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Abstract.   Let C be a nonempty closed convex subset of a reflexive Banach space whose norm is 
uniformly Gâteaux differentiable, CCT →:  an asymptotically nonexpansive mapping and P         
the sunny nonexpansive retraction from C onto .)(TF   In the paper, we introduce property (S) for 

mapping T  as minimal condition for strong convergence to Px of the sequence  }{ nx  defined by 
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where }{ nα  and ),2,1(}{ =iniα  are real sequences satisfying appropriate conditions and 0N  
is sufficiently large natural number. 
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1.    Introduction 
 
Let C be a nonempty subset of a real Banach space E and let CCT →:  be a nonlinear 
mapping.  The mapping T  is said to be asymptotically nonexpansive if for each 1≥n , 
there exists a positive constant nk  with 1lim =∞→ nn k  such that  

 

yxkyTxT n
nn −≤−  

 
for all Cyx ∈, .   T  is nonexpansive  if  1=nk  for . 21 , ,  n =  
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Let C be a closed convex subset of CCTE →:,  be a nonexpansive mapping 
such that the set )(TF  of fixed points of T is nonempty and x  be an element of C.  
Browder [2] proved that }{ tx  defined by 

 
( ) 10,1 <<−+= tTxttxx tt  

 
converges strongly to an element of )(TF  which is nearest to x  in )(TF  as 0→t  in 
case when E is a Hilbert space.  Reich [7] extended Browder’s result in the framework of 
a uniformly smooth Banach space.  Lim and Xu [6] partially extended celebrated 
convergence theorem of Reich [7] for asymptotically nonexpansive mappings in same 
framework. 
 Recently, using an idea of Browder [2], Shimizu and Takahashi [8] studied the 
convergence of the following approximated sequence for an asymptotically nonexpansive 
mapping in the framework of a Hilbert space: 
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where }{ na  is a real sequence satisfying 10 << na  and 0→na . Shioji and     
Takahashi [9] and Jung et al. [5] extended their results in uniformly convex Banach 
spaces. 
 In this paper, we study existence and strong convergence of the sequence }{ nx  
defined by 
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where T is an asymptotically nonexpansive mapping on a nonempty closed convex subset 
of a reflexive Banach space whose norm is uniformly Gâteaux differentiable.  Our results 
improve previous known results in [5, 6, 7, 8, 9]. 
 
 
2.   Preliminaries and Lemmas 

 
Let E be a Banach space and E*  be the dual space of E.  The value of ∗∈ Ey  at Ex ∈  
will be denoted by yx, .  We also denote by J, the duality mapping from E into E*, that 
is, 
 

{ }yx,xyx,EyxJ * ==∈= 2:)( for  each  .Ex ∈  
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Recall that a Banach space E  is said to be smooth provided the limit 
 

t
xtyx

t

−+
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exists for each x  and y  in }.1:{ =∈= xExS   In this case, the norm of E is said 
to be Gâteaux differentiable.  It is said to be uniformly Gâteaux differentiable if for 
each Sy ∈ , this limit is attained uniformly for Sx ∈ .  The norm is said to be Fréchet 
differentiable if for each Sx ∈ , this limit is attained uniformly for Sy ∈ .  Finally,             
the norm is said to be uniformly Fréchet differentiable if the limit is attained uniformly 
for SSyx ×∈),( .  In this case E is said to be uniformly smooth.  Since the dual E* of          
E is uniformly convex if and only if the norm of E is uniformly Fréchet differentiable, 
every Banach space with a uniformly convex dual is reflexive and has a uniformly 
Gâteaux  differentiable norm. 
 Let C be a nonempty closed convex subset of a Banach space E and CCT →:  be 
an asymptotically nonexpansive mapping.  Without loss of generality, we may assume 
that .,2,1allfor1 =≥ nkn   Set 
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where ),2,1(}{ =iani  are sequences of real numbers such that  

