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1.   Introduction 
 
In this paper we attempt to extend the notion of connectedness in a monotone 
(neighbourhood) space [3,7] which is weaker than closure (directed  neighbourhood) 
space [3,4].  Due to the weaker axiom (the monotone property) in a monotone space with 
comparison to the stronger axiom (the closure preserving property) in a closure space, we 
observe that the making of comparable extensions face serious problems in obtaining 
corresponding basic results.  To overcome these difficulties and for existing need for 
further extension, we introduce the notion of a q-directed space.  Finally, to complete our 
study we further introduce and study the ending property of a set, quasi-nodal set, 
separating point, end point, ending and external boundary point in monotone spaces, 
weaker than the space considered in [1]. 
 
 
2. Known definitions and theorems 
 
Definition 2.1. [7].  A function u from the power set )(XP  of a set X to )(XP  is called 
a monotone operator on X provided the following  conditions are satisfied: 
 
 (i)  φφ =u   

 (ii) uAA ⊂   for every )(XPA ∈  and  

 (iii)  uBuABA ⊂⇒⊂  for every ,A  .)(XPB ∈   
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 A structure ),( uX  where X is a set and u is a monotone operator on X is called a 
monotone space [7] (a neighbourhood space [3]) and for uAXA ,⊂  is called the 
monotone closure or simply closure (when there is no possibility of confusion) of A.  
 
Definition 2.2. [7].  Let ),( uX  be a monotone space and let .XA ⊂   Then A is called 
closed if  ,AuA =  and A is called open if  AX −  is closed.  
 
Definition 2.3. [5,7].  Let ),( uX  be a monotone space and .XA ⊂   Then the interior of 
A, denoted by ,Int A  is a set defined by ).(Int AXuXA −−=  
 
Definition 2.4. [3,7].  In a monotone space ),( uX  a neighbourhood of a subset A of X is 
a subset U of X such that .Int UA ⊂   A neighbourhood of a point Xx ∈   is a 
neighbourhood of the one-point set }.{x  The neighbourhood system of a set                    

XA ⊂  (of a point Xx ∈ ) is the collection of all neighbourhoods of the set A (of the 
point x).  
 
Definition 2.5. [5].  In a monotone space ,),( uX  a cluster point or an accumulation 
point of a  set XA ⊂  is a point  x  belonging to the closure of .}{xA −   A cluster point 
or an accumulation point of the space ),( uX  is defined to be a cluster point of the 
underlying set X.  
 
Definition 2.6. [7].  A monotone space ),( uX  is said to be 1T  if  yx ≠  implies 

})({yux ∉  and .})({xuy ∉  
 
Definition 2.7. [3].  Let ),( uX  and ),( vY  be two monotone spaces and  f  a function 
from X to Y.  Then f is said to be continuous at the point x of X iff the inverse,                  
under f, of every neighbourhood of )(xf  is a neighbourhood of x. f is said to be 
continuous  iff  f  is continuous at each point of X. 
 
Theorem 2.1. [5].  Arbitrary intersection (union) of closed (open) sets in a monotone 
space is closed (open). 
 
Remark 2.1. [5].  Union (Intersection) of two closed (open) sets in a monotone space 
need not be closed (open).  
 
Theorem 2.2. [5].   Let ),( uX  be a monotone space.   Then 
 
 (i) φφ == Int,Int XX  
 (ii) AA ⊂Int   for  ,XA ⊂  
 (iii) BABA IntInt)(Int ∩⊂∩  for ,A  ,XB ⊂  
 (iv) BABA IntInt ⊂⇒⊂  for ,A  .XB ⊂   
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Theorem 2.3. [5].  In a monotone space ,),( uX   
 
 (i) )(Int AXXuA −−=  for any ,XA ⊂  
 (ii) a set XA ⊂  is open iff .Int AA =  

 
Theorem 2.4. [5].  In a monotone space ),,( uX  a subset U of X is a neighbourhood of  
a subset A of X iff  U is a neighbourhood of each point of A.  
 
Theorem 2.5. [5].  Let ),( uX  be a monotone space.  A subset U of X is open iff it is a 
neighbourhood of all of its points, or equivalently, U is a neighbourhood of itself.  
 
Theorem 2.6. [5].  In a monotone space ,),( uX   a point Xx ∈ belongs to the closure 
of a subset A of  X iff each neighbourhood of  x in ),( uX   intersects A. 
 
Theorem 2.7. [5].  Let ),( uX  and ),( vY  be two monotone spaces and  f  a function 
from X to Y.  Let .Xx ∈   Then each of the following conditions is necessary and 
sufficient for  f  to be continuous at x: 
 
 (a) for each neighbourhood V of )(xf  there exists a neighbourhood U of x such that 

.)( VUf ⊂  

 (b) for every uAxXA ∈⊂ ,  implies ).()( Avfxf ∈  
 

Theorem 2.8. [5].  Let ),( uX  and ),( vY  be two monotone spaces and  f  a function 
from X to Y.  Then each of the following conditions is necessary and sufficient for  f  to be 
continuous: 
 
 (a) for each x in X, the inverse image of every neighbourhood of )(xf  is a 

neighbourhood of x. 

 (b) )()( AvfuAf ⊂  for every .XA ⊂   

 (c) )()( 11 vBfBuf −− ⊂  for every .YB ⊂  
 

Remark  2.2.  Monotone spaces are generalization of topological spaces, because if 
),( τX  is a topological space then the closure operator u of this topological space enjoys 

all the properties of a monotone operator and hence the closure operator u of the 
topological space ),( τX  makes X into a monotone space, viz., .),( uX  

But not all monotone spaces are topological spaces which we explain in the 
following example:  

We consider the monotone space ),( uX  where },,{ cbaX =  and u:  
)()( XPXP →  is defined by ,}{}{},{}{,, bbuaauXuXu ==== φφ  

.},{},{},{}{ Xacucbubaucu ====   Clearly, {a} and {b} are both closed in  
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,),( uX   but },{ ba  is not closed in ),( uX  as .},{},{ baXbau ≠=   Hence u is not a 
Kuratowski closure operator of a topological space and so, u cannot induce X into a 
topological space. 
 
