Superposition Operators on $W_{0}(\phi)$

SUPAMA AND SOEPARNA DARMAWIJAYA
Department of Mathematics, Faculty of Mathematic and Natural Sciences, Gadjah Mada University, Yogyakarta, 55281, Indonesia e-mail: maspomo@yahoo.com

Abstract

For any linear operator on a Banach space, the continuity and boundedness are equivalent. It fails for a nonlinear operator, in particular, for a superposition operator. In this paper, we present sufficient and necessary conditions in terms of an inequality for the continuity of a superposition operator on the function space $W_{0}(\phi)$.

2000 Mathematics Subject Classification: 47B38.

1. Introduction

Let N and R denote the set of all positive integers and the real numbers respectively. If $g(k, t): N \times R \rightarrow R$, then a superposition operator P_{g} from a sequence space of real numbers X into another one is defined by:

$$
P_{g}\left(\left\{x_{k}\right\}\right)=\left\{g\left(k, x_{k}\right)\right\},
$$

for every $\left\{x_{k}\right\} \in X$. Under the assumption that $g(k, \cdot)$ is continuous on R for every k, Chew and Lee [1] have characterized $P_{g}: l_{p} \rightarrow l_{1}, 1 \leq p<\infty$, and $P_{g}: c_{0} \rightarrow l_{1}$. Meanwhile Paredes [2] has characterized $P_{g}: w_{o}(\Phi) \rightarrow l_{1}$ where $w_{o}(\Phi)$ is the sequence version of the function space $W_{0}(\phi)$ defined below. The sufficient and necessary condition for the continuity of P_{g} on the sequence spaces have also been given in [1] and [2]. The purpose of this paper is to generalize these results to a function space.

Let $\boldsymbol{m}[a, \infty)$ denote the collection of all measurable real-valued functions on $[a, \infty)$. For each $x \in[a, \infty)$ and $f \in \boldsymbol{m}[a, \infty)$, the function f_{x} is defined as follows :

$$
f_{x}(t)=\left\{\begin{array}{cl}
f(t) & \text { whenever } a \leq t \leq x, \\
0 & \text { otherwise }
\end{array}\right.
$$

It is clear that for every $x \in[a, \infty)$, we have $f_{x} \in \boldsymbol{m}[a, \infty)$, whenever $f \in \boldsymbol{m}[a, \infty)$.
In this paper we always assume that $X \subset \boldsymbol{m}[a, \infty)$.
Let X be a linear space of functions on [a, ∞) over real numbers R. A non-negative function $\|\cdot\|: X \rightarrow[0, \infty)$ is called an \boldsymbol{F}-norm if for every $f, g \in X$ we have:
(i) $\|f\|=0 \Leftrightarrow f=0$,
(ii) $\|-f\|=\|f\|$,
(iii) $\|f+g\| \leq\|f\|+\|g\|$,
(iv) If $\left\{a_{n}\right\} \subset R$ is any sequence which converges to a and $\left\{f^{(n)}\right\}$ is any sequence in X such that $\left\|f^{(n)}-f\right\| \rightarrow 0$, for some $f \in X$, then $\left\|a_{n} f^{(n)}-a f\right\| \rightarrow 0$.

As usual, $f=0$ means $f(x)=0$ almost everywhere in $[a, \infty)$. Furthermore, $(X,\|\cdot\|)$ i.e. a linear space equiped with an F-norm is called an \boldsymbol{F}-normed Space. It is easy to prove that a function $d: X \times X \rightarrow[0, \infty)$ given by $d(f, g)=\|f-g\|$ is a metric on X. If an \boldsymbol{F}-normed Space X is complete then it is called a Frèchet Space or an \boldsymbol{F}-Space in short.

A space X is called an $\boldsymbol{F K}$-Space if it is an F-space and the canonical mapping $p_{x}: X \rightarrow R$,

$$
p_{x}(f)=f(x), \quad f \in X
$$

is continuous for every $x \in[a, \infty)$, in the sense that if $\left\|f^{(n)}-f\right\| \rightarrow 0$ then $f^{(n)}(x) \rightarrow f(x)$ as $n \rightarrow \infty$.

