On the Value Distribution of $f^{2}+a f^{(k)}$

${ }^{1}$ Yan Xu and ${ }^{2}$ TAIZHong Zhang

${ }^{1}$ Department. of Mathematics, Nanjing Normal University, Nanjing 210097, P.R. China
${ }^{2}$ Department of Mathematics, Nanjing Institute of Meteorology, Nanjing 210044, P.R. China
${ }^{1}$ e-mail: xuyan@njnu.edu.cn and ${ }^{2} \mathrm{e}$-mail: ztz@njim.edu.cn or bennie_math@vip.163.com

Abstract

In this paper, we improve a result of H.H. Chen by proving that if f is a transcendental integral function, then, for any finite non-zero complex number a and any positive integer k, $f^{2}+a f^{(k)}$ assumes every finite complex value infinitely often.

2000 Mathematics Subject Classifications: 30D35.

1. Introduction

One of the most important results in the value distribution theory is the following theorem of Hayman.

Theorem A. [3] If g is a transcendental meromorphic function, then, either g itself assumes every finite complex value infinitely often, or $g^{(k)}$ assumes every finite non-zero value infinitely often for any positive integer k.

As a consequence of Theorem A, we have
Theorem B. If f is a transcendental integral function, then $f^{2}+a f^{\prime}$ has infinitely many zeros for any finite non-zero complex value a.

In fact, for an integral function $f, g=1 / f$ has no zeros and the zeros of $g^{\prime}-1 / a$ are zeros of $f^{2}+a f^{\prime}$.

Let f be a meromorphic function in the complex plane. We say that f is a Yosida function if there exists a positive number M such that $f^{\#}(z) \leq M$ for all $z \in C$, where

$$
f^{\#}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}
$$

denotes the spherical derivative.

Ye [7], Chen and Hua [2] independently proved that Theorem B can be generalized by substituting $f^{(k)}$ for f^{\prime}. In 1996, Chen [1] proved a stronger conclusion for $k=2$ in the case that f is not a Yosida function.

Theorem C. [1] Let f be a transcendental integral function. If f is not a Yosida function, then, for any finite non-zero complex number a and any positive integer k, $f^{2}+a f^{(k)}$ assumes every finite complex value infinitely often.

It is natural to ask: What could we say about Theorem C for the case that f is a Yosida function? In this paper, we shall use a different method but much simpler to prove that Theorem C still holds without the requirement that f is not a Yosida function.

We shall use the standard notations in Nevanlinna theory (cf.[4],[6]).

2. Lemma

To prove our result, we need the following lemma.
Lemma 1. [5] Let f be a non-constant meromorphic function, and let $\psi=f^{n}+P[f]$, where $n \geq 2$ and $P[f]$ is a differential polynomial of f with degree $d(P) \leq n-1$. Then we have at least one of the following:
(a) there exists a small proximity function $c(z)$ (that is, $m(r, c)=S(r, f)$) such that $\psi=\alpha(f+c / n)^{n}$ and

$$
N(r, c) \leq \max \{0, w(P)-n+1\}(\bar{N}(r, 1 / \psi)+\bar{N}(r, f))+S(r, f),
$$

where α is a non-zero constant and $\alpha=1$ provided that $N(r, f)=S(r, f)$; here $w(P)$ is the weight of P;
(b) $\quad T(r, f) \leq(1+2 \max \{0, w(P)-n+1\}) \bar{N}(r, 1 / \psi)$

$$
+(3+2 \max \{0, w(P)-n+1\}) N(r, f)+S(r, f) .
$$

3. Main result

Theorem 1. If f is a transcendental integral function, then, for any finite non-zero complex number a and any positive integer $k, f^{2}+a f^{(k)}$ assumes every finite complex value infinitely often.

$$
\text { On the Value Distribution of } f^{2}+a f^{(k)}
$$

Proof. We only need to prove that $f^{2}+a f^{(k)}-b$ has infinitely many zeros for any finite complex number b. Suppose that $f^{2}+a f^{(k)}-b$ has only finitely many zeros, then

$$
N\left(r, 1 /\left(f^{2}+a f^{(k)}-b\right)\right)=O(\log r)=S(r, f)
$$

Next we prove that

$$
\begin{equation*}
T(r, f) \leq(2 k+1) \bar{N}\left(r, 1 /\left(f^{2}+a f^{(k)}-b\right)\right)+S(r, f) \tag{1}
\end{equation*}
$$

Put $P[f]=a f^{(k)}-b$ and $\psi=f^{2}+P[f]$, then $d(P)=1$ and $w(P)=k+1$. It is easy to see that case (b) of Lemma 1 is what we need. Thus, by Lemma 1, we only need to consider case (a).