 
3. Some remarks on continuity on monotone spaces 
 
Remark 3.1.  We cannot replace the term ‘neighbourhood’ by ‘open set’ in Theorem 
2.7 (a) as shown in the following example. 
 
Example 3.1.   Let .},,{,},,{ zyxYcbaX ==   Then  },{},{},{,,{)( cbaXXP φ=  

}},{},,{},,{ accbba  and },,{},{},{},{,,{)( yxzyxYYP φ= .}},{},,{ xzzy  We now 
define )()(: XPXPu →  and )()(: YPYPv →  respectively by ,φφ =u  ,XuX =  

},{}{},{}{ bbuaau ==  Xacucbubaucbcu ==== },{},{},{},,{}{  and ,φφ =v   
}{}{},{}{, zvxvyyvYvY === .},{},{},{ Yxzvzyvyxv ====  Clearly, ),( uX  and 

),( vY  are monotone spaces.  Now, we consider the mapping YXf →:  as follows: 
 

.)(,)(,)( ycfzbfxaf ===  
 
Clearly, the neighbourhoods of the point ‘a’ are the sets ;},,{},,{ Xbaca  but the open 
sets containing ‘a’ are the sets },{ ca  and X.  Again, clearly the  neighbourhoods of             
the point ‘x’ are the sets },{ zx  and Y; but the open  sets containing ‘x’ are the sets },{ zx  
and Y.  Now, for the neighbourhoods of )(afx =  we have the neighbourhood },{ ba  of 
a such that  },{},{ zxbaf =  is contained in both of },{ zx  and Y.   So, f  is continuous           
at a.  But },{ zx  is an open set containing x and since },{},{ yxcaf =  and ,)( YXf =  
hence there exists no open set U containing a such that  }.,{)( zxUf ⊂  
 
 However we have the following  theorem: 
 
Theorem 3.1.    If a  mapping ),(),(: vYuXf →  is continuous, then the inverse image 
of each open (closed) subset of Y is an open (closed) subset of X. 
 
Remark 3.2.   The converse of Theorem 3.1 is not true, in general, as shown in the  
following example.  
 
Example 3.2 .   We consider the monotone space ),( uX  of Example 3.1 and the set 

}.,,{ zyxY =   We define  )()(: YPYPw →  by  ,φφ =w  ,YwY =  },,{}{ zyzw =  
}{}{ yyw =  and .},{},{},{}{ Yxzwzywyxwxw ====   Clearly, ),( wY  is a     

monotone space.  Now, we consider the mapping YXf →:  as  follows:  
.)()(,)( zcfbfxaf ===   The  open sets in ),( uX   and ),( wY  respectively are 
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};,{},,{,, accbX φ   and }.,{,, zxY φ   Clearly, the inverse image of every open set of Y 
is open in X. 
 
 Now the neighbourhoods containing a are Xbaca },,{},,{  and },{)( cafXf =  

.},{},{ zxbaf ==  Clearly, },{ yx  is a neighbourhood of x for which there is no 
neighbourhood U of  a such that },{)( yxUf ⊂  and so,  f  is not continuous at x.  Hence     
f  is not continuous.  
 
 The continuity of the composite mapping is studied in the following theorem: 
 
Theorem 3.2.   Let ),(),,(),,( wZvYuX  be monotone spaces.  Let ,: YXf →  

ZYg →:  be continuous mappings. Then the composition mapping ,: ZXh →  
defined by ))(()( xfgxh =  for each x of  X is continuous.  
 
 
4.   Subspace 
 
Definition 4.1. [7].   Let X be a set and ),(),,( vXuX  be two monotone spaces.  Then u 
is said to coarser than v, and v to be finer than u, if  uAvA ⊂   for each ).(XPA ∈  
 
Definition 4.2. [7].    Let ),( XuX  be a monotone space and let .XY ⊂    The monotone 
operator uY on Y is defined as )()( AuYAu XY ∩=  for every .YA ⊂   Then  Yu  is 
called the relativization of Xu  to Y and the space ),( YuY  is called the subspace of 

).,( XuX  
 
 The relativization of a closure Xu  for  a set X to a subset Y of X is the coarsest 
closure v for Y  such that the identity mapping YJ  of ),( vY  into ),( XuX  is continuous.  
More precisely:  
 
Theorem 4.1.  Let ),( XuX  be a monotone space and let .XY ⊂   A closure v for Y is 
the relativization of Xu  to Y if and only if the following two conditions are fulfilled:  
 
 (a) the mapping ),(),(: XY uXvYJ →  is continuous ; 

 (b) If w is a closure for Y such that ),(),(: XY uXwYJ →  is continuous, then w is 
finer than v.  

 
Proof.     
Necessity. First suppose that v is the relativization of Xu  to Y, i.e., YAv =)(  

)(AuX∩  for each .YA ⊂  The condition (a) is fulfilled because ))(( AvJY  
)()()( AuAuYAv XX ⊂∩== ))(( AJu YX=  for each .YA ⊂   Now, if 
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),(),(: XY uXwYJ →  is continuous, then by definition, for each ,YA ⊂  
)),(())(( AJuAwJ YXY ⊂  i.e., );()( AuAw X⊂  but YAw ⊂)(  and hence 

)()()( AvYAuAw X =∩⊂  which shows that  w  is  finer than  v.  
Sufficiency.   Let v be a closure for Y satisfying (a) and (b).  The relativization Yu  of  

Xu  to Y  fulfills (a) and (b) by necessity.  From (b) we obtain that v is finer than Yu  and 

Yu  is finer than  v  which implies .Yuv =  
 
 From the definition of subspace the following is an immediate consequence. 
 
