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1. Introduction

In this paper we attempt to extend the notion of connectedness in a monotone
(neighbourhood) space [3,7] which is weaker than closure (directed neighbourhood)
space [3,4]. Due to the weaker axiom (the monotone property) in a monotone space with
comparison to the stronger axiom (the closure preserving property) in a closure space, we
observe that the making of comparable extensions face serious problems in obtaining
corresponding basic results. To overcome these difficulties and for existing need for
further extension, we introduce the notion of a g-directed space. Finally, to complete our
study we further introduce and study the ending property of a set, quasi-nodal set,
separating point, end point, ending and external boundary point in monotone spaces,
weaker than the space considered in [1].

2. Known definitions and theorems

Definition 2.1. [7]. A function u from the power set P(X) of aset X to P(X) is called
a monotone operator on X provided the following conditions are satisfied:

(i) up=¢
(i) A c uA forevery A e P(X) and
(iii) Ac B = uA c uB forevery A, B € P(X).
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A structure (X,u) where X is a set and u is a monotone operator on X is called a
monotone space [7] (a neighbourhood space [3]) and for A < X, uA is called the
monotone closure or simply closure (when there is no possibility of confusion) of A.

Definition 2.2. [7]. Let (X,u) be a monotone space and let A — X. Then A is called
closed if uA = A, and A is called open if X — A is closed.

Definition 2.3. [5,7]. Let (X,u) be a monotone space and A — X. Then the interior of
A, denoted by Int A, is asetdefined by Int A= X —u(X - A).

Definition 2.4. [3,7]. In a monotone space (X,u) a neighbourhood of a subset A of X is
a subset U of X such that A < IntU. A neighbourhood of a point xe X is a
neighbourhood of the one-point set {x}. The neighbourhood system of a set

A c X (of a point x € X ) is the collection of all neighbourhoods of the set A (of the
point x).

Definition 2.5. [5].  In a monotone space (X, u), a cluster point or an accumulation
pointof a set A — X isapoint x belonging to the closure of A —{x}. A cluster point
or an accumulation point of the space (X, u) is defined to be a cluster point of the
underlying set X.

Definition 2.6. [7]. A monotone space (X, u) is said to be T, if x =y implies
xegu{y}) and y ¢ u({x}).

Definition 2.7. [3]. Let (X, u) and (Y, v) be two monotone spaces and f a function

from X to Y. Then f is said to be continuous at the point x of X iff the inverse,
under f, of every neighbourhood of f(x) is a neighbourhood of x. f is said to be

continuous iff f is continuous at each point of X.

Theorem 2.1. [5]. Arbitrary intersection (union) of closed (open) sets in a monotone
space is closed (open).

Remark 2.1. [5]. Union (Intersection) of two closed (open) sets in a monotone space
need not be closed (open).

Theorem 2.2. [5]. Let (X, u) be a monotone space. Then

@iy IntX =X,Intg =¢

@ii) IntAc A for Ac X,

(iii) Int(AnB)c IntAniIntB for A, Bc X,
(ivy AcB=IntAcIntB for A, Bc X.
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Theorem 2.3. [5]. In a monotone space (X, u),

(i) uA=X —-Int(X — A) forany A c X,
(if) aset Ac X isopeniff IntA= A.

Theorem 2.4. [5]. In a monotone space (X,u), a subset U of X is a neighbourhood of
a subset A of X iff U is a neighbourhood of each point of A.

Theorem 2.5. [5]. Let (X,u) be a monotone space. A subset U of X is open iff it is a
neighbourhood of all of its points, or equivalently, U is a neighbourhood of itself.

Theorem 2.6. [5]. In a monotone space (X,u), a point x € X belongs to the closure
of a subset A of X iff each neighbourhood of x in (X,u) intersects A.

Theorem 2.7.[5]. Let (X,u) and (Y, v) be two monotone spaces and f a function

from X to Y. Let x e X. Then each of the following conditions is necessary and
sufficient for f to be continuous at x:

(a) for each neighbourhood V of f(x) there exists a neighbourhood U of x such that
f(U) cV.

