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Abstract. For any linear operator on a Banach space, the continuity and boundedness are
equivalent. It fails for a nonlinear operator, in particular, for a superposition operator. In this paper,
we present sufficient and necessary conditions in terms of an inequality for the continuity of a

superposition operator on the function space W (¢) .
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1. Introduction

Let N and R denote the set of all positive integers and the real numbers respectively.
If g(k,t) : N x R — R, then a superposition operator P, from a sequence space of real

numbers X into another one is defined by:
Py ({xc}) = {9k, x )},

for every {x,} € X. Under the assumption that g(k,) is continuous on R for every k,

Chew and Lee [1] have characterized Py i1, > 1;,1<p <o, and Py:icy —>1;.

|
P
Meanwhile Paredes [2] has characterized P, :w,(®) — I, where w,(®) is the
sequence version of the function space W;(¢) defined below. The sufficient and
necessary condition for the continuity of P, on the sequence spaces have also been

given in [1] and [2]. The purpose of this paper is to generalize these results to a function
space.
Let m[a, ) denote the collection of all measurable real-valued functions on [a, «).

Foreach x e[a,) and f € m[a,«), the function f, is defined as follows :
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f(t) whenever a <t <X,

fx (t) = i
0  otherwise

It is clear that for every x € [a,«),we have f, € m[a,»), whenever f € m[a,x).

In this paper we always assume that X < m|[a, ).
Let X be a linear space of functions on [a, ) over real numbers R. A non-negative

function ||-||: X — [0, ) is called an F-norm if for every f,g e X we have:
i |[f|=0e f=0,
@ J=ff={1

iy |f+gf<|f]+]g].

(iv) If {a,} < R is any sequence which convergesto aand { f (M1 s any sequence
in Xsuchthat || f™ — || — 0, forsome f e X, then ||a,f™ —af || - 0.

Asusual, f =0 means f(x) =0 almost everywhere in [a, ). Furthermore, (X,||-|)

i.e. a linear space equiped with an F-norm is called an F-normed Space. It is easy to
prove that a function d : X x X — [0,) given by d(f,g) =| f — g|| is a metric on X.

If an F-normed Space X is complete then it is called a Fréchet Space or an F-Space in
short.

A space X is called an FK-Space if it is an F-space and the canonical mapping
py i X = R,

p(f)=1(x), feX

is continuous for every xe[a,o), in the sense that if || f™ — f|| — O then
fM(x) > f(x) as n — .

An F-space X is called an AK-Space if X contains yr and f, for any set
E c[a, o) of finite measure, f € X and x €[a,»), and x“j!o” f,—f]=0.

An F-normed space X is said to be solid if for every f € X and g € m[a,«) such
that if |g(x)| < | f(x)| foralmostall x € [a,), then g € X.

A real-valued function ¢ : R — [0,0) is called a g-function if it is continuous,
even, increasing on [0,), and ¢(t) - o, as t — . We shall always assume that
the ¢g-function ¢ satisfies the A,- condition, i.e. there exists a real number M > 0 such
that: ¢(2t) < Mg(t) forevery t > 0 (see [5]).
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Further, fix a real number a > 0 and we define the space:

Wy (9) = {f e m[a,o); lim ps(f)=0},
S—o0
where p, is given by :

p(1) = [ 1p(f)ex, s e[a).
We can show that pg is a modular on Wy (¢), i.e. it is even, increasing on the set
{f e mla,); f >0 aeon[a, oo)} and satisfies the following conditions:
(i) ps(f)=0< f =0 ae on [awx),
(i) ps(max{f,g}) < py(f)+ py(Q), forevery f,g eWo(g).
If we define the function p on the space by:
p(f) =sup{ps(f), selax)}

we can also prove that p is a modular on the space. Supama and Soeparna [3] observed
that W, (¢) is a solid FK- and AK-space with respect to:

||f||=inf{g>0; p[agg}, f eWo(e).

Let X be a function space. A functional F : X — R is said to be continuous at
f e X if forevery ¢ > 0 there exists & > 0 such that :

|F(f)-F()|<e,

whenever || f —h|| < 6. Further, F is said to be continuous on X if it is continuous at
every f e X.

Two functions f, g € X are said to be orthogonal or disjoint, written by f 1 g,
if f(x)-g(x)=0 foralmostall x € [a,). The functional F : X — R is said to be
orthogonally additive if forevery f, g € X,

F(f+9)=F(f)+F(9),

whenever f 1L g. Then, Supama and Soeparna (see [3],[4]) characterized the
following:
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Theorem 1.1. The functional F :W,(¢) — R is continuous and orthogonally additive
if and only if there exists g(x,t) :[a,) x R — R satisfying that g( .,t) is measurable
forevery t e R, g(x,0) =0 and g(x,-) iscontinuous on R for every x € [a, ) such
that:

F(f) =], a(x f(x)dx

exists for every f e W, ().

2. Some lemmas

The main results of the research are Theorem 3.1. The following lemmas are required
for proving those theorems.

Lemma2l. Let f eWy(¢). Then for every B >0 there exists ¢ > 0 such that
p(f) < B, whenever || f| < «a.

Proof. Let f eW,(#) and S >0 be given. There exists ny; e N such that

S < 2™ . So, we have:

p(f):sup{éjj ¢(f(x))dx}

s=a

< sup { % j: ¢[% f(x)de}

<M sup{%_[:¢(%f(x)jdx}, for some M >0

s=a
f
B M no p[_j
B
If we choose @ > 0 suchthat & < 8 and M™a < S then the assertion follows.