Theorem 4.2.   Let ),( YuY  be a subspace of ),( XuX  and ),( vZ  be a monotone space 
such that .YZ ⊂   Then ),( vZ  is a subspace of ),( YuY  if and only if it is a subspace of 

.),( XuX  
 
Proof.   The proof follows from the following equalities:  
 

.)( XXY uZuYZuZ ∩=∩∩=∩  
 
Theorem 4.3.  Let ),( YuY be a subspace of a monotone space .),( XuX   Then   
 
 (a) if A is closed in X, YA ∩  is closed in Y 
 (b) if A is open in X, YA ∩  is open in Y 
 (c) if Y is closed in X and A is closed in Y, A is closed in X. 
 
Proof.  The proof is obvious.  
 
Remark 4.1.  If Y is closed-open in X and A is open in Y then A may not be either 
closed or open  in X.  Also, if Y is closed-open in X and A is closed in Y then A may not 
be open in X.  We show it in the following example. 
 
Example 4.1.  Let .},,{ cbaX =  We define )()(: XPXPu →  by ,)( φφ =u  

,)( XXu =  },,{}),({})({ babauau ==  }{}){(},{})({ bbuccu ==  and }),{( cbu  
.}),({ Xacu ==   Clearly, ),( uX  is a monotone space.  Now, let }.,{ baY =   Since {c} 

is closed in X, so Y is closed-open in X.  Also, v, the relativization of u is:   
YavYvv === })({)(,)( φφ  and }.{})({ bbv =   Clearly, }{aA =  is open in Y, but A is 

neither open nor closed in X.  Again, if we take }{bA =  then A is closed in Y; but, 
clearly, A is not open in X.  
 
Remark 4.2.   If Y is open in X and A is closed in Y then A may not be closed in X.             
We show it in the following example.  
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Example 4.2.   Let }.,,{ cbaX =  We define )()(: XPXPu →  by ,)( φφ =u  
,)( XXu = },,{})({ baau =  }{})({},,{})({ ccucbbu ==  and }),(}),({ cbubau =  

.}),{( Xacu ==  Clearly, ),( uX  is a monotone space.  Now, let .},{ baY =  Clearly, Y 
is open in X.  Also, v, the relativization of u is : ,)( φφ =v  YavYv == })({)(  and  

}.{})({ bbv =   Clearly, }{bA =  is closed in Y  but A is not closed in X.  
 
 However, we have the following  result as a corollary of Theorem 4.3(c). 
 
Corollary 4.1.   Let ),( YuY  be a subspace of a monotone space .),( XuX  If Y is closed 
in X and A is open in Y, then AYX ∪− )(  is open in X.  
 
Remark 4.3.   Let ),( YuY be a subspace of .),( XuX   Then a relatively closed (open) 
set need not be the intersection of Y and a closed (open) set in X.  We show it in the 
following example.  
 
 Example 4.3.   Let }.,,{ cbaX =  We  define )()(: XPXPu →  by ,)( φφ =u  

,)( XXu =  },{})({ aau =   },,{})({ babu =  },,{})({ cbcu =  }),({}),({ cbubau =  
.}),({ Xacu ==   Let }{bA =  and .},{ cbY =  Since },{)()( bYAuAuY =∩=  A is 

closed in Y.  Now, φ , X and }{a  are  the closed sets in X; but none of their intersection 
with Y yields A. 
 
 In the following theorem, we characterize a subspace of a monotone space.  
 
Theorem 4.4.  Let ),( vY  and ),( uX  be monotone spaces such that .XY ⊂   Each of 
the following conditions is necessary and sufficient for ),( vY  to be a subspace of 

:),( uX  
 
 (a) for each ));((Int)(Int, YXAYAYA uv −∪∩=⊂  

 (b) if ,Yx ∈  then a set YV ⊂  is a neighbourhood of x in ),( vY  if and only if there 
exists a neighbourhood U of  x in ),( ux  such that .VYU =∩  

 
Proof.    The steps of the proof will be: (a) is necessary, (a) implies (b) and finally            
(b) is sufficient. 
 Suppose that ),( vY  is a subspace of ),( uX  and .YA ⊂   By definition of                   
the interior operation we have uXYXAu −=−∪ ))((Int )))((( YXAX −∪−  

)( AYuX −−=   and  consequently, ))(())((Int AYuXYYXAY u −−∩=−∪∩  
=−−∩∩= )))((( AYuXXY )())(( AYuYAYuXY −−=−−∩ ∩−= YY (  

))( AYu − ).(Int)( AAYvY v=−−=   So, (a) is necessary.  
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 Now, suppose (a).   If V is a neighbourhood of an Yx ∈  in ),,( vY  then by (a) the set 
)( YXVU −∪=  is a neighbourhood of x in ).,( uX   Also, .VYU =∩   Conversely,   

if U is a neighbourhood of x in ),( uX  then also, the set )( YXU −∪  is a 
neighbourhood of x in ),( uX  and by (a) the set YUYYXU ∩=∩−∪ ))((  is a 
neighbourhood of x in ).,( vY   Hence (a) implies (b).  
 Finally, suppose (b).  Let Yx ∈  and .YA ⊂   If )(Avx ∈  then each neighbourhood 
of x in ),( vY  intersects A, by Theorem 2.6.  Let U be a neighbourhood of x in ).,( uX  
Then by (b), VYU =∩  is a neighbourhood of x in ).,( vY   So, V intersects A and hence 
U intersects A.  Consequently, by Theorem 2.6, ).(Aux ∈   Therefore, .)()( YAuAv ∩⊂  
Conversely, if )(Aux ∈  then by Theorem 2.6, each  neighbourhood of x in ),( uX  
intersects A.  Let V be any neighbourhood of x in ).,( vY   Then by (b), there exists a 
neighbourhood U of x in ),( uX  such that .VYU =∩   So, U intersects A and hence V 
intersects A as .YA ⊂   Consequently, ).(Avx ∈   Therefore, ).()( AvYAu ⊂∩  So, 

.)()( YAuAv ∩=   Hence (b) is sufficient.  This proves the theorem. 
 We conclude this section with the following theorem which speaks of the  continuity 
on a subspace. 
 