(b) forevery A c X, x € uA implies f(x) e vf (A).

Theorem 2.8. [5]. Let (X, u) and (Y,v) be two monotone spaces and f a function

from X to Y. Then each of the following conditions is necessary and sufficient for f to be
continuous:

(a) for each x in X, the inverse image of every neighbourhood of f(x) is a
neighbourhood of x.

(b) f(uA) < vf(A) forevery A c X.

() uf1(B) = f1(vB) forevery B .

Remark 2.2. Monotone spaces are generalization of topological spaces, because if
(X, 7) is a topological space then the closure operator u of this topological space enjoys
all the properties of a monotone operator and hence the closure operator u of the
topological space (X, ) makes X into a monotone space, viz., (X, u).

But not all monotone spaces are topological spaces which we explain in the
following example:

We consider the monotone space (X,u) where X ={a,b,c} and u:
P(X) —» P(X) is defined by ug = ¢,uxX = X, uf{a} ={a}, u{b} = {b},
u{c} = u{a,b} = u{b,c} =u{c,a} = X. Clearly, {a} and {b} are both closed in
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(X, u), but {a,b} isnotclosed in (X, u) as u{a,b} = X = {a,b}. Hence uis not a

Kuratowski closure operator of a topological space and so, u cannot induce X into a
topological space.

3. Some remarks on continuity on monotone spaces

Remark 3.1. We cannot replace the term ‘neighbourhood’ by ‘open set’ in Theorem
2.7 (a) as shown in the following example.

Example 3.1. Let X ={a,b,c}, Y ={x,y,z}. Then P(X) ={g, X,{a},{b}.{c},
{a,b}.{b.c}.{c.a}} and P(Y) ={a,Y. O {y}.{z}{x vy} {y. 2}1.{z.x}}. We now
define u: P(X) - P(X) and v:P(Y) > P(Y) respectively by ug = ¢, uX = X,
u{a} = {a}, u{b} ={b}, u{c}={b,c} u{a,b}=ufb,c}=ufc,a}=X and v¢ =4,
vY =Y, Wy} = {y} v{x} = Wz} = v{x, v} = Wy, 2} = v{z,x} = Y. Clearly, (X, u) and
(Y, v) are monotone spaces. Now, we consider the mapping f : X — Y as follows:

f(@a) =xf(b)=2zf()=y.

Clearly, the neighbourhoods of the point ‘a’ are the sets {a, c},{a,b}, X; but the open
sets containing ‘a’ are the sets {a,c} and X. Again, clearly the neighbourhoods of
the point ‘x’ are the sets {x, z} and Y; but the open sets containing ‘x’ are the sets {x, z}
and Y. Now, for the neighbourhoods of x = f(a) we have the neighbourhood {a, b} of
a such that f{a,b} = {x, z} is contained in both of {x,z} and Y. So, f is continuous
at a. But {x,z} is an open set containing x and since f{a,c} ={x,y} and f(X) =Y,
hence there exists no open set U containing a such that f(U) < {x, z}.

However we have the following theorem:

Theorem 3.1. If a mapping f : (X,u) — (Y,v) is continuous, then the inverse image
of each open (closed) subset of Y is an open (closed) subset of X.

Remark 3.2. The converse of Theorem 3.1 is not true, in general, as shown in the
following example.

Example 3.2 .  We consider the monotone space (X,u) of Example 3.1 and the set
Y ={x,y,2}. We define w:P()—> P) by wg=¢, wy =Y, Wz} ={y, 2},
Wy} ={y} and w{x}=w{xVy}=wWy, }=wz,x}=Y. Clearly, (Y,w) is a
monotone space. Now, we consider the mapping f:X —Y as follows:
f(@a)=x,f(b)=f(c) =z The open sets in (X,u) and (Y,w) respectively are
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X, ¢,{b,c},{c,a}; and Y, ¢, {x,z}. Clearly, the inverse image of every open set of Y
is open in X.