An F-space X is called an AK-Space if X contains χ_{E} and f_{x} for any set $E \subset[a, \infty)$ of finite measure, $f \in X$ and $x \in[a, \infty)$, and $\lim _{x \rightarrow \infty}\left\|f_{x}-f\right\|=0$.

An F-normed space X is said to be solid if for every $f \in X$ and $g \in m[a, \infty)$ such that if $|g(x)| \leq|f(x)|$ for almost all $x \in[a, \infty)$, then $g \in X$.

A real-valued function $\phi: R \rightarrow[0, \infty)$ is called a ϕ-function if it is continuous, even, increasing on $[0, \infty)$, and $\phi(t) \rightarrow \infty$, as $t \rightarrow \infty$. We shall always assume that the ϕ-function ϕ satisfies the $\Delta_{2^{\prime}}$ - condition, i.e. there exists a real number $M>0$ such that: $\phi(2 t) \leq M \phi(t)$ for every $t \geq 0$ (see [5]).

Further, fix a real number $a>0$ and we define the space:

$$
W_{0}(\phi)=\left\{f \in \boldsymbol{m}[a, \infty) ; \lim _{s \rightarrow \infty} \rho_{s}(f)=0\right\},
$$

where ρ_{s} is given by :

$$
\rho_{s}(f)=\frac{1}{s} \int_{a}^{s} \phi(f(x)) d x, \quad s \in[a, \infty)
$$

We can show that ρ_{S} is a modular on $W_{0}(\phi)$, i.e. it is even, increasing on the set $\{f \in \boldsymbol{m}[a, \infty) ; f \geq 0$ a.e on $[a, \infty)\}$ and satisfies the following conditions:
(i) $\rho_{s}(f)=0 \Leftrightarrow f=0$ a.e on $[a, \infty)$,
(ii) $\rho_{s}(\max \{f, g\}) \leq \rho_{s}(f)+\rho_{s}(g)$, for every $f, g \in W_{0}(\phi)$.

If we define the function ρ on the space by:

$$
\rho(f)=\sup \left\{\rho_{s}(f), \quad s \in[a, \infty)\right\}
$$

we can also prove that ρ is a modular on the space. Supama and Soeparna [3] observed that $W_{0}(\phi)$ is a solid $F K$ - and $A K$-space with respect to:

$$
\|f\|=\inf \left\{\varepsilon>0 ; \rho\left(\frac{f}{\varepsilon}\right) \leq \varepsilon\right\}, \quad f \in W_{0}(\phi)
$$

Let X be a function space. A functional $F: X \rightarrow R$ is said to be continuous at $f \in X$ if for every $\varepsilon>0$ there exists $\delta>0$ such that:

$$
|F(f)-F(h)|<\varepsilon
$$

whenever $\|f-h\|<\delta$. Further, F is said to be continuous on X if it is continuous at every $f \in X$.

Two functions $f, g \in X$ are said to be orthogonal or disjoint, written by $f \perp g$, if $f(x) \cdot g(x)=0$ for almost all $x \in[a, \infty)$. The functional $F: X \rightarrow R$ is said to be orthogonally additive if for every $f, g \in X$,

$$
F(f+g)=F(f)+F(g)
$$

whenever $f \perp g$. Then, Supama and Soeparna (see [3], [4]) characterized the following:

Theorem 1.1. The functional $F: W_{0}(\phi) \rightarrow R$ is continuous and orthogonally additive if and only if there exists $g(x, t):[a, \infty) \times R \rightarrow R$ satisfying that $g(., t)$ is measurable for every $t \in R, g(x, 0)=0$ and $g(x, \cdot)$ is continuous on R for every $x \in[a, \infty)$ such that:

$$
F(f)=\int_{a}^{\infty} g(x, f(x)) d x
$$

exists for every $f \in W_{0}(\phi)$.

2. Some lemmas

The main results of the research are Theorem 3.1. The following lemmas are required for proving those theorems.