Theorem 4.5.  Let ),( YuY  be a  subspace of a monotone space ),( XuX  and             
let ),( vZ  be a monotone space.  If  ),(),(: vZuXf X →  is continuous then 

),(),(: vZuYf YY →  is also continuous, where Yf  is the restriction of  f  to Y.   
 
 
5.   Connectedness 
 
Definition 5.1. [5].   Let ),( uX  be a monotone space.  Two subsets A and B of X are 
said to be semi-separated if there exist neighbourhoods U of A and V of B such that 

.AVBU ∩==∩ φ  
 
Theorem 5.1. [5].   Let ),( uX  be a monotone space.  Then 21, AA  are two semi-
separated subsets of  X  if and only if  .)()( 1221 φ=∩∪∩ uAAuAA   
 
Theorem 5.2. [5].   Let ),( uX  and ),( vY  be monotone spaces and let YXf →:  be a  
continuous  mapping.  If A and B are semi-separated in ),( vY , then )(1 Af −  and 

)(1 Bf −  possess the corresponding property in ).,( uX  
 
Definition 5.2.   In a monotone space ),,( uX  the boundary of a subset A of X,    
denoted by ),(Ab  is a set defined by ,Int )()( AAuAb −=  or equivalently, 

).()()( AXuAuAb −∩=   
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Definition 5.3.   A subset A of a monotone space ),( uX  is said to be connected in        
X if A is not the union of two non-void semi-separated subsets of X, that is 

φ=∩∪∩∪= )()(, 212121 uAAAuAAAA  implies that φ=1A  or .2 φ=A  
 
 If  A is not connected in X we say A is disconnected in X.  A space ),( uX  is said to 
be connected if the underlying set X is connected in ).,( uX   Every accrete space is 
connected and a non-void discrete space is connected if and only if it’s underlying set is a 
singleton.  If A is the union of two non-void semi-separated subsets of X then we say that 
A  has a semi-separation.  
 
Theorem 5.3.  A monotone space ),( uX  is connected if and only if X is not the union 
of two disjoint, non-void, open subsets, that is, X contains no proper non-void subsets 
simultaneously open and closed.  
 
Proof.   The proof is easy and hence omitted.  
 
Theorem 5.4.   A monotone space ),( uX  is connected if and only if X is not the union 
of two disjoint, non-void, closed subsets of X.  
 
Proof.    The proof is obvious.  
 
Theorem 5.5.   Let ),( YuY be a subspace of a monotone space ),( uX  and let 

.XYA ⊂⊂   Then A is connected in ),( uX  if and only if A is connected in ).,( YuY  
 
Proof.   Let A be disconnected in Y.  Then ,, 121 φ≠∪= AAAA  

φφ =∩≠ 212 )(, AAuA Y ).( 21 AuA Y∩=  Now, φ=∩ 21)( AAuY  implies 
,)( 21 φ=∩∩ AYAu  i.e., .)( 21 φ=∩ AAu   Similarly, .)( 12 φ=∩ AAu   So, A has a 

semi-separation in X and hence, A is disconnected in X.  
 
 Conversely, let A be  disconnected in X.   Then ,,, 2121 φφ ≠≠∪= AAAAA  

).()( 2121 AuAAAu ∩==∩ φ  Now =∩∩=∩ 2121 )()( AYAuAAuY 21)( AAu ∩  
.φ=   Similarly, .)( 12 φ=∩ AAuY   So, A  is disconnected in Y.  This completes the 

proof of the theorem. 
 
Corollary 5.1.  A subset A of a monotone space ),( uX  is connected if and only if the 
subspace ),( AuA  is connected.  
 
Theorem 5.6.   A monotone space ),( uX  is connected if and only if it contains  no set 
A such that XA ≠≠φ  and ,)()( φ=−∩ AXuAu  i.e., every subset A of X such that 

XA ≠≠φ  satisfies the condition ;)()( φ≠−∩ AXuAu  in other words, if and only if 
no set A, which satisfies condition XA ≠≠φ has an empty boundary.  
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Proof.  The proof is omitted.  
 
Theorem 5.7.   A subset C of a monotone space ),( uX  is connected if and only if 
every subset A of  C such that CA ≠≠φ  satisfies the condition 

.)()( φ≠−∩∩ ACuAuC  
 
Proof.  The proof is obvious. 
 
Theorem 5.8.   If C is connected and ACAC −≠≠∩ φ   then  .)( φ≠∩ AbC  
  
Proof.   The proof is easy and hence omitted.  
 
Theorem 5.9.   Let ),( uX   and ),( vY  be two monotone spaces and 

),(),(: vYuXf →  be continuous.  If A is a connected subset of X then )(Af  is 
connected in Y.  
 
Proof.   If )(Af  is not connected then ,)( 21 YYAf ∪=  where 1Y  and 2Y  are semi-
separated in ),( vY and ., 21 φφ ≠≠ YY   Since f  is continuous, )( 1

1 Yf −  and )( 2
1 Yf −  

are semi-separated in ),( uX   by Theorem 5.2.  Clearly, )()( 2
1

1
1 YfYfA −− ∪=  and  

,)( 1
1 φ≠− Yf .)( 2

1 φ≠− Yf   Thus )( 1
1 Yf −  and )( 2

1 Yf −  form a semi-separation of A. 
Hence A is  not connected in ),,( uX  which is a contradiction.  Hence )(Af  is connected 
in ).,( vY   This proves the theorem.  
 