Since $N(r, f)=0$, then $\alpha=1$. Hence

$$
\begin{equation*}
\psi=\left(f+\frac{c}{2}\right)^{2} \tag{2}
\end{equation*}
$$

where $c(z)$ is a small proximity function. From (2) and the definition of ψ we get

$$
\begin{equation*}
c^{2}=4 a f^{(k)}-4 c f-4 b \tag{3}
\end{equation*}
$$

From (3), we see that c has no poles. Then

$$
T(r, c)=S(r, f)
$$

Let $u=f+c / 2$, then (2) becomes

$$
\begin{equation*}
\psi=u^{2} \tag{4}
\end{equation*}
$$

Substituting $f=u-c / 2$ into (3) we obtain

$$
\begin{equation*}
c^{2}-2 a c^{(k)}=4 c u-4 a u^{(k)}+4 b . \tag{5}
\end{equation*}
$$

Now we consider two cases.
Case 1. $c^{2}-2 a c^{(k)} \equiv 0$. If c is not a constant, then $c=2 a c^{(k)} / c$. Thus

$$
T(r, c)=m(r, c)=S(r, c)
$$

which is a contradiction. If c is a constant, then $c \equiv 0$ by the hypothesis of Case 1 . From this and (2), we deduce that f is a polynomial, a contradiction.

Case 2. $c^{2}-2 a c^{(k)} \not \equiv 0$. Set $v(z)=c^{2}-2 a c^{(k)}$. From (5) we get

$$
\frac{1}{u}=\frac{4 c}{v}-\frac{4 a}{u} \frac{u^{(k)}}{u}+\frac{4 b}{v u}
$$

that is,

$$
\begin{equation*}
\frac{1}{u}=\frac{4 c}{v-4 b}-\frac{4 a}{v-4 b} \frac{u^{(k)}}{u} \tag{6}
\end{equation*}
$$

Noting that c and v are small functions of f, from (6) we have

$$
\begin{equation*}
m\left(r, \frac{1}{u}\right) \leq S(r, f)+S(r, u)=S(r, f) \tag{7}
\end{equation*}
$$

On the other hand, from (5) we see that any zero of u of order $n>k$ is either a pole of $c /(v-4 b)$ with order not less than n or a pole of $1 /(v-4 b)$ with order $n-k$. Thus

$$
\begin{align*}
N\left(r, \frac{1}{u}\right) & \leq k \bar{N}\left(r, \frac{1}{u}\right)+N\left(r, \frac{c}{v-4 b}\right)+N\left(r, \frac{1}{v-4 b}\right) \\
& \leq k \bar{N}(r, 1 / \psi)+S(r, f) \tag{8}
\end{align*}
$$

Combining (7) and (8) we get

$$
\begin{aligned}
T(r, f) & =T(r, u)+S(r, f)=T(r, 1 / u)+S(r, f) \\
& \leq k \bar{N}(r, 1 / \psi)+S(r, f)
\end{aligned}
$$

Thus we have

$$
T(r, f) \leq(2 k+1) \bar{N}\left(r, 1 /\left(f^{2}+a f^{(k)}-b\right)\right)+S(r, f) \leq S(r, f)
$$

we arrive at a contradiction since f is trascendental. Theorem 1 is proved.
Remark. It is not difficult to prove that Theorem 1 still holds if we substituting $a(z)$ for a, where $a(z)(\neq 0)$ is a small function of f.

References

1. H.H. Chen, Yosida function and Picard values of integral functions and their derivatives, Bull. Austral. Math. Soc. 54 (1996), 373-381.
2. H.H. Chen and X.H. Hua, Normal families of holomorphic functions, J. Austral. Math. Soc., Ser. A 59 (1995), 112-117.
3. W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42.
4. W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
5. X.H. Hua, Some extension of the Tumra-Clunie theorem, Complex Variables Theory Appl. 16 (1991), 69-77.
6. L. Yang, Value Distribution Theory, Springer-Verlag and Science Press, Berlin, 1993.
7. Y. Ye, A new normal criterion and its applications, Chinese Ann. Math., Ser. A (supplementary issue) 12 (1991), 44-49.

Keywords: transcendental integral function; small functions; value distribution.
Supported in part by NSF of Education Department of Jiangsu Province (03KJB110058, 01KJD110002).

