BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

Superposition Operators on $W_0(\phi)$

SUPAMA AND SOEPARNA DARMAWIJAYA

Department of Mathematics, Faculty of Mathematic and Natural Sciences, Gadjah Mada University, Yogyakarta, 55281, Indonesia e-mail: maspomo@yahoo.com

Abstract. For any linear operator on a Banach space, the continuity and boundedness are equivalent. It fails for a nonlinear operator, in particular, for a superposition operator. In this paper, we present sufficient and necessary conditions in terms of an inequality for the continuity of a superposition operator on the function space $W_0(\phi)$.

2000 Mathematics Subject Classification: 47B38.

1. Introduction

Let *N* and *R* denote the set of all positive integers and the real numbers respectively. If $g(k,t) : N \times R \to R$, then a superposition operator P_g from a sequence space of real numbers *X* into another one is defined by:

$$P_g(\{x_k\}) = \{g(k, x_k)\},\$$

for every $\{x_k\} \in X$. Under the assumption that $g(k, \cdot)$ is continuous on R for every k, Chew and Lee [1] have characterized $P_g : l_p \to l_1, 1 \le p < \infty$, and $P_g : c_0 \to l_1$. Meanwhile Paredes [2] has characterized $P_g : w_o(\Phi) \to l_1$ where $w_o(\Phi)$ is the sequence version of the function space $W_0(\phi)$ defined below. The sufficient and necessary condition for the continuity of P_g on the sequence spaces have also been given in [1] and [2]. The purpose of this paper is to generalize these results to a function space.

Let $\boldsymbol{m}[a,\infty)$ denote the collection of all measurable real-valued functions on $[a,\infty)$. For each $x \in [a,\infty)$ and $f \in \boldsymbol{m}[a,\infty)$, the function f_x is defined as follows : Supama and S. Darmawijaya

$$f_x(t) = \begin{cases} f(t) & \text{whenever } a \le t \le x, \\ 0 & \text{otherwise} \end{cases}$$

It is clear that for every $x \in [a, \infty)$, we have $f_x \in \boldsymbol{m}[a, \infty)$, whenever $f \in \boldsymbol{m}[a, \infty)$.

In this paper we always assume that $X \subset \boldsymbol{m}[a, \infty)$.

Let X be a linear space of functions on $[a, \infty)$ over real numbers R. A non-negative function $\|\cdot\|: X \to [0, \infty)$ is called an *F***-norm** if for every $f, g \in X$ we have:

- (i) $||f|| = 0 \Leftrightarrow f = 0$,
- (ii) $\|-f\| = \|f\|$,
- (iii) $|| f + g || \le || f || + || g ||,$
- (iv) If $\{a_n\} \subset R$ is any sequence which converges to a and $\{f^{(n)}\}\$ is any sequence in X such that $||f^{(n)} - f|| \to 0$, for some $f \in X$, then $||a_n f^{(n)} - af|| \to 0$.

As usual, f = 0 means f(x) = 0 almost everywhere in $[a, \infty)$. Furthermore, $(X, \|\cdot\|)$ i.e. a linear space equiped with an *F*-norm is called an *F*-normed Space. It is easy to prove that a function $d : X \times X \to [0, \infty)$ given by $d(f, g) = \|f - g\|$ is a metric on X. If an *F*-normed Space X is complete then it is called a *Frèchet Space* or an *F*-Space in short.

A space X is called an *FK-Space* if it is an *F*-space and the canonical mapping $p_x: X \to R$,

$$p_x(f) = f(x), \quad f \in X$$

is continuous for every $x \in [a, \infty)$, in the sense that if $|| f^{(n)} - f || \to 0$ then $f^{(n)}(x) \to f(x)$ as $n \to \infty$.

An *F*-space *X* is called an *AK-Space* if *X* contains χ_E and f_x for any set $E \subset [a, \infty)$ of finite measure, $f \in X$ and $x \in [a, \infty)$, and $\lim_{x \to \infty} ||f_x - f|| = 0$.