Theorem 5.10.  A subset C of a monotone space ),( uX  is connected if and only if the 
following condition is fulfilled:  
 
 If C is contained in the union of two semi-separated sets A and B, then AC ⊂  or 

.BC ⊂  
 
Proof.   Before going to prove the theorem, we first state the following lemma without 
proof.  
 
Lemma.   Let BAC ∪⊂  and A, B are semi-separated.  Then the sets AC ∩  and 

BC ∩  are also semi-separated.  
 
Proof of the theorem.   We suppose that AC ⊂  or .BC ⊂   We prove that C is  
connected.  If C is not connected, then there exist semi-separated sets A and B such that 

BAC ∪=  where ,, φφ ≠≠ BA   .)()( BAuBuA ∩==∩ φ   Clearly, AC ⊂              
(or BC ⊂ ) is false, because then φ=B  (or φ=A ).  This contradicts our hypothesis 
that AC ⊂  or .BC ⊂   Thus C is connected.  
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 Conversely, we suppose that C is connected.  If BAC ∪⊂  and if the sets A and B 
are semi-separated then by the lemma, the set AC ∩  and BC ∩  are also                     
semi-separated and consequently, φ=∩ AC  or .φ=∩ BC   That is, either BC ⊂  or 

.AC ⊂   This completes the proof of the theorem.   
 
Theorem 5.11.  Let }{ tC  be a family of connected sets in ).,( uX    The union tt

C∪  is 

connected, provided that there exists such a set 0C  which is not semi-separated from any 
set .tC  
 
Proof.   Let NMCtt

∪=∪  where M and N are semi-separated.  We are going to show  

that either φ=M  or .φ=N   According to Theorem 5.10, we assume .0 NC ⊂   Now 
we assert that for any t, ,NCt ⊂  because if for any t, MCt ⊂ then 

φ=∩⊂∩ NMuCCu t )()( 0  and φ=∩⊂∩ )()( 0 NuMCuCt  since M and N are 
semi-separated; and so, tC  and 0C  are semi-separated, a contradiction.  Hence .φ=M  
This completes the proof of the theorem.  
 
Theorem 5.12.  Let }{ tC  be a directed family of connected sets (this means that for 
each pair ,1t  2t   there is 3t  such that 

21 tt CC ⊂  and .)
32 tt CC ⊂   Then the union 

tt
CS ∪=   is connected. 

 
Proof.  Suppose NMS ∪=  where M and N are semi-separated sets.  By Theorem 
5.10, we have for each t, either MCt ⊂  or .NCt ⊂   Let .

0
φ≠tC   Obviously, we may 

assume that ;MCt ⊂
0

 hence .
0

NCt ⊂/   We shall show that ,MS ⊂  which will 
complete the proof.  
 Let t be an arbitrary index and 1t  be such that 

10 tt CC ⊂  and .
1tt CC ⊂   The first 

inclusion yields .
1

NCt ⊂/   Hence MCt ⊂
1

 and therefore .MCt ⊂   It follows that 
.MS ⊂   This completes the proof of the theorem. 

 
Corollary 5.2.  The union of connected sets, which have a non-empty intersection, is a 
connected set.  
 
Corollary 5.3.  If C is connected and ),(CuEC ⊂⊂  E is connected. In particular,  

)(Cu  is connected. 
 
Corollary 5.4.  If every two points of a set E in a monotone space ),( uX  are 
contained in some connected subset of E, then E is a connected set.  
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6.  Component 
 
Definition 6.1.   Let ),( uX  be a monotone space and .XY ⊂   Then a set YC ⊂  is 
said to be a component of Y  if C is connected in X and if the inclusion YCC ⊂⊂ 1  
implies 1CC =  for any connected set 1C  in X. 
 
 Clearly, C is a component of a monotone space ),( uX  if C is a component of the 
underlying set X.  Thus components are maximal connected subsets. 
 
Theorem 6.1.  Let ),( uX  be a monotone space and .XY ⊂   Then a set YC ⊂  is a 
component of Y  if and only if C is a component of the subspace ).,( YuY  
 
Proof.   The proof is obvious. 
 
Definition 6.2.  The component of a point x in ),( uX  is the component of X          
containing x. 
 
Theorem 6.2.  Let ),( uX be a monotone space.  Then  
 
 (i) Every component of ),( uX  is closed. 
 (ii) Each point in X is contained in exactly one component of X. 
 (iii) The components of X form a partition of X, i.e., any two components are either 

disjoint or identical and union of all the components is X.  
 (iv) Each connected subset of X is contained in exactly one component of X.  
 
Proof.  The proof is easy and hence omitted.  
 
Theorem 6.3.  Every closed-open set F is the union of a family of components of the 
space .),( uX   In particular, if  F is connected and non-empty, then it is a component.  
 
Proof.  Let .φ≠F   Let .Fx ∈   Then }{x  is a connected set contained in F.  So, by 
Theorem 6.2. (iv), there is one and only one component ),( xXC  containing x.  Clearly, 

.),( φ≠∩ FxXC   We assert that ,),( φ=− FxXC  because φ≠− FxXC ),(  gives 
)),(()),((),( FxXCFxXCxXC −∪∩=  where FxXC ∩),(  and FxXC −),(  are 

closed in X (for, ),( xXC  is closed by Theorem 6.2 (i) and  F is closed-open), forms a 
semi-separation of ),( xXC  contradicting the fact that ),( xXC  is connected.  Hence, 

FFxXCxXCx ⊂∩=∈ ),(),(  which implies  
 

,),(}{ FxXCx
FxFx

⊂⊂
∈∈
∪∪   i.e.,  .),( xXCF

Fx∈
= ∪  
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 In particular, if F is connected and non-empty then F is a component, because there 
is no connected  set C of which F is a proper subset, otherwise, FC −  and F form a 
semi-separation of C.  This completes the proof of the theorem.  
 
