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1. Introduction 
 
Let ),( dX  be a metric space, N  be the set of all positive integers.  We denote by 

)(,)( XCBXCL  and )(XC  the families of all nonempty closed, nonempty closed 
bounded, nonempty compact subsets of ,X  respectively, and by H  the Hausdorff 
metric on )(XCB  induced by the metric d on .X   That is, 
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where .),(inf),( badBaD

Bb∈
=  It is obvious that )()()( XCXCBXCL ==  if ),( dX  

is a compact metric space.  For ,)(, XCBBA ∈  let  
 

),(sup),(
,

badBA
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=δ  and .),()( AAA δδ =  

 
Let XXf →: be a single valued mapping, T  and )(: XCLXG →  be 
multivalued mappings. f  and G  are said to be commutative or strongly commutative 
if GfxfGx ⊆  or fGxGfx ⊆  for all .Xx ∈   The composition of G  and T  is 
defined by  
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TyGxTTGx

Gxy∈
== ∪)(   for Xx ∈ . 

 
A point z  in X  is said to be a coincidence point of f and G  if Gzfz ∈  and 

a fixed point of G  if .Gzz ∈  
Hu and Rosen [1] established a fixed point theorem for multivalued mappings G  

satisfying 
 

),(),( yxdGyGxH <  (1.1)  
 

for all Xyx ∈,  with yx ≠ . 
Rao [2] obtained coincidence theorems for multivalued mappings G  and single 

valued mappings ,f  which satisfy the following condition  
 

{ ,),(,),(,),(max),( GyfyDGxfxDfyfxdGyGxH <  (1.2)  
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 for all Xyx ∈,  with .,,, GyfyGxfxGyGxfyfx ∉∉≠≠  

The main purpose of this paper is to investigate the existence of coincidence point 
for multivalued mappings G  and single valued mappings f  which satisfy the 
following condition 
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(1.3)  

 

for all Xyx ∈,  with .,,, GyfyGxfxGyGxfyfx ∉∉≠≠  Our results extend 
properly the corresponding results of Hu and Rosen [1] and Rao [2].  
 
 
2.  Coincidence theorems 
 
In this section we assume that ),( dX  is a compact metric space and )(: XCLXG →  
is a multivalued mapping and f  is a single valued mapping of .X  We need the 
following. 
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Lemma 2.1.  [1].  Let all powers of G  map X  into )(XCL  and mG  be 

continuous for some m  in .N   Let .XGA n

Nn∈
= ∩  Then A  is a nonempty compact 

subset of X  and .AGA =   
 
Theorem 2.2.  Let all powers of fG  map X  into )(XCL  and ,, Gf  and 

mfG)(  be continuous, where m  is some element in .N   Suppose that  
 

  f  and G  are commutative,  (2.1) 

  GxfGxfGG )()( ⊆  for all x  in ,X  (2.2) 
 
and (1.3) holds.  Then f  and G  have a coincidence point in .X  

 
Proof.  Let .)( XfGA n

Nn∈
= ∩   By Lemma 2.1, we obtain that A  is a nonempty 

compact subset of X  and .AfGA =   Now we claim that for all ,Xx ∈  
 

;   ,)()( NnfxfGxfGf nn ∈⊆  (2.3) 
 

.   ,)()( NnGxfGxfGG nn ∈⊆  (2.4) 
 

It follows from (2.1) that (2.3) holds for .1=n   Suppose that (2.3) holds for some 
.Nn ∈   Then  
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That is, (2.3) holds for .1+n   By induction, we infer that (2.3) holds.  Similarly, we 
can prove that (2.4) holds. In view of (2.3) and (2.4), we conclude that  
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Consequently fAfGAA ⊆=  and .GAGfAfGAA ⊆⊆=  Hence .GAfAA ==  
By the continuity of f  and ,G  we know that { }AxGxfxDGzfzD ∈= |),(inf),(  
for some z  in .A Since ,)(XCLGz ∈  there exists Gzy ∈  with 

.),(),( yfzdGzfzD =  From ,AGAfA ==  we can find Aw ∈  with .yfw =  
Suppose that ,fwfz ≠ .,, GwfwGzfzGwGz ∉∉≠   Note that   
 

),(),(),(),(0 GwGzHGwfwDGzfzDfwfzd ≤≤=< .  (2.5)  
 

Using (1.3) and (2.5), we get that  
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which is a contradiction and hence either Gzfwfz ∈=  or GzGwfw =∈  or 

Gzfz ∈  or .Gwfw ∈   This means that Gzfz ∈  by (2.5).  This completes the 
proof. 
 

Similarly we have 
 

Theorem 2.3.  Let all powers of fG  map X  into )(XCL  and mfG)(  be 
continuous for some .Nm ∈   Let f  and G  satisfy  (2.1)  and  (2.2)  and  
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for all yx,  in X with .GyGx ≠  Then f  and G  have a unique common fixed 
point z  in .X   Further }{zGz =  and .fzz =  
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Proof.  Let .)( XfGA n

Nn∈
= ∩  As in the proof of Theorem 2.2, we deduce 

that .GAfAA ==  By Lemma 2.1, we see that A  is a nonempty compact subset. 
Suppose that .0)( >Aδ  Then there exist ba,  in A  with .),()( badA =δ             
Note that .GAA =  There exist Ayx ∈,  with ., GybGxa ∈∈  Clearly 

),()( GyGxA δδ =  and ., Afyfx ∈  By virtue of (2.6), we get that 
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which is impossible and hence .0)( =Aδ  That is, A  is a singleton set, say, }{zA =  
for some z  in .X   It is obvious that zfz =  and .}{zGz =  

Suppose that f  and G  have a second common fixed point .w  Then 

XfGw n)(∈  for all Nn ∈  and hence }.{zAw =∈   That is, f  and G  have a 
unique common fixed point z  in .X   This completes the proof. 
 
Theorem 2.4.  Let f  and G  be continuous, strongly commutative and satisfy (1.3). 
Then f  and G  have a coincidence point in .X  
 
Proof.  Let .XfA n

Nn∈
= ∩  It follows from Lemma 2.1 that A  is a nonempty 

compact subset of X  and .AfA =   Since f  and G  is strongly commutative, we 
infer that  

,)( 11 GxfxfGfxfGfxGf nnnn ⊆⊆⊆= −−  (2.7)  
 
for all Xx ∈  and .Nn ∈   In view of (2.7), we conclude that 
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The rest of the result follows as in Theorem 2.2.  This completes the proof.  
 
Remark 2.1  The following example verifies that Theorem 2.4 does indeed generalize 
Theorem 3.2 of Hu and Rosen [1] and Theorem 3 and Theorem 4 of Rao [2].  

 
Example 2.1.  Let }7,5,4,3{=X  with the usual metric.  Take if = –– the identity 
mapping.  Define a mapping ( )XCLXG →:  by },3{5},7{4},5,3{3 === GGG  
and }.7,5,4{7 =G Suppose that yx, are in X  with ,, GyGxyx ≠≠  

., GyyGxx ∉∉   Then ),( yx  is in .)}4,5(),5,4({   It is easy to see that 
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for .)}4,5(,)5,4{(),( ∈yx   It is easy to check that all conditions of Theorem 2.4 are 
satisfied.  But Theorem 3.2 of Hu and Rosen [1] and Theorem 3 and Theorem 4 of    
Rao [2] are not applicable since 
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for 4=x  and .5=y   
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