An *F*-normed space *X* is said to be *solid* if for every $f \in X$ and $g \in m[a, \infty)$ such that if $|g(x)| \le |f(x)|$ for almost all $x \in [a, \infty)$, then $g \in X$.

A real-valued function $\phi : \mathbb{R} \to [0, \infty)$ is called a ϕ -function if it is continuous, even, increasing on $[0, \infty)$, and $\phi(t) \to \infty$, as $t \to \infty$. We shall always assume that the ϕ -function ϕ satisfies the Δ_2 - condition, i.e. there exists a real number M > 0 such that: $\phi(2t) \le M\phi(t)$ for every $t \ge 0$ (see [5]). Further, fix a real number a > 0 and we define the space:

,

$$W_0(\phi) = \left\{ f \in \boldsymbol{m} [a, \infty); \lim_{s \to \infty} \rho_s(f) = 0 \right\},\$$

where ρ_s is given by :

$$\rho_s(f) = \frac{1}{s} \int_a^s \phi(f(x)) dx, \quad s \in [a, \infty).$$

We can show that ρ_s is a modular on $W_0(\phi)$, i.e. it is even, increasing on the set $\{f \in \mathbf{m}[a,\infty); f \ge 0 \text{ a.e on } [a,\infty)\}$ and satisfies the following conditions:

- (i) $\rho_s(f) = 0 \Leftrightarrow f = 0$ a.e on $[a, \infty)$,
- (ii) $\rho_s(\max\{f,g\}) \le \rho_s(f) + \rho_s(g)$, for every $f, g \in W_0(\phi)$.

If we define the function ρ on the space by:

$$\rho(f) = \sup \{ \rho_s(f), s \in [a, \infty) \},\$$

we can also prove that ρ is a modular on the space. Supama and Soeparna [3] observed that $W_0(\phi)$ is a solid *FK*- and *AK*-space with respect to:

$$\| f \| = \inf \left\{ \varepsilon > 0 ; \rho \left(\frac{f}{\varepsilon} \right) \le \varepsilon \right\}, \quad f \in W_0(\phi).$$

Let X be a function space. A functional $F : X \to R$ is said to be *continuous* at $f \in X$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that :

$$|F(f) - F(h)| < \varepsilon$$

whenever $||f - h|| < \delta$. Further, *F* is said to be *continuous* on *X* if it is continuous at every $f \in X$.

Two functions $f, g \in X$ are said to be *orthogonal* or *disjoint*, written by $f \perp g$, if $f(x) \cdot g(x) = 0$ for almost all $x \in [a, \infty)$. The functional $F : X \to R$ is said to be *orthogonally additive* if for every $f, g \in X$,

$$F(f+g) = F(f) + F(g),$$

whenever $f \perp g$. Then, Supama and Soeparna (see [3], [4]) characterized the following:

Theorem 1.1. The functional $F : W_0(\phi) \to R$ is continuous and orthogonally additive if and only if there exists $g(x,t) : [a, \infty) \times R \to R$ satisfying that g(.,t) is measurable for every $t \in R$, g(x,0) = 0 and $g(x,\cdot)$ is continuous on R for every $x \in [a,\infty)$ such that:

$$F(f) = \int_{a}^{\infty} g(x, f(x)) dx$$

exists for every $f \in W_0(\phi)$.

2. Some lemmas

The main results of the research are Theorem 3.1. The following lemmas are required for proving those theorems.

Lemma 2.1. Let $f \in W_0(\phi)$. Then for every $\beta > 0$ there exists $\alpha > 0$ such that $\rho(f) \leq \beta$, whenever $||f|| \leq \alpha$.