Now the neighbourhoods containing a are {a,c}, {a,b}, X and f(X) = f{a,c}
= f{a,b} ={x,z}. Clearly, {x,y} is a neighbourhood of x for which there is no
neighbourhood U of asuch that f(U) < {x, y} and so, f is not continuous at x. Hence
f is not continuous.

The continuity of the composite mapping is studied in the following theorem:

Theorem 3.2.  Let (X,u), (Y,v), (Z,w) be monotone spaces. Let f:X —Y,
g:Y — Z be continuous mappings. Then the composition mapping h: X — Z,
defined by h(x) = g(f(x)) for each x of X is continuous.

4. Subspace

Definition 4.1. [7]. Let X beasetand (X,u), (X,v) be two monotone spaces. Then u
is said to coarser than v, and v to be finer than u, if vA < uA foreach A e P(X).

Definition 4.2. [7].  Let (X,uy) be a monotone space and let Y — X. The monotone
operator uy on Y is defined as uy (A) =Y nuy (A) for every AcY. Then uy is
called the relativization of uy to Y and the space (Y,uy) is called the subspace of
(X, uy).

The relativization of a closure uy for a set X to a subset Y of X is the coarsest

closure v for Y such that the identity mapping Jy, of (Y,v) into (X,uy) is continuous.
More precisely:

Theorem4.1.  Let (X,uy) be a monotone space and let Y — X. AclosurevforYis
the relativization of uy to Y if and only if the following two conditions are fulfilled:

(@) the mapping Jy : (Y,v) = (X,uy) iscontinuous ;

(b) If wis a closure for Y such that Jy : (Y,w) — (X,uy) is continuous, then w is
finer than v.

Proof.

Necessity.  First suppose that v is the relativization of uy to Y, ie, v(A) =Y
N Uy (A) for each AcY. The condition (a) is fulfilled because Jy(v(A))
=V(A) =Y N Uux(A) c ug(A) = ux(Jy(A) for each AcY. Now, if
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Jy 1 (Y,w) > (X,uy) is continuous, then by definition, for each AcY,
Jy (W(A)) cuy Iy (A), e, WA cuy(A); but wA)cY and hence
W(A) < uy (A) nY = v(A) which shows that w is finer than v.

Sufficiency. Let v be a closure for Y satisfying (a) and (b). The relativization u, of
uy toY fulfills (a) and (b) by necessity. From (b) we obtain that v is finer than u, and
uy is finer than v which implies v = uy.

From the definition of subspace the following is an immediate consequence.

Theorem 4.2. Let (Y,uy,) be a subspace of (X,uy) and (Z,v) be a monotone space
such that Z — Y. Then (Z,v) is a subspace of (Y,uy) if and only if it is a subspace of

(X,uy).
Proof. The proof follows from the following equalities:
Znuy =ZnNn (Y Nnuy)=ZNuy.
Theorem 4.3. Let (Y, uy ) be a subspace of a monotone space (X,uy). Then

(@) ifAisclosedin X, AnY isclosedinY
(b) ifAisopeninX, AnY isopeninY
(c) ifYisclosedin Xand AisclosedinY, Ais closed in X.

Proof. The proof is obvious.

Remark 4.1. If Y is closed-open in X and A is open in Y then A may not be either
closed or open in X. Also, if Y is closed-open in X and A is closed in Y then A may not
be open in X. We show it in the following example.

Example 4.1. Let X = {a,b,c}. We define u:P(X) - P(X) by u(¢) = ¢,
u(x) =X, u(fa}p) =u({a,b}) ={ab}, u{c}) ={c} u(b}) ={b} and u({b,c})
=u({c,a}) = X. Clearly, (X,u) isamonotone space. Now, let Y = {a,b}. Since {c}
is closed in X, so Y is closed-open in X. Also, v, the relativization of u is:
v(g) = ¢, v(Y) =v({a}) =Y and v({b}) = {b}. Clearly, A={a} isopeninY, but Ais
neither open nor closed in X. Again, if we take A ={b} then A is closed in Y; but,
clearly, A is not open in X.