Lemma2.2. Let f eW,(#). Then for every real numbers «, y > 0 there exists
B >0 suchthat || f|| < «, whenever p(yf) < g

Proof. Let a, y >0, then there exists n, € N such that % < y2™. Since ¢ satisfies
the A,-condition then for every s € [a, o) we have:
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ps(i] N ¢[1 f(x)]dx
o S (24
< %j: # (2% (x))ax

nD
< MTJ: ¢ (7 f(x))dx, forsome M >0

=M nops(7f)

It implies p(%)ﬁ M "™ (yf). If we choose S < ML” then p(%)s a,as p(yf)< p.
So, || f|| £ a, whenever p(yf) < £. This completes the proof.
We remark that the above two lemmas remain valid with W, (¢#) replaced by a

modulared space X (see [5]). We presented only the case when X =W,(¢) as it is the
form required later.

Lemma2.3. Let X be an FK- and AK-space. Suppose g(x,t):[a,©)xR —> R
satisfies the following conditions: g (.,t) is measurable for every t e R, g(x,0) =0
and g(x,-) is continuous on R for every x e[a,). If there exist real numbers «,

B > 0 such that lJ'asqﬁ(f(x))dx < B implies j: |g(x, f(x))|dx <& foreach f e X
]
and s € [a, ) then for every s e [a, o) there is a non-negative function h € Ly[a, s],

depending on s, with f: h(x)dx < a such that for every x €[a,s],

lg(x, )| < h(x) + 2a87" 571 4(1),

$(t)
whenever =~ < .

Proof. Let se[a,) and teR be given. We define the function k on
[a,s] x R ¢and the function h on [a, s] as follows :&.¢

0 otherwise

{| g(xt) | - 2ap7 s g(t) when [g(xt) | > 2087 s 4(1),
k(x,t) =

h(x) = sup{k(x, t); @ < /5’} = k(x, u(x)).
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Note that both functions k and h depend on s. Since ¢ is continuous and has an inverse,
h(x) above is uniquely determined. It is clear that h(x) > 0 for every x e[a,s].

Since, g(x,-) and ¢ are both continuous on R then k(x,-) is continuous on R for

every x e[a,s]. Further, {t; @s ﬁ} is closed and bounded, in view of the

continuity of ¢ . Hence, we have h(x) is finite for x e[a,s]. Next we prove
h e Ly[a,s].

For each s € [a,«), we can decompose as follows:

[, #uC)dx = [, pue))dx + [, pu))dx +---+ [, ¢(ulx))dx

where A, Ay,---, A, are measurable subsets of [a,s] with Lrj A =[a,s], the
i=1
Lebesgue measure  u(A N A;)=0 for every i=j, i,j=12--n, and
B 1 . 1
' ngqﬁ(u(x))dx <B,i=123--n-1and 0< EIA%(U(X))dx < B. So, we
have:
jas h(x)dx = jas k(x, u(x)) dx
< [ 2 1axu()) [dx - 20877 * g(u(x)) dx
=y J;\ lg(x,u(x) |dx = 2087's > | , PG dx
i=1 i=1
<na-2afsHn-0)(8/2) = a.
Thus, h e Ly[a,s] and j:h(x)dx <a.

From the definitions of h and k(x,t), we have k(x,t) < h(x) for every x e [a,s],

whenever === < 3. So, by the definition of k(x,t) we have:
|g(x,t)| < h(x) + 2aB7's 7 g(t),

() i
whenever === < B. This completes the proof.
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3. Main result

Let X be a function space and g(x,t) :[a,) x R - R. We define a superposition
operator P, on X as follows:

Pe (F)(X) = 9(x, £(x)),

for every f € X and x e[a,»). It is clear that the conditions of X required in
Lemma 2.3 are all satisfied by the space W,(¢) (see [3]). Hence, we can prove the
following theorem.

Theorem 3.1.  Let g(x,t) :[a,) x R — R be given such that g(.,t) is measurable
for every t, g(x,0) =0 and g(x,-) is continuous on R for every x e[a,«). The
operator Py :W,(¢) — Ly[a,) if and only if there exist @, # >0 and for every

s € [a, ) there exists non-negative function h e Lj[a,s], depending on s, with

j:h(x) dx < & such that for every x < [a, s],

|g(x,1)] < h(x) + 228754 (t),
whenever @ < p.

Proof.
(<): Let f eW,(¢), then there exists a real number M > a such that for every
s>M:

S[Iarond < g
It follows that:

j:| g(x, f(x))|dx < j:h(x) dx + Zaﬂ_ls_lj: H(F (X)X < & + 20715 = 3a,

for every s > M. Hence, _[: |g(x, f(x))]| exist.

(=): By Theorem 1.1, the functional F :W,(¢) — R given by:

F(F)=[ " Ja(x F00)| dx,  eWo(g)
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is continuous and orthogonally additive. So, there exists n > 0 such that for each
feW,(4),

I: lg(x, f()|dx <1,

whenever || f || < 7. Also, by Lemma 2.2 there exists f >0 such that || f || <# as
p(f) < g. Thus, for p(f) < S we have:

jj lg(x, f(x)]dx < 1.
It means that for every s e [a,»),

j: lg(x, f(x))|dx <1,
whenever

SROEEY
By choosing

= sup [0, 100) 0 2 ] (1 (0)ox < 4]

then we have:

[ a0 f(x)|dx < @

whenever lJ’;¢(f(x))dx < f. By Lemma 2.3 there exists a non-negatif function
s

h e L;[a,s], depending on s, with j: h(x)dx < « such that for every x € [a, s],

|g(x,t)| < h(x) + 2287 s (1),

#() i
whenever === < B. This completes the proof.
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