Definition 6.3.  Let ),( uX  and ),( vY  be monotone spaces.  A continuous mapping  

YXf →:  is called monotone if the inverse image )(1 Cf −  of each connected set 
YC ⊂  is connected. 

 
Theorem 6.4.  Let YXf →:  be a monotone onto mapping.  Then the set C is a 
component of YD ⊂  if and only if  )(1 Cf −  is a component of ).(1 Df −   
 
Proof.  Since f is onto, )()( 11 DfECf −− ⊂⊂  implies .)( DEfC ⊂⊂   Now, if C is 
supposed to be a component of D and E is supposed to be connected, it follows that 

),(EfC =  hence ,)()( 11 EEffCf ⊃= −−  and ,)(1 ECf =−  i.e., )(1 Cf −  is a 
component of ).(1 Df −  
  
 Conversely, if )(1 Cf −  is supposed to be a component of )(1 Df −  and if H is a 
connected set such that ,DHC ⊂⊂  it follows that ),()()( 111 DfHfCf −−− ⊂⊂  and 
since the set )(1 Hf −  is connected, it follows that ),()( 11 HfCf −− =  which implies 

HC =  as f is onto.  Hence C is a component of D.  This completes the proof of the 
theorem.  
 
 
7.   Quasi-directed space 
 
Definition 7.1.  Let ),( uX  be a monotone space and let A, B, ).(XPN ∈   If A, B are 
semi-separated and A, N are semi-separated imply A, NB ∪  are semi-separated then 
we call ),( uX  a quasi-directed monotone space (briefly, q-directed space). 
 
 Clearly, the notion of a q-directed space is weaker than that of a monotone space 
equipped with closure preserving property, i.e., a closure space.  In other words, a closure 
space is a q-directed space.  But the converse is not true, in general, as shown by the 
following example.  
 
Example 7.1.  Let }.,,,,,{ fedcbaX =   We define )()(: XPXPu →  by  

,)( φφ =u  ,)( XXu =  },,,{})({ dcaau =  },,,{})({ ecbbu =  },{})({ eeu =  
},,,{}),{( edcbebu =  and XPu =)(  where )(XPP ∈  and }.,{},{},{},{, ebebaP φ≠  

Let }.{},{},{ eNbBaA ===   Clearly, each of the pair ),(),,( NABA  and ),( NBA ∪  
are semi-separated.  But ).()()( NuBuNBu ∪≠∪   Also, there  is no such pair ),( DC  



S.R. Ghosh and H. Dasgupta 142

which are semi-separated except the above mentioned pairs, viz., ),(),,( NABA  and 
),,( NBA ∪  where C, ).(XPD ∈  

 
 We state a lemma without proof which we need in the sequel.  
 
Lemma 7.1.  Let ),( uX  be a monotone space.  Let MA ⊂  and M and N are semi-
separated.  Then A and N are semi-separated.  
 
Theorem 7.1. Let P and C be connected sets in a q-directed space ),( uX  and                 

.φ≠∩ CP   If  M and N are two semi-separated sets such that ,NMCP ∪=−  then 
the sets MC ∪  and NC ∪  are connected.  
 
Proof.  Let BAMC ∪=∪  where A and B are semi-separated sets.  So, BAC ∪⊂  
and hence by Theorem 5.10, we assume that φ=∩ AC  which gives MA ⊂ because 

.MCA ∪⊂   Now, since the sets M and N are semi-separated, the set A and N are       
semi-separated by Lemma 7.1; and therefore, A and BN ∪  are semi-separated as                  
A and B are semi-separated and ),( uX  is q-directed. Now,  CCPCP ∪−=∪ )(  

=∪∪= CNM ).( NBA ∪∪  But CP ∪  is a connected set because P and C are 
connected sets and .φ≠∩ CP   This proves the theorem.  
 
Corollary 7.1.  If C is a connected subset of a connected q-directed space ),,( uX  and 
if M and N are two semi-separated sets such that ,NMCX ∪=−  then the sets 

MC ∪  and NC ∪  are connected.  
 
Corollary 7.2.  Let A and B be two closed sets in a q-directed space.  If the sets BA ∪  
and BA ∩  are connected, the sets A and B are also connected.  
 
Theorem 7.2.  If E is not the union of  n connected sets in a monotone space ),,( uX  
there exists 1+n  pairwise semi-separated sets 11 ,, +nAA "  such that  
 

φ≠∪∪= + in AAAE ,11 "   for  .11 +≤≤ ni  
 
Proof.  The proof is obvious.  
 
Theorem 7.3. (Generalized Corollary 7.1) If nCC ,,1 "  are connected subsets of a 
connected q-directed space ),,( uX  and M and N are two semi-separated sets such that  
 

,)( 1 NMCCX n ∪=∪∪− "  
 
then the set MCC n ∪∪∪"1  consists of n connected sets (which may be distinct or 
not).  
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Proof.   The proof is obvious.  
 
Corollary 7.1. gives the following results.   
 
Theorem 7.4.  Every connected q-directed space ),,( uX  which contains more than 
one point, is the union of two connected sets, which are distinct from the space and 
contain more than one point.  
 