Remark 4.2. If Y is open in X and A is closed in Y then A may not be closed in X.
We show it in the following example.
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Example 4.2. Let X ={a,b,c}. We define u:P(X) - P(X) by u(g) =4,
u(x) = X, u(fa}) ={a,b}, u({b}) ={b.c} u({c}) ={c} and u({ab}) = u(b.c})
=u({c,a}) = X. Clearly, (X,u) is a monotone space. Now, let Y ={a,b}. Clearly, Y
is open in X. Also, v, the relativization of u is : v(¢) =¢, v(Y)=v({a}) =Y and
v({b}) = {b}. Clearly, A ={b} isclosed inY but A is not closed in X.

However, we have the following result as a corollary of Theorem 4.3(c).

Corollary 4.1.  Let (Y,uy) be a subspace of a monotone space (X,uy). If Y is closed
in Xand AisopeninY,then (X —Y) U A isopenin X,

Remark 4.3. Let (Y,uy ) be a subspace of (X,uy). Then a relatively closed (open)

set need not be the intersection of Y and a closed (open) set in X. We show it in the
following example.

Example 4.3. Let X ={a,b,c}. We define u:P(X)—> P(X) by u(g) =4,
u(x) =X, u({a}) ={a}, u({b}) ={ab}, u{ch) ={b.c}, u({ab}) =u{{b.c})
=u({c,a}) = X. Let A={b} and Y ={b,c}. Since uy (A) =u(A)nY ={b}, Ais
closed in Y. Now, ¢, X and {a} are the closed sets in X; but none of their intersection
with Y yields A.

In the following theorem, we characterize a subspace of a monotone space.

Theorem 4.4. Let (Y,v) and (X,u) be monotone spaces such that Y < X. Each of
the following conditions is necessary and sufficient for (Y,v) to be a subspace of
(X,u):

(@) foreach AcY, Int,(A) =Y niInt,(Au (X -Y));

(b) if xeY, thenaset V <Y isa neighbourhood of x in (Y,v) if and only if there
exists a neighbourhood U of xin (x,u) suchthat U nY =V.

Proof. The steps of the proof will be: (a) is necessary, (a) implies (b) and finally
(b) is sufficient.

Suppose that (Y,v) is a subspace of (X,u) and AcY. By definition of
the interior operation we have Int,(AU(X -Y))=X-u(X-(Au(X-Y))
=X —-u(Y —A) and consequently, Y niInt, (AU (X -Y))=Y n(X —u(Y — A)
=YNn(Xn(X=uY=A) =Y n(X=-uY-A) =Y-uY-A =Y-(n
ulY — A) =Y —v(Y — A) = Int,(A). So, (a) is necessary.
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Now, suppose (a). If V is a neighbourhood of an x € Y in (Y,v), then by (a) the set
U =V u (X -Y) is a neighbourhood of x in (X,u). Also, U nY =V. Conversely,
if U is a neighbourhood of x in (X,u) then also, the set U u(X -Y) is a
neighbourhood of x in (X,u) and by (@) the set (U u (X =Y))nY =UANY is a
neighbourhood of x in (Y, v). Hence (a) implies (b).

Finally, suppose (b). Let x e Y and Ac Y. If x e v(A) then each neighbourhood
of x in (Y,Vv) intersects A, by Theorem 2.6. Let U be a neighbourhood of x in (X,u).
Then by (b), U nY =V is a neighbourhood of x in (Y, V). So, V intersects A and hence
U intersects A. Consequently, by Theorem 2.6, x € u(A). Therefore, v(A) c u(A) nY.
Conversely, if x € u(A) then by Theorem 2.6, each neighbourhood of x in (X,u)
intersects A. Let V be any neighbourhood of x in (Y,v). Then by (b), there exists a
neighbourhood U of x in (X,u) such that U nY =V. So, U intersects A and hence V
intersects A as Ac Y. Consequently, x € v(A). Therefore, u(A) nY < v(A). So,
V(A) = u(A) nY. Hence (b) is sufficient. This proves the theorem.