Proof. Let $f \in W_0(\phi)$ and $\beta > 0$ be given. There exists $n_0 \in N$ such that $\beta \leq 2^{n_0}$. So, we have:

$$\rho(f) = \sup_{s \ge a} \left\{ \frac{1}{s} \int_{a}^{s} \phi(f(x)) dx \right\}$$

$$\leq \sup_{s \ge a} \left\{ \frac{1}{s} \int_{a}^{s} \phi\left(\frac{2^{n_{o}}}{\beta} f(x)\right) dx \right\}$$

$$\leq M^{n_{o}} \sup_{s \ge a} \left\{ \frac{1}{s} \int_{a}^{s} \phi\left(\frac{1}{\beta} f(x)\right) dx \right\}, \text{ for some } M > 0$$

$$= M^{n_{o}} \rho\left(\frac{f}{\beta}\right)$$

If we choose $\alpha > 0$ such that $\alpha < \beta$ and $M^{n_o} \alpha < \beta$ then the assertion follows.

Lemma 2.2. Let $f \in W_0(\phi)$. Then for every real numbers $\alpha, \gamma > 0$ there exists $\beta > 0$ such that $||f|| \le \alpha$, whenever $\rho(\gamma f) \le \beta$.

Proof. Let $\alpha, \gamma > 0$, then there exists $n_0 \in N$ such that $\frac{1}{\alpha} \leq \gamma 2^{n_o}$. Since ϕ satisfies the Δ_2 -condition then for every $s \in [a, \infty)$ we have:

Superposition Operators on $W_0(\phi)$

$$\rho_{s}\left(\frac{f}{\alpha}\right) = \frac{1}{s} \int_{a}^{s} \phi\left(\frac{1}{\alpha}f(x)\right) dx$$

$$\leq \frac{1}{s} \int_{a}^{s} \phi\left(2^{n_{o}}\gamma f(x)\right) dx$$

$$\leq \frac{M^{n_{o}}}{s} \int_{a}^{s} \phi\left(\gamma f(x)\right) dx, \text{ for some } M > 0$$

$$= M^{n_{o}} \rho_{s}(\gamma f)$$

It implies $\rho\left(\frac{f}{\alpha}\right) \leq M^{n_o}(\gamma f)$. If we choose $\beta \leq \frac{\alpha}{M^{n_o}}$ then $\rho\left(\frac{f}{\alpha}\right) \leq \alpha$, as $\rho(\gamma f) \leq \beta$. So, $||f|| \leq \alpha$, whenever $\rho(\gamma f) \leq \beta$. This completes the proof.

We remark that the above two lemmas remain valid with $W_0(\phi)$ replaced by a modulared space X (see [5]). We presented only the case when $X = W_0(\phi)$ as it is the form required later.

Lemma 2.3. Let X be an FK- and AK-space. Suppose $g(x,t) : [a, \infty) \times R \to R$ satisfies the following conditions: g(.,t) is measurable for every $t \in R$, g(x,0) = 0and $g(x,\cdot)$ is continuous on R for every $x \in [a, \infty)$. If there exist real numbers α , $\beta > 0$ such that $\frac{1}{s} \int_{a}^{s} \phi(f(x)) dx \leq \beta$ implies $\int_{a}^{s} |g(x, f(x))| dx \leq \alpha$ for each $f \in X$ and $s \in [a, \infty)$ then for every $s \in [a, \infty)$ there is a non-negative function $h \in L_{1}[a, s]$, depending on s, with $\int_{a}^{s} h(x) dx \leq \alpha$ such that for every $x \in [a, s]$,

$$\left|g(x,t)\right| \leq h(x) + 2\alpha\beta^{-1} s^{-1} \phi(t),$$

whenever $\frac{\phi(t)}{s} \leq \beta$.