Proof.  If for each x the set }{xX −  is connected, there is a decomposition                         

}),{(}){( 21 xXxXX −∪−=  where .21 xx ≠  On the other hand, if there exists an x 
such that }{xX −  is not connected, it follows that ,}{ NMxX ∪=−  where M and N  
are semi-separated and non-empty; therefore, by Corollary 7.1, the required 
decomposition of X  is: .}){(}){( xNxMX ∪∪∪=  This proves the theorem.  
 
Theorem 7.5.  Let ),( uX  be a connected q-directed space.  If E is a connected set 
and C is a component of ,EX −  then CX −  is connected.  
 
Proof.  Assume that ,NMCX ∪=−  where M and N are semi-separated sets.  
Since ,NMCXE ∪=−⊂  according to Theorem 5.10, it can be assumed that 

,φ=∩ ME  which implies φ=∪∩ )( MCE  so that .EXMCC −⊂∪⊂   Since 
by Corollary 7.1, MC ∪  is connected, it follows by the definition of component, that 

CMC =∪  and hence .φ=M   This proves the theorem.  
 
Theorem 7.5 has the following immediate consequences.  
 
Theorem 7.6.  If the space ),( uX  is connected and q-directed, then every finite system   
S (containing at least two elements) of disjoint connected subsets contains at least two 
elements, 1A  and 1B , which have the following property: 
 
(P) There exists a connected set disjoint from 1A (respectively from 1B ) which  
contains all the elements of  S other than 1A  (respectively other than 1B ). 
 
Proof.   Let ),,,( 10 nCCCS "= and proceed by induction.  Since the theorem is 
obvious for ,1=n  let us assume that it holds for ).1(1 ≥−n   
 
 We are going to show that there exists a number 0>k  such that the  set kC  has the 
property P.  
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 Suppose that the set 1C  does not possess  this property.  Hence there exist at least 
two components A and B of the set 1CX −  which contain the sets of the system S;              
let  A be that one which does not contain .0C  
 
 Let jmm ,,1 "  be the sequence of indices of the sets iC  contained in A.  It follows 
that  
 
 ,11 −≤≤ nj   (7.1) 
 ,0,,0 1 jmm ≠≠ "   (7.2) 

 if  jmrmr ≠≠ ,,1 "  and  ,nr ≤  then  AXCr −⊂ .   (7.3) 
 
 Since the set AX −  is connected (by Theorem 7.5) and the system  
 

),,,(
1

*
jmm CCAXS "−=  

 
contains at most n elements (by (7.1)), there exists by hypothesis an index js ≤  such 
that the set 

smC
 
has the property P with respect to the system *S .  Therefore there exists 

a connected set K  such that  
 

.)(
111 sjss mmmmm CXKCCCCAX −⊂⊂∪∪∪∪∪∪−
+−

""  

 
 It follows by (7.3) that KCq ⊂  for every .smq ≠   That means that 

smC has the 
property P (with respect to the system S). 
  
 Finally, 0>sm  by (7.2); hence sm  is the required index k.  This completes the 
proof of the theorem.  
 
Theorem 7.7.  In a connected q-directed space ),,( uX  let S be an infinite family of 
disjoint connected sets.  If 0S  and 1S  are two arbitrary elements of S, there exists in 

0SX −  or in 1SX −  a connected set, which contains infinitely many elements of S. 
 
Proof.  Let jC  (for 1,0=j ) be the component of jSX −  which contains .1 jS −  

Condition jjj SXCS −− −⊂⊂ 11  implies ,11 jjj SXCXS −⊂−⊂ −−  which implies 
in turn that  

 
 jj CCX ⊂− −1   (7.4) 

 
since the set jCX −− 1  is connected (by Theorem 7.5).  
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 Suppose that 0C  contains only a finite number of elements of S.  Hence there exist 
infinitely many elements of S contained in 0CX −  and therefore, in 1C  according to 
(7.4).  So 1SX −  contains a connected set, namely ,1C  which contains infinitely many 
elements of the family S.  This proves the theorem.  
 
 
8.   Quasi-nodal sets, separating points, end points and the ending property 
 
Definition 8.1.  A non-empty set N in a connected monotone space ),( uX  is called 
quasi-nodal if the boundary of N in X is degenerate.  (A set is degenerate if it is either 
empty or singleton). 
 
Definition 8.2.  Let ),( uX  be a monotone space.  A point Xp ∈ is said to be a 
separating point of a connected subset C of X provided that }{ pC −  is not connected.  
 A point Xp ∈  is said to be an endpoint of ),( uX  if  p is not a separating point of 
any connected subset C of X.  
 A subset E of X is said to have e.p. (the ending property) in X provided that there is 
no connected subset C of X such that E separates C (i.e., such that EC −  is not 
connected).  
 
Remark 8.1.  By definition, it follows that an endpoint of X has e.p. 
 
Theorem 8.1.  The interior of any quasi-nodal set of a quasi-directed space ),( uX  has 
e.p. in X.  
 
Proof.  Let N be a quasi-nodal set of X and let C be a connected set in X. Let                   

}.{)( pNb =    We now consider the following two cases:  
 
Case I.  Let .Cp ∈   If possible, let ,Int  BANC ∪=−  where A and B are                    
non-empty, semi-separated sets.  Since ,Int  Np ∉  so let .Bp ∈   Therefore, .Ap ∉  
Clearly, )Int( NCBAC ∩∪∪= ,QBA ∪∪=  where .Int NCQ ∩=  Now, 

)Int()()( NCAuQAu ∩∩=∩ ).Int  )(( NAuC ∩∩=   We assert that  )( ∩Au  
.Int φ=N   For, if NAu Int  )( ∩∈α  then )(Au∈α  and .Int N∈α   Now  NInt  ∈α  

implies N is a neighbourhood of .α   So, by Theorem 2.6, φ≠∩ AN  as  ).(Au∈α   
Hence  ,}){Int ( φ≠∩∪ ApN  i.e., φ≠∩ ANInt  since .Ap ∉   This is a 
contradiction.  Also, AQuA ⊂∩ )( =∩⊂∩ )()Int ( NuANu }){Int ( pNA ∪∩  

)Int  ( NA ∩= .}){( φ=∩∪ pA   Hence A and B are semi-separated.  Consequently,            
A and QB ∪  are semi-separated as ),( uX  is q-directed and A, B are semi-separated.  
So, )( QBAC ∪∪=  has a semi-separation contradicting the connectedness of C.  Thus 

NC Int  −  is connected.  
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Case II.  Let .Cp ∉   The proof of this case is same as of Case I and hence omitted. 
This proves the theorem.   
 