Lemma 2.1. Let $f \in W_{0}(\phi)$. Then for every $\beta>0$ there exists $\alpha>0$ such that $\rho(f) \leq \beta$, whenever $\|f\| \leq \alpha$.

Proof. Let $f \in W_{0}(\phi)$ and $\beta>0$ be given. There exists $n_{0} \in N$ such that $\beta \leq 2^{n_{0}}$. So, we have:

$$
\begin{aligned}
\rho(f) & =\sup _{s \geq a}\left\{\frac{1}{s} \int_{a}^{s} \phi(f(x)) d x\right\} \\
& \leq \sup _{s \geq a}\left\{\frac{1}{s} \int_{a}^{s} \phi\left(\frac{2^{n_{o}}}{\beta} f(x)\right) d x\right\} \\
& \leq M^{n_{o}} \sup _{s \geq a}\left\{\frac{1}{s} \int_{a}^{s} \phi\left(\frac{1}{\beta} f(x)\right) d x\right\}, \text { for some } M>0 \\
& =M^{n_{o}} \rho\left(\frac{f}{\beta}\right)
\end{aligned}
$$

If we choose $\alpha>0$ such that $\alpha<\beta$ and $M^{n_{o}} \alpha<\beta$ then the assertion follows.
Lemma 2.2. Let $f \in W_{0}(\phi)$. Then for every real numbers $\alpha, \gamma>0$ there exists $\beta>0$ such that $\|f\| \leq \alpha$, whenever $\rho(\gamma f) \leq \beta$.

Proof. Let $\alpha, \gamma>0$, then there exists $n_{0} \in N$ such that $\frac{1}{\alpha} \leq \gamma 2^{n_{0}}$. Since ϕ satisfies the Δ_{2}-condition then for every $s \in[a, \infty)$ we have:

$$
\begin{aligned}
\rho_{s}\left(\frac{f}{\alpha}\right)= & \frac{1}{s} \int_{a}^{s} \phi\left(\frac{1}{\alpha} f(x)\right) d x \\
& \leq \frac{1}{s} \int_{a}^{s} \phi\left(2^{n_{0}} \gamma f(x)\right) d x \\
& \leq \frac{M^{n_{o}}}{s} \int_{a}^{s} \phi(\gamma f(x)) d x, \text { for some } M>0 \\
= & M^{n_{o}} \rho_{s}(\gamma f)
\end{aligned}
$$

It implies $\rho\left(\frac{f}{\alpha}\right) \leq M^{n_{o}}(\gamma f)$. If we choose $\beta \leq \frac{\alpha}{M^{n_{o}}}$ then $\rho\left(\frac{f}{\alpha}\right) \leq \alpha$, as $\rho(\gamma f) \leq \beta$. So, $\|f\| \leq \alpha$, whenever $\rho(\gamma f) \leq \beta$. This completes the proof.

We remark that the above two lemmas remain valid with $W_{0}(\phi)$ replaced by a modulared space X (see [5]). We presented only the case when $X=W_{0}(\phi)$ as it is the form required later.

Lemma 2.3. Let X be an FK- and AK-space. Suppose $g(x, t):[a, \infty) \times R \rightarrow R$ satisfies the following conditions: $g(., t)$ is measurable for every $t \in R, g(x, 0)=0$ and $g(x, \cdot)$ is continuous on R for every $x \in[a, \infty)$. If there exist real numbers α, $\beta>0$ such that $\frac{1}{s} \int_{a}^{s} \phi(f(x)) d x \leq \beta$ implies $\int_{a}^{s}|g(x, f(x))| d x \leq \alpha \quad$ for each $f \in X$ and $s \in[a, \infty)$ then for every $s \in[a, \infty)$ there is a non-negative function $h \in L_{1}[a, s]$, depending on s, with $\int_{a}^{s} h(x) d x \leq \alpha$ such that for every $x \in[a, s]$,

$$
|g(x, t)| \leq h(x)+2 \alpha \beta^{-1} s^{-1} \phi(t)
$$

whenever $\frac{\phi(t)}{s} \leq \beta$.