Proof. Let $s \in [a, \infty)$ and $t \in R$ be given. We define the function k on $[a, s] \times R \subsetneq$ and the function h on [a, s] as follows : $\subsetneq \subsetneq$

$$k(x,t) = \begin{cases} \mid g(x,t) \mid -2\alpha\beta^{-1} s^{-1} \phi(t) & \text{when } \mid g(x,t) \mid \ge 2\alpha\beta^{-1} s^{-1} \phi(t), \\ 0 & \text{otherwise} \end{cases}$$
$$h(x) = \sup \left\{ k(x,t); \quad \frac{\phi(t)}{s} \le \beta \right\} = k(x,u(x)).$$

Note that both functions k and h depend on s. Since ϕ is continuous and has an inverse, h(x) above is uniquely determined. It is clear that $h(x) \ge 0$ for every $x \in [a, s]$. Since, $g(x, \cdot)$ and ϕ are both continuous on R then $k(x, \cdot)$ is continuous on R for every $x \in [a, s]$. Further, $\left\{t; \frac{\phi(t)}{s} \le \beta\right\}$ is closed and bounded, in view of the continuity of ϕ . Hence, we have h(x) is finite for $x \in [a, s]$. Next we prove $h \in L_1[a, s]$.

For each $s \in [a, \infty)$, we can decompose as follows:

$$\int_{a}^{s} \phi(u(x)) dx = \int_{A_{1}} \phi(u(x)) dx + \int_{A_{2}} \phi(u(x)) dx + \dots + \int_{A_{n}} \phi(u(x)) dx$$

where A_1, A_2, \dots, A_n are measurable subsets of [a, s] with $\bigcup_{i=1}^n A_i = [a, s]$, the Lebesgue measure $\mu(A_i \cap A_j) = 0$ for every $i \neq j$, $i, j = 1, 2, \dots, n$, and $\frac{\beta}{2} \leq \frac{1}{s} \int_{A_i} \phi(u(x)) dx \leq \beta$, $i = 1, 2, 3, \dots, n-1$ and $0 \leq \frac{1}{s} \int_{A_n} \phi(u(x)) dx \leq \beta$. So, we have:

$$\begin{split} \int_{a}^{s} h(x) \, dx &= \int_{a}^{s} k(x, u(x)) \, dx \\ &\leq \int_{a}^{s} \left| g(x, u(x)) \right| \, dx - 2\alpha \beta^{-1} s^{-1} \int_{a}^{s} \phi(u(x)) \, dx \\ &= \sum_{i=1}^{n} \int_{A_{i}} \left| g(x, u(x)) \right| \, dx - 2\alpha \beta^{-1} s^{-1} \sum_{i=1}^{n} \int_{A_{i}} \phi(u(x)) \, dx \\ &\leq n\alpha - 2\alpha \beta^{-1} s^{-1} (n-1) \left(\beta/2 \right) = \alpha \, . \end{split}$$

Thus, $h \in L_1[a, s]$ and $\int_a^s h(x) dx \le \alpha$.

From the definitions of *h* and k(x,t), we have $k(x,t) \le h(x)$ for every $x \in [a,s]$, whenever $\frac{\phi(t)}{s} \le \beta$. So, by the definition of k(x,t) we have:

$$\left|g(x,t)\right| \leq h(x) + 2\alpha\beta^{-1}s^{-1}\phi(t),$$

whenever $\frac{\phi(t)}{s} \leq \beta$. This completes the proof.

3. Main result

Let X be a function space and $g(x,t) : [a,\infty) \times R \to R$. We define a superposition operator P_p on X as follows:

$$P_{\varrho}(f)(x) = g(x, f(x)),$$

for every $f \in X$ and $x \in [a, \infty)$. It is clear that the conditions of X required in Lemma 2.3 are all satisfied by the space $W_0(\phi)$ (see [3]). Hence, we can prove the following theorem.