We conclude this section with the following theorem which speaks of the continuity
on a subspace.

Theorem4.5. Let (Y,uy) be a subspace of a monotone space (X,uy) and
let (Z,v) be a monotone space. If f:(X,uy)— (Z,v) is continuous then
fy 1 (Y,uy) = (Z,v) isalso continuous, where f, is the restriction of f toY.

5. Connectedness

Definition 5.1. [5]. Let (X,u) be a monotone space. Two subsets A and B of X are

said to be semi-separated if there exist neighbourhoods U of A and V of B such that
UnNnB=¢g=VnnA

Theorem 5.1. [5].  Let (X,u) be a monotone space. Then A;, A, are two semi-
separated subsets of X if and only if (A, N UuAy) U (A, NUA) = ¢.

Theorem 5.2. [5]. Let (X,u) and (Y,v) be monotone spacesand let f : X — Y bea
continuous mapping. If A and B are semi-separated in (Y,v), then f~1(A) and
f ~1(B) possess the corresponding property in (X, u).

Definition 5.2. In a monotone space (X,u), the boundary of a subset A of X,
denoted by b(A), is a set defined by b(A)=u(A)-IntA or equivalently,
b(A) = u(A) nu(X — A).
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Definition 5.3. A subset A of a monotone space (X,u) is said to be connected in

X if A is not the union of two non-void semi-separated subsets of X, that is
A=A UA,UA N A) U (A NUAy) = ¢ impliesthat A, = ¢ or A, = ¢.

If Ais not connected in X we say A is disconnected in X. A space (X,u) is said to
be connected if the underlying set X is connected in (X,u). Every accrete space is

connected and a non-void discrete space is connected if and only if it’s underlying set is a
singleton. If A is the union of two non-void semi-separated subsets of X then we say that
A has a semi-separation.

Theorem 5.3. A monotone space (X,u) is connected if and only if X is not the union

of two disjoint, non-void, open subsets, that is, X contains no proper non-void subsets
simultaneously open and closed.

Proof. The proof is easy and hence omitted.

Theorem 5.4. A monotone space (X,u) is connected if and only if X is not the union
of two disjoint, non-void, closed subsets of X.

Proof. The proof is obvious.

Theorem5.5. Let (Y,uy)be a subspace of a monotone space (X,u) and let
A cY < X. Then Ais connected in (X,u) if and only if A is connected in (Y, uy).

Proof. Let A be disconnected in Y. Then A=A UA, A#9,
A # g Uy (A) N Ay =g =A N u(A) Now, u(A) N A =¢ implies
UA)DNY N A, =9, ie, u(A)N A, =¢. Similarly, u(A,)n A =¢. So, A has a
semi-separation in X and hence, A is disconnected in X.

Conversely, let A be disconnected in X. Then A=A UA, A #=¢, A =9,
U(A) N A, =g =A Au(A). Now uy(A) A =u(A)NY A, =u(A)n A,
=¢. Similarly, uy (A)) " A =¢. So, A is disconnected in Y. This completes the
proof of the theorem.

Corollary 5.1. A subset A of a monotone space (X,u) is connected if and only if the
subspace (A,u,) is connected.

Theorem 5.6. A monotone space (X,u) is connected if and only if it contains no set
Asuch that ¢ = A= X and u(A) nu(X — A) = ¢, i.e., every subset A of X such that
¢ = A = X satisfies the condition u(A) nu(X — A) = ¢; in other words, if and only if
no set A, which satisfies condition ¢ = A = X has an empty boundary.
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Proof. The proof is omitted.

Theorem 5.7. A subset C of a monotone space (X,u) is connected if and only if
every subset A of C such that ¢ = A=C satisfies the condition
Cnu(A) nu(C - A) =g

Proof. The proof is obvious.

Theorem 5.8. If Cisconnectedand C " A= ¢ = C — A then C nb(A) = ¢.
Proof. The proof is easy and hence omitted.