Proof. Let $s \in[a, \infty)$ and $t \in R$ be given. We define the function k on [$a, s] \times R \nsubseteq$ and the function h on $[a, s]$ as follows $: \nsubseteq \varsubsetneqq$

$$
\begin{aligned}
k(x, t) & = \begin{cases}|g(x, t)|-2 \alpha \beta^{-1} s^{-1} \phi(t) & \text { when }|g(x, t)| \geq 2 \alpha \beta^{-1} s^{-1} \phi(t) \\
0 & \text { otherwise }\end{cases} \\
h(x) & =\sup \left\{k(x, t) ; \frac{\phi(t)}{s} \leq \beta\right\}=k(x, u(x))
\end{aligned}
$$

Note that both functions k and h depend on s. Since ϕ is continuous and has an inverse, $h(x)$ above is uniquely determined. It is clear that $h(x) \geq 0$ for every $x \in[a, s]$. Since, $g(x, \cdot)$ and ϕ are both continuous on R then $k(x, \cdot)$ is continuous on R for every $x \in[a, s]$. Further, $\left\{t ; \frac{\phi(t)}{s} \leq \beta\right\}$ is closed and bounded, in view of the continuity of ϕ. Hence, we have $h(x)$ is finite for $x \in[a, s]$. Next we prove $h \in L_{1}[a, s]$.

For each $s \in[a, \infty)$, we can decompose as follows:

$$
\int_{a}^{s} \phi(u(x)) d x=\int_{A_{1}} \phi(u(x)) d x+\int_{A_{2}} \phi(u(x)) d x+\cdots+\int_{A_{n}} \phi(u(x)) d x
$$

where $A_{1}, A_{2}, \cdots, A_{n}$ are measurable subsets of $[a, s]$ with $\bigcup_{i=1}^{n} A_{i}=[a, s]$, the Lebesgue measure $\mu\left(A_{i} \cap A_{j}\right)=0 \quad$ for every $i \neq j, i, j=1,2, \cdots, n$, and $\frac{\beta}{2} \leq \frac{1}{s} \int_{A_{i}} \phi(u(x)) d x \leq \beta, i=1,2,3, \cdots, n-1$ and $0 \leq \frac{1}{s} \int_{A_{n}} \phi(u(x)) d x \leq \beta$. So, we have:

$$
\begin{aligned}
\int_{a}^{s} h(x) d x= & \int_{a}^{s} k(x, u(x)) d x \\
& \leq \int_{a}^{s}|g(x, u(x))| d x-2 \alpha \beta^{-1} s^{-1} \int_{a}^{s} \phi(u(x)) d x \\
= & \sum_{i=1}^{n} \int_{A_{i}}|g(x, u(x))| d x-2 \alpha \beta^{-1} s^{-1} \sum_{i=1}^{n} \int_{A_{1}} \phi(u(x)) d x \\
& \leq n \alpha-2 \alpha \beta^{-1} s^{-1}(n-1)(\beta / 2)=\alpha .
\end{aligned}
$$

Thus, $h \in L_{1}[a, s]$ and $\int_{a}^{s} h(x) d x \leq \alpha$.
From the definitions of h and $k(x, t)$, we have $k(x, t) \leq h(x)$ for every $x \in[a, s]$, whenever $\frac{\phi(t)}{s} \leq \beta$. So, by the definition of $k(x, t)$ we have:

$$
|g(x, t)| \leq h(x)+2 \alpha \beta^{-1} s^{-1} \phi(t)
$$

whenever $\frac{\phi(t)}{s} \leq \beta$. This completes the proof.

3. Main result

Let X be a function space and $g(x, t):[a, \infty) \times R \rightarrow R$. We define a superposition operator P_{g} on X as follows:

$$
P_{g}(f)(x)=g(x, f(x)),
$$

for every $f \in X$ and $x \in[a, \infty)$. It is clear that the conditions of X required in Lemma 2.3 are all satisfied by the space $W_{0}(\phi)$ (see [3]). Hence, we can prove the following theorem.