 (i)  0≥nia   for all ,,2,1=n  

 (ii) ,11∑ = =n
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 Now, for an Cx ∈  and a positive integer n, consider a mapping nT  on C defined by 
 

 ( ) ,,1 CuuAxuT nnnn ∈−+= αα  (2) 
 

where }{ nα  is a sequence of real numbers such that 
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Lemma 1.  Let C be a nonempty closed convex subset of a Banach space E and 
CCT →:  be an asymptotically nonexpansive mapping.  Let nT  be a mapping defined 

by (2).  Then nT  has exactly one fixed point nx  in C such that 
 
 ( ) nnnnn xAxx αα −+= 1   for all  ,0Nn ≥  (3) 
 
where 0N  is a sufficiently large natural number. 
 
Proof.  Since ,1suplim 1 <−

∞→ n

n
n α

β  there exists a natural number 0N  such that 

1)1( <− nn βα  for all 0Nn ≥ .  So, for each 0Nn ≥ , there exists the unique point nx  
in C satisfying ,)1( nnnnn xAxx αα −+=  since the mapping nT  defined by (2) satisfies 

vuvTuT nnnn −−≤− βα )1(  for all ., Cvu ∈   
 
Lemma 2.   Let C, T and  X be as in Lemma 1.  If )(TF  is nonempty, then }{ nx  is 
bounded. 
 
Proof.  Since 1)1( <− nn βα  for all 0Nn ≥ , for each 0>ε , there exists a natural 

number 0n  such that εβα
α <−− nn

n
)1(1  for all 0nn ≥ .  Then for )(TFv ∈ , we have 
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for all 0nn ≥ .  
 
 Let μ  be a continuous linear functional on ∞  and let ∞∈),,,( 210 aaa .              
We write )( nn aμ  instead of ).,,,( 210 aaaμ   We call μ  a Banach limit [1] when μ  
satisfies: 

 
1)1( == nμμ  and )()( 1 nnnn aa μμ =+  

 
for all ∞∈),,,( 210 aaa .  For a Banach limit ,μ  we know that 
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for all ∞∈),,,( 210 aaa . 
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 Let }{ nx  be a bounded sequence in E.  Then we can define a real-valued continuous 
convex function on E by  

 
2)( zxzf nn −= μ  

 
for all Ez ∈ .  The following lemma is given in [3, 4, 10]. 
 
Lemma 3 [3, 4, 10].  Let C be a nonempty closed convex subset of a Banach space 
whose norm is uniformly Gâteaux differentiable.  Let }{ nx  be a bounded sequence in 

CuC ∈,  and μ  be a Banach limit.  Then 
 

)(min)( zfuf
Cz∈

=  

 
if and only if 
 

0)(, ≤−− uxJuz nnμ  
 

for all .Cz ∈  
 
 Let C be a convex subset of E, D a nonempty subset of C and P a retraction from C 
onto D, that is, xPx =  for all Dx ∈ . A retraction P is said to be sunny if 
( ) PxPxxtPxP =−+ )(  for all Cx ∈  and .0≥t   D is said to be a sunny nonexpansive 

retract of C if there exists a sunny nonexpansive retraction of C onto D.  For more 
details, see [3]. 
 
 The following lemma is well known (cf. [3]). 
 
Lemma 4 [3].  Let C be a convex subset of a smooth Banach space, D be a nonempty 
subset of C and P be a retraction form C onto D.  Then P is sunny and nonexpansive if 
 

0)(, ≤−− PxzJPxx   for all  ., DzCx ∈∈  
 

Lemma  5. Let C, T and  X  be as in Lemma 1.  Then nnnn zxJxx αμμ ≤−− )(,  
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Proof.  Since from (3)  
 

( ) ( ) ( ) ,1 nnnnnn xxAxx −−=− αα  
 

we get for )(TFz ∈  and for each 0Nn ≥ , 
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which gives  
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Finally, we introduce the following minimal property for convergence of sequence }{ nx  
defined by (3): 
 
Definition 1.  Let C be a nonempty closed convex subset of a Banach space E and 

CCT →:  be a mapping.  Then T is said to satisfy the property (S) if the following 
holds: for each bounded sequence }{ nx  in C, 
 
 0lim =−

∞→
nnn

Txx   implies φ≠)(TFM ∩ . (S) 

 
where { }.)(inf)(: zfufCuM Cz∈=∈=  
 

The examples of such mappings that satisfy the property (S) are nonexpansive 
mappings in uniformly smooth Banach space (see [7]). 
 