Theorem 5.9.  Let (X, u) and (Y,v) be two monotone spaces and
f :(X,u) > (Y,v) be continuous. If A is a connected subset of X then f(A) is
connected in Y.

Proof. If f(A) is not connected then f(A) =Y, uY,, where Y; and Y, are semi-
separated in (Y,v)and Y, # ¢, Y, # ¢. Since f is continuous, f~1(Y;) and f1(Y,)
are semi-separated in (X,u) by Theorem 5.2. Clearly, A= f~1(Y;) u f1(Y,) and
f7YY) = ¢, £7XY,) = 4. Thus f-1(Y,) and f-1(Y,) form a semi-separation of A.
Hence A is not connected in (X, u), which is a contradiction. Hence f (A) is connected
in (Y,v). This proves the theorem.

Theorem 5.10. A subset C of a monotone space (X,u) is connected if and only if the
following condition is fulfilled:

If C is contained in the union of two semi-separated sets A and B, then C < A or
C c B.

Proof. Before going to prove the theorem, we first state the following lemma without
proof.

Lemma. Let C c AuB and A, B are semi-separated. Then the sets C n A and
C n B are also semi-separated.

Proof of the theorem.  We suppose that C <« A or C < B. We prove that C is
connected. If C is not connected, then there exist semi-separated sets A and B such that
C=AuUB where Az¢, B=xg, AnuB) = ¢ = u(A) n B. Clearly, Cc A
(or C <= B) is false, because then B = ¢ (or A = ¢). This contradicts our hypothesis
that C < A or C < B. Thus C is connected.
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Conversely, we suppose that C is connected. If C — A U B and if the sets A and B
are semi-separated then by the lemma, the set C A and C B are also
semi-separated and consequently, C " A=¢ or C "B = ¢. Thatis, either C — B or

C < A This completes the proof of the theorem.

Theorem 5.11. Let {C,} be a family of connected sets in (X,u). The union UC, is
t

connected, provided that there exists such a set C,, which is not semi-separated from any
set C,.

Proof. Let UC, =M U N where M and N are semi-separated. We are going to show
t

that either M = ¢ or N = ¢. According to Theorem 5.10, we assume C;, < N. Now
we assert that for any t, C, < N, because if for any t, C, < M then
uC)NnCycuM)NN=¢ and C;, nu(Cy) =M Nu(N) =¢ since M and N are
semi-separated; and so, C; and C, are semi-separated, a contradiction. Hence M = ¢.
This completes the proof of the theorem.

Theorem 5.12. Let {C,} be a directed family of connected sets (this means that for
each pair t;, t, thereis t; such that C; = C, and C, = C;). Then the union

S = uUC, isconnected.
t

Proof. Suppose S =M U N where M and N are semi-separated sets. By Theorem
5.10, we have for each t, either C;, « M or C; < N. Let C; # ¢. Obviously, we may

assume that CtO c M; hence Cto ¢ N. We shall show that S < M, which will

complete the proof.
Let t be an arbitrary index and t; be such that C; < C; and C; < C;. The first

inclusion yields C; & N. Hence C; < M and therefore C; = M. It follows that
S < M. This completes the proof of the theorem.

Corollary 5.2.  The union of connected sets, which have a non-empty intersection, is a
connected set.

Corollary 5.3. If C is connected and C < E < u(C), E is connected. In particular,
u(C) is connected.

Corollary 5.4. If every two points of a set E in a monotone space (X,u) are
contained in some connected subset of E, then E is a connected set.
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6. Component

Definition 6.1. Let (X,u) be a monotone space and Y — X. Thenaset CcVY is
said to be a component of Y if C is connected in X and if the inclusion C c C, c Y
implies C = C, for any connected set C, in X.

Clearly, C is a component of a monotone space (X,u) if C is a component of the
underlying set X. Thus components are maximal connected subsets.

Theorem 6.1.  Let (X,u) be a monotone space and Y — X. Thenaset Cc VY isa
component of Y if and only if C is a component of the subspace (Y, uy ).

Proof. The proof is obvious.