Theorem 3.1. Let $g(x,t) : [a,\infty) \times R \to R$ be given such that g(.,t) is measurable for every t, g(x,0) = 0 and $g(x,\cdot)$ is continuous on R for every $x \in [a,\infty)$. The operator $P_g : W_0(\phi) \to L_1[a,\infty)$ if and only if there exist $\alpha, \beta > 0$ and for every $s \in [a,\infty)$ there exists non-negative function $h \in L_1[a,s]$, depending on s, with $\int_{a}^{s} h(x) dx \leq \alpha$ such that for every $x \in [a,s]$,

$$\left|g(x,t)\right| \leq h(x) + 2\alpha\beta^{-1}s^{-1}\phi(t),$$

whenever $\frac{\phi(t)}{s} \leq \beta$.

Proof.

(\Leftarrow): Let $f \in W_o(\phi)$, then there exists a real number M > a such that for every $s \ge M$:

$$\frac{1}{s} \int_a^s \phi(f(x)) \, dx < \beta \, \cdot$$

It follows that:

$$\int_a^s \left| g(x, f(x)) \right| dx \le \int_a^s h(x) dx + 2\alpha \beta^{-1} s^{-1} \int_a^s \phi(f(x)) dx \le \alpha + 2\alpha \beta^{-1} \beta = 3\alpha,$$

for every $s \ge M$. Hence, $\int_{a}^{\infty} |g(x, f(x))|$ exist.

(⇒): By Theorem 1.1, the functional $F: W_o(\phi) \to R$ given by:

$$F(f) = \int_{a}^{\infty} \left| g(x, f(x)) \right| dx, \quad f \in W_{o}(\phi)$$

is continuous and orthogonally additive. So, there exists $\eta > 0$ such that for each $f \in W_o(\phi)$,

$$\int_{a}^{\infty} \left| g(x, f(x)) \right| dx < 1,$$

whenever $|| f || < \eta$. Also, by Lemma 2.2 there exists $\beta > 0$ such that $|| f || < \eta$ as $\rho(f) \le \beta$. Thus, for $\rho(f) \le \beta$ we have:

$$\int_{a}^{\infty} \left| g(x, f(x)) \right| dx < 1.$$

It means that for every $s \in [a, \infty)$,

$$\int_a^s \left| g(x, f(x)) \right| \, dx < 1 \, ,$$

whenever

$$\frac{1}{s} \int_a^s \phi(f(x)) \, dx \leq \beta$$

By choosing

$$\alpha = \sup\left\{ \int_a^s \left| g(x, f(x)) \right| dx \, ; \, \frac{1}{s} \int_a^s \phi(f(x)) dx \le \beta \right\}$$

then we have:

$$\int_{a}^{s} \left| g(x, f(x)) \right| dx \leq \alpha,$$

whenever $\frac{1}{s} \int_{a}^{s} \phi(f(x)) dx \le \beta$. By Lemma 2.3 there exists a non-negatif function $h \in L_1[a, s]$, depending on *s*, with $\int_{a}^{s} h(x) dx \le \alpha$ such that for every $x \in [a, s]$,

$$\left|g(x,t)\right| \leq h(x) + 2\alpha\beta^{-1} s^{-1}\phi(t),$$

whenever $\frac{\phi(t)}{s} \leq \beta$. This completes the proof.

References

- 1. Chew Tuan Seng and Lee Peng Yee, Orthogonally additive functionals on sequence spaces, *SEA. Bull. Math.* (1985), 81–85.
- 2. L.I. Paredes, Orthogonally additive functionals and superposition operators on $w_o(\phi)$, *Ph.D Disertation*, University of the Philippines, 1993.
- 3. Supama and Soeparna D., Orthogonally additive functionals on modulared function space $W_0(\phi)$, Berkala Ilmiah MIPA Th.VIII No. 1, Yogyakarta 1 (1998), 49–64.
- 4. Supama and Soeparna D., Orthogonally additive functionals on $W_0^0(\phi)$, *J. Indonesian Math. Soc.* **5** (1999), 1–9.
- 5. W. Orlicz, *Linear Functional Analysis*, Word Scientific, 1992.