Theorem 8.2.  If E has e.p. in X, then the intersection of any connected set with 

EX − is connected, where ),( uX  is a monotone space.  
 
Proof.  Let C be any connected set in X.  So, ECECXEXC −=−∩=−∩ )()(  is 
connected since E has e.p. in X. 
 
Theorem 8.3.  Let ),( uX  be a quasi-directed space.  Then the components of any set 
E that has e.p.  in X also have e.p.  in X.  
 
Proof.  Let P be any connected set in X and C be any component of E.  If ,φ=∩ CP  
then clearly, PCP =−  is connected.  Now, let .φ≠∩ CP   If possible, let 

NMCP ∪=−  where ).()( NuMNMu ∩==∩ φ   Now, CPEP −⊂−  
.NM ∪=   So, by Theorem 5.10, it can be assumed  that φ=∩− MEP )(  as EP −  

is connected since E has e.p. in X.  Hence ,)()( φ=∪∩− MCEP  because 
.CPEP −⊂−   Consequently, .EMC ⊂∪   For, if EMC ⊄∪  then there exists a 

MCp ∪∈  such that .Ep ∉   Clearly,  Cp ∉  as .EC ⊂   So, Mp ∈  and .Ep ∉   
Therefore, EPp −∈  as .PM ⊂   Thus )()( MCEPp ∪∩−∈  which contradicts 
that .)()( φ=∪∩− MCEP   Now, by Theorem 7.1, MC ∪  is a connected set 
contained in E.  But C is a component of E, so, MCC ∪⊂  implies .φ=M   So, 

CP −  is connected which implies that C has e.p. in X.  This proves the theorem.  
 
 
9.   Endings and boundaries of endings 
 
Definition 9.1.  A non-empty connected set with e.p. in a monotone space ),( uX  is 
called an ending of X.  
 
 Theorem 6.1, Theorem 6.2 (ii) and Theorem 8.3 enable us to disassemble a set with 
e.p. into endings in a q-directed space.  Reassembly raises some difficulties. However,  
we have the following. 
 
Theorem 9.1.  The union of a finite collection of sets with e.p. in a monotone space 

),( uX  has e.p. in X.  
 
Proof.  Let E and F have e.p. in X and let C be any connected set in X.  Now, since E 
has e.p. in X, EC −  is connected.  Again, since F has e.p. in X, so, FEC −− )(  is 
connected.  But .)()( FECFEC −−=∪−   So, )( FEC ∪−  is connected. Hence 

FE ∪  has e.p. in X.  This proves the theorem.  
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 Obviously, the intersection of two sets with e.p. in X need not have e.p. in X. 
However, the intersection of a nested collection is more tractable. 
 
Theorem 9.2.  If E is a nested collection of sets with e.p. in a monotone space                 

),,( uX  then E∩  has e.p. (possibly trivially) in X.  
 
Proof.  Let E∩=N  and suppose there is a connected set C such that NC −  is the 
union of semi-separated sets A and B.  Since A can not be contained in all the elements         
of E,  there is a member AE  of E such that .φ≠− AEA   Similarly, there is a set BE  of 
E  such that .φ≠− BEB   Let .BA EEE ∩=   Since E  is nested, E∈E  and  EA −  
and EB −  are both non-empty.  But then ),()( EBEAEC −∪−=−  a semi-
separation. This is a contradiction.  Hence NC −  is connected.  This proves the  
theorem.  
 
Theorem 9.3.  If  p is any point of a connected monotone space ),,( uX  then there is 
an ending of X that is minimal with respect to being an ending of X and                                         
containing p.  
 
Proof.  X is (trivially) an ending of X that contains p.  Form a maximal nest E  of 
endings of X that contain p, and let .E∩=E  
 
Definition 9.2.  A boundary point p of a set E is called an external boundary point of        
E  if .Ep ∉  
 
Theorem 9.4.  Let E be an ending of a monotone space ),( uX  and let B be the set of 
external boundary points of E.  Then B cannot contain two mutually semi-separated sets. 
 
Proof.  Let A and C be two mutually semi-separated sets such that .BCA ⊂∪   Now, 

).(EuBECAEE =∪⊂∪∪⊂   So, by Corollary 5.3, CAE ∪∪  is connected. 
But ,)( CAECAE ∪=−∪∪  a semi-separation as .)( φ=∪∩ CAE   This is a 
contradiction since E has e.p. in X.  This proves the theorem.  
 
Corollary 9.1.  The external boundary of any ending of a monotone space ),( uX is 
connected.  
 
Corollary 9.2.  For any two points of external boundary B of any ending of a monotone 
space X, one is a cluster point of the other.  Hence, if X is ,1T  then B is degenerate.  
 
Proof of Corollary 9.2.  Let ,α  .B∈β  If possible, let φβα =∩ }{})({u  and                        

.}{})({ φαβ =∩u   Then }{α  and }{β  are two mutually semi-separated sets contained 
in B, a contradiction of Theorem 9.4.  Hence for any two points of B of any ending of X, 
at least one is a cluster point of the other.  Hence, if X is ,1T  then B is degenerate.  
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