Definition 6.2. The component of a point x in (X,u) is the component of X
containing x.

Theorem 6.2.  Let (X, u) be a monotone space. Then

(i) Every component of (X,u) is closed.

(if) Each point in X is contained in exactly one component of X.

(iii) The components of X form a partition of X, i.e., any two components are either
disjoint or identical and union of all the components is X.

(iv) Each connected subset of X is contained in exactly one component of X.

Proof. The proof is easy and hence omitted.

Theorem 6.3.  Every closed-open set F is the union of a family of components of the
space (X,u). Inparticular, if Fis connected and non-empty, then it is a component.

Proof. Let F # ¢. Let x e F. Then {X} is a connected set contained in F. So, by
Theorem 6.2. (iv), there is one and only one component C(X, X) containing X. Clearly,
C(X,x)nF # ¢. We assert that C(X,x) — F = ¢, because C(X,Xx)—F # ¢ gives
C(X,x) =(C(X,x)nF)u (C(X,x)— F) where C(X,x) nF and C(X,x)—F are
closed in X (for, C(X,x) is closed by Theorem 6.2 (i) and F is closed-open), forms a
semi-separation of C(X,X) contradicting the fact that C(X, X) is connected. Hence,
X € C(X,x) = C(X,x) n F c F which implies

Uxic UCKX,x)cF, ie, F= U C(X,x).
xeF xeF

xeF
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In particular, if F is connected and non-empty then F is a component, because there
is no connected set C of which F is a proper subset, otherwise, C — F and F form a
semi-separation of C. This completes the proof of the theorem.

Definition 6.3. Let (X,u) and (Y,v) be monotone spaces. A continuous mapping

f : X - Y is called monotone if the inverse image f~'(C) of each connected set
C c Y isconnected.

Theorem 6.4. Let f : X — Y be a monotone onto mapping. Then the set C is a
component of D — Y ifand only if f~!(C) is acomponentof f~(D).

Proof. Since fis onto, f 1(C) c E — f~!(D) implies C = f(E) = D. Now, if Cis
supposed to be a component of D and E is supposed to be connected, it follows that
C = f(E), hence f'(C)=f'f(E)oE, and f(C)=E, ie, f'(C) is a

component of f~1(D).

Conversely, if f~!(C) is supposed to be a component of f~'(D) and if H is a
connected set such that C « H < D, it follows that f 1(C) = f~'(H) < f (D), and

since the set f~'(H) is connected, it follows that f~'(C) = f~-!(H), which implies

C =H as fis onto. Hence C is a component of D. This completes the proof of the
theorem.

7. Quasi-directed space

Definition 7.1. Let (X,u) be a monotone space and let A, B, N € P(X). IfA, Bare

semi-separated and A, N are semi-separated imply A, B w N are semi-separated then
we call (X,u) a quasi-directed monotone space (briefly, g-directed space).

Clearly, the notion of a g-directed space is weaker than that of a monotone space
equipped with closure preserving property, i.e., a closure space. In other words, a closure
space is a Q-directed space. But the converse is not true, in general, as shown by the
following example.

Example 7.1. Let X ={a,b,c,d,e, f}. We define u:P(X)—> P(X) by
u@)=¢, u(X)=X, u({a})={ac.d}, u(b}) =1{bce}, u(le}) ={e},
u({b,e}) = {b,c,d,e} and u(P) = X where P € P(X) and P # ¢, {a}, {b}, {e}, {b,e}.
Let A= {a},B = {b},N = {e}. Clearly, each of the pair (A, B),(A,N) and (A,B U N)
are semi-separated. But u(B U N) = u(B) U u(N). Also, there is no such pair (C, D)
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which are semi-separated except the above mentioned pairs, viz., (A, B),(A,N) and
(A,B U N), where C, D € P(X).

We state a lemma without proof which we need in the sequel.

Lemma7.1. Let (X,u) be a monotone space. Let Ac M and M and N are semi-
separated. Then A and N are semi-separated.

