}}{\psi} - 1\right) - n\left(\frac{\delta}{2}, z_0, \frac{1}{\frac{f_n^{(k)}}{\psi} - 1}\right) \right| = \left| \frac{1}{2\pi i} \int_{|z-z_0| = \frac{\delta}{2}} \frac{\left(\frac{f_n^{(k)}}{\psi}\right)'}{\frac{f_n^{(k)}}{\psi} - 1} dz \right| < 1$$

for sufficiently large n. Since the poles of ψ are of multiplicity less than k+1 whenever f_n and ψ have common poles, and note that $f_n^{(k)} \neq \psi$, then

$$\overline{n}\left(\frac{\delta}{2}, z_0, f_n\right) \le n\left(\frac{\delta}{2}, z_0, \frac{f_n^{(k)}}{\psi} z - 1\right) = n\left(\frac{\delta}{2}, z_0, \frac{1}{\frac{f_n^{(k)}}{\psi} - 1}\right) = 0$$

It shows that $f_n(z)$ is holomorphic on $\{z : | z - z_0 | < \delta / 2\}$ for sufficiently large *n*. Thus $f_n(z)$ converges locally uniformly to 0 on $\{z : | z - z_0 | < \delta / 2\}$, and hence *F* is normal at z_0 . This completes the proof of Theorem 3.

References

- 1. H.H.Chen and M.L. Fang, Shared values and normal families, J. of Math. Anal. Appl. 260 (2001),124–132.
- 2. W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- 3. X.C. Pang, Shared values and normal families, Analysis, in press.
- 4. X.C. Pang, Normal families and normal functions of meromorphic functions (in Chinese), *Chin. Ann. of Math., Ser.* A **21** (2001), 601–604.
- 5. X.C. Pang and L. Zalcman, Normality and shared values, Ark. Mat. 38 (2000), 172-182.

Y. Xu and ML Fang

- X.C. Pang and L. Zalcman, Normal families and shared values, *Bull. London Math. Soc.* 32 (2000), 325–331.
- 7. J. Schiff, Normal Fmalies, Springer-Verlag, New York/Berlin, 1993.
- 8. W. Schwick, Sharing values and normality, Arch. Math. 59 (1992), 50-54.
- 9. W. Schwick, Exceptional functions and normality, Bull. London Math. Soc. 29 (1997), 425-432.
- 10. W. Schwick, On Hayman's alternative for families of meromorphic functions, *Complex Variables* **32** (1997), 51–57.
- 11. Y. Xu, Sharing values and normality criteria, J. Nanjing Univ. Math. Biquart. 15 (1998), 180–185.
- 12. Y. Xu, Normality criteria concerning sharing values, Indian J. Pure Appl. Math. 30 (1999), 287–293.
- L. Yang, Normal families and differential polynomials, *Scientia Sinicia, Ser. A* 26 (1983), 673–686.
- 14. L. Yang, Value Distribution Theory, Springer-Verlang & Science Press, Berlin, 1993.
- 15. L. Zalcman, A heuristic principle in complex function theory, *Amer. Math. Monthly* **82** (1975), 813–817.

Keywords: Meromorphic function, normal family, shared value.

Supported by NSF of China (Grant 10171047) and NSF of Educational Department of Jiangsu Province (03KJB110058).

8