 
3.  Main results 

 
Theorem 1.   Let C be a nonempty closed convex subset of a reflexive Banach space E 
whose norm is uniformly Gâteaux differentiable, CCT →:  be an asymptotically 
nonexpansive mapping with Lipschitz constant nk  which satisfies the property (S), and   
P be the sunny nonexpansive retraction form C onto ).(TF   Let },2,1(}{ =iani  be 
real sequences satisfying: 
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Let }{ nα  be a real sequence such that  
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Then  
(a)  for any ,Cx ∈  there is exactly one Cxn ∈  such that 
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 where 0N  is a sufficiently large natural number. 
 
(b)  If }{ nx  is an approximate fixed point sequence for T , i.e., 0lim =−

∞→
nnn

Txx , it 

follows that }{ nx  converges strongly to Px. 
 
Proof.   
(a) The result follows from Lemma 1. 
(b)  From Lemma 2, it follows that }{ nx  is bounded.  Define a real-valued function on       

E  by 
 

2)( zxzf nn −= μ  
 

 for all Ez ∈ .  Then, since f  is continuous and convex, ∞→)(zf as ∞→z  
and E is reflexive, f attains its infimum over C.  Let Cu ∈  such that 

)(inf)( zfuf Cz∈= . Then )}(inf)(:{ zfufCuM Cz∈=∈=  is nonempty 
because .Mu ∈   Since }{ nx  is bounded and 0lim =−∞→ nnn xTx , by            
property (S), T  has a fixed point in M.  Denote such a point y.  It follows from 
Lemma 3 that 

 
.0)(, ≤−− yxJyx nnμ  

 
 This inequality and Lemma 5 yields 
 

,22 yxyx nnnn −≤− αμμ  
 

 that is, 
 

.02 ≤− yxnnμ  
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 Therefore, there is a subsequence }{
jnx  of }{ nx  which converges strongly to 

.)(TFy ∈   Then, by Lemma 5, we have 
 

2)(, PxyPxyJxy −≤−− α . 
 

 This inequality and Lemma 4 yield  
 

.22 PxyPxy −≤− α  
 

 From 1<α , we have .Pxy =  To complete the proof, let }{
knx  be another 

subsequence of  }{ nx  which converges strongly to z .  We shall show that .zy =  
Since ,Pxy =  it follows from Lemma 4 and 5 that 

 
0)(, ≤−− PxzJPxx   and  2)(, PxzPxzJxz −≤−− α , 

 
 and hence we have 
 

)(,2 PxzJyzzy −−=−  

  )(,)(, PxzJPxxPxzJxz −−+−−=  

     .2zy −≤ α  
 

 Thus, }{ nx  converges strongly to .Px  
 
 Recall that a nonempty subset D of C is said to satisfy the Property (P) (cf. [6]) if the 
following holds: 

 
 Dx ∈  implies ,)( Dx ⊂ωω  (P)    
 
where )(xωω  is the weak ω -limit set of T, that is, the set 
 

xTweakyCy in
i

lim:{ −=∈  for some }∞→in . 

 
The following lemma is crucial to prove our next main result. 
 
Lemma 6.  Let E be a reflexive Banach space whose norm is uniformly Gâteaux 
differentiable, C be a nonempty closed convex subset of E and CCT →:  be an 
asymptotically nonexpansive mapping with Lipschitz constant nk .  Let }{ nx  be a 
bounded sequence with .0lim =−∞→ nnn Txx  Assume that every nonempty weakly 
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compact convex subset of C satisfying the property (P) has a fixed point for T.  Then              
T  satisfies property (S). 
 