Theorem 3.1. Let $g(x, t):[a, \infty) \times R \rightarrow R$ be given such that $g(., t)$ is measurable for every $t, g(x, 0)=0$ and $g(x, \cdot)$ is continuous on R for every $x \in[a, \infty)$. The operator $P_{g}: W_{0}(\phi) \rightarrow L_{1}[a, \infty)$ if and only if there exist $\alpha, \beta>0$ and for every $s \in[a, \infty)$ there exists non-negative function $h \in L_{1}[a, s]$, depending on s, with $\int_{a}^{s} h(x) d x \leq \alpha$ such that for every $x \in[a, s]$,

$$
|g(x, t)| \leq h(x)+2 \alpha \beta^{-1} s^{-1} \phi(t)
$$

whenever $\frac{\phi(t)}{s} \leq \beta$.
Proof.
(\Leftarrow): Let $f \in W_{o}(\phi)$, then there exists a real number $M>a$ such that for every $s \geq M$:

$$
\frac{1}{s} \int_{a}^{s} \phi(f(x)) d x<\beta
$$

It follows that:

$$
\int_{a}^{s}|g(x, f(x))| d x \leq \int_{a}^{s} h(x) d x+2 \alpha \beta^{-1} s^{-1} \int_{a}^{s} \phi(f(x)) d x \leq \alpha+2 \alpha \beta^{-1} \beta=3 \alpha,
$$

for every $s \geq M$. Hence, $\int_{a}^{\infty}|g(x, f(x))|$ exist.
(\Rightarrow) : By Theorem 1.1, the functional $F: W_{o}(\phi) \rightarrow R$ given by:

$$
F(f)=\int_{a}^{\infty}|g(x, f(x))| d x, \quad f \in W_{o}(\phi)
$$

is continuous and orthogonally additive. So, there exists $\eta>0$ such that for each $f \in W_{o}(\phi)$,

$$
\int_{a}^{\infty}|g(x, f(x))| d x<1,
$$

whenever $\|f\|<\eta$. Also, by Lemma 2.2 there exists $\beta>0$ such that $\|f\|<\eta$ as $\rho(f) \leq \beta$. Thus, for $\rho(f) \leq \beta$ we have:

$$
\int_{a}^{\infty}|g(x, f(x))| d x<1
$$

It means that for every $s \in[a, \infty)$,

$$
\int_{a}^{s}|g(x, f(x))| d x<1
$$

whenever

$$
\frac{1}{s} \int_{a}^{s} \phi(f(x)) d x \leq \beta
$$

By choosing

$$
\alpha=\sup \left\{\int_{a}^{s}|g(x, f(x))| d x ; \frac{1}{s} \int_{a}^{s} \phi(f(x)) d x \leq \beta\right\}
$$

then we have:

$$
\int_{a}^{s}|g(x, f(x))| d x \leq \alpha,
$$

whenever $\frac{1}{s} \int_{a}^{s} \phi(f(x)) d x \leq \beta$. By Lemma 2.3 there exists a non-negatif function $h \in L_{1}[a, s]$, depending on s, with $\int_{a}^{s} h(x) d x \leq \alpha$ such that for every $x \in[a, s]$,

$$
|g(x, t)| \leq h(x)+2 \alpha \beta^{-1} s^{-1} \phi(t)
$$

whenever $\frac{\phi(t)}{s} \leq \beta$. This completes the proof.

References

1. Chew Tuan Seng and Lee Peng Yee, Orthogonally additive functionals on sequence spaces, SEA. Bull. Math. (1985), 81-85.
2. L.I. Paredes, Orthogonally additive functionals and superposition operators on $w_{o}(\phi)$, Ph.D Disertation, University of the Philippines, 1993.
3. Supama and Soeparna D., Orthogonally additive functionals on modulared function space $W_{0}(\phi)$, Berkala Ilmiah MIPA Th.VIII No. 1, Yogyakarta 1 (1998), 49-64.
4. Supama and Soeparna D., Orthogonally additive functionals on $W_{0}^{0}(\phi)$, J. Indonesian Math. Soc. 5 (1999), 1-9.
5. W. Orlicz, Linear Functional Analysis, Word Scientific, 1992.