Proof.  Note that { })(inf)(: zfufCuM Cz∈=∈=  is nonempty closed convex 
bounded subset of C.  Although M is not necessarily invariant under T, it does have the 
property (P).  In fact, if Mu ∈  and uTweaky jn

j ∞→−= lim  belongs to the weak           

ω -limit set )(uωω  of T at u, then from weak lower semicontinuity of f and 
,0lim =−∞→ nnn Txx  we have 
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Thus, My ∈  and hence M satisfies the property (P).  It follows from assumption that           
T has a fixed point in M.  Therefore, T  has satisfies property (S).  
 
Theorem 2.  Let C be a nonempty closed convex subset of a reflexive Banach space E 
whose norm is uniformly Gâteaux differentiable, CCT →:  be an asymptotically 
nonexpansive mapping with Lipschitz constant nk  and P be the sunny nonexpansive 
retraction from C onto ).T(F   Let }{ nia ),2,1( =i   be real sequences satisfying: 
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Let }{ nα be a real sequence such that 
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−
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and let }{ nx  be a sequence in C defined by (3) such that .0lim =−∞→ nnn Txx  
Assume that every nonempty weakly compact convex subset  of C satisfying the property 
(P) has a fixed point for T.  Then }{ nx  converges strongly to .Px  
 
Proof.  The result follows from Lemma 6 and Theorem 1.   
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 In the case when ,,2,1for1 nia nni ==  in Theorem 1 and 2, we have the 
following corollaries. 
 
Corollary 1.  Let C be a nonempty closed convex subset of a reflexive Banach space          
E whose norm is uniformly Gâteaux differentiable, CCT →:  be an asymptotically 
nonexpansive mapping with Lipschitz constant nk  which satisfies the property (S), and   
P be the sunny nonexpansive retraction from C onto .)(TF   Let }{ na  be a real sequence 
such that 
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Then  
(a)  For any ,Cx ∈  there is exactly one Cxn ∈  such that 
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 where 0N  is a sufficiently large natural number. 

 
(b)  If 0→− nn Txx  as ∞→n , it follows that }{ nx  converges strongly to .Px  
 
Corollary 2.  Let C be a nonempty closed convex subset of a reflexive Banach space E 
whose norm is uniformly Gâteaux differentiable, CCT →:  be an asymptotically 
nonexpansive mapping with Lipschitz constant nk  and P be the sunny nonexpansive 
retraction from C onto ).(TF   Let }{ nα  be a real sequence such that 
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and let }{ nx  be a sequence in C defined by (4) such that .0lim =−∞→ nnn Txx  
Assume that every nonempty weakly compact convex subset of C satisfying the            
property (P) has a fixed point for T.   Then }{ nx  converges strongly to .Px  
 
 In the case when 1=nna  for all  n  and 0=nia  otherwise, we have the following: 
 
Corollary 3.  Let C be a nonempty closed convex subset of a reflexive Banach space E 
whose norm is uniformly Gâteaux differentiable, CCT →:  be an asymptotically 
nonexpansive mapping with Lipschitz constant nk  which satisfies the property (S), and   
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P be the sunny nonexpansive retraction from C onto ).(TF   Let }{ nα  be a real sequence 
in )1,0(  such that 
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and let }{ nx  be a sequence in C defined by  
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Suppose in addition that 0lim =−∞→ nnn Txx .  Then }{ nx  converges strongly to .Px  
 
Remark.  (1)  Corollary 1 and 2 extend Theorem 1 of [5] and Theorem 2 of [9] from 
uniformly convex Banach space to reflexive Banach space, respectively. 
(2)  Corollary 3 improves Theorem 2 of Lim and Xu [6], where the space is assumed to 
be uniformly smooth. 
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