Theorem 7.1. Let P and C be connected sets in a g-directed space (X,u) and
PNC =g If MandN are two semi-separated sets such that P —C =M U N, then
the sets C U M and C U N are connected.

Proof. Let C UM = Au B where A and B are semi-separated sets. So, C < AU B
and hence by Theorem 5.10, we assume that C N A = ¢ which gives A — M because

Ac CuUM. Now, since the sets M and N are semi-separated, the set A and N are
semi-separated by Lemma 7.1; and therefore, A and N U B are semi-separated as
A and B are semi-separated and (X,u) is g-directed. Now, PuC=(P-C)uC

=MUNuUC=AU(BUN). But PuUC is a connected set because P and C are
connected sets and P N C # ¢. This proves the theorem.

Corollary 7.1.  If C is a connected subset of a connected g-directed space (X,u), and
if M and N are two semi-separated sets such that X —C =M U N, then the sets
CuUM and CuU N are connected.

Corollary 7.2.  Let A and B be two closed sets in a g-directed space. If the sets AU B
and A N B are connected, the sets A and B are also connected.

Theorem 7.2.  If E is not the union of n connected sets in a monotone space (X,u),
there exists n + 1 pairwise semi-separated sets A,,---, A,,; such that

E=AU---UA,,A#¢ for 1<i<n+]1.
Proof. The proof is obvious.

Theorem 7.3. (Generalized Corollary 7.1) If C,,---,C,, are connected subsets of a
connected g-directed space (X,u), and M and N are two semi-separated sets such that

X-Cu-—-ulC)=MUN,

then the set C, v ---u C, U M consists of n connected sets (which may be distinct or
not).
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Proof. The proof is obvious.
Corollary 7.1. gives the following results.

Theorem 7.4.  Every connected g-directed space (X,u), which contains more than

one point, is the union of two connected sets, which are distinct from the space and
contain more than one point.

Proof. If for each x the set X — {X} is connected, there is a decomposition
X =X ={X}) U (X —={Xy}), where X; # X,. On the other hand, if there exists an X
such that X — {x} is not connected, it follows that X — {x} = M U N, where M and N

are semi-separated and non-empty; therefore, by Corollary 7.1, the required
decomposition of X is: X = (M U {x}) U (N U {x}). This proves the theorem.

Theorem 7.5.  Let (X,u) be a connected g-directed space. If E is a connected set
and C is a component of X — E, then X — C is connected.

Proof. Assume that X —C =M U N, where M and N are semi-separated sets.
Since Ec X -C =M UN, according to Theorem 5.10, it can be assumed that
ENM =g, which implies EN(CUM)=¢ sothat Cc CUM < X — E. Since

by Corollary 7.1, C U M is connected, it follows by the definition of component, that
CuUM =C and hence M = ¢. This proves the theorem.

Theorem 7.5 has the following immediate consequences.

Theorem 7.6. If the space (X,u) is connected and g-directed, then every finite system

S (containing at least two elements) of disjoint connected subsets contains at least two
elements, A, and B, , which have the following property:

(P) There exists a connected set disjoint from A, (respectively from B,;) which
contains all the elements of S other than A, (respectively other than B, ).

Proof. Let S =(C,,C;,---,C,)and proceed by induction. Since the theorem is

obvious for n =1, let us assume that it holds for n —1 (> 1).

We are going to show that there exists a number k > 0 such that the set C, has the
property P.
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Suppose that the set C; does not possess this property. Hence there exist at least
two components A and B of the set X — C; which contain the sets of the system S;

let A be that one which does not contain C,.

Let m;, ---, m; be the sequence of indices of the sets C; contained in A. It follows
that

I1<j<n—1, (7.1)

0=mp,--,0=my, (7.2)

if r=my,-,r=mjand r<n,then C, < X - A. (7.3)

Since the set X — A is connected (by Theorem 7.5) and the system

§"=(X-A,Cp. . Cp)

contains at most n elements (by (7.1)), there exists by hypothesis an index s < j such
that the set C, has the property P with respect to the system S*. Therefore there exists

a connected set K such that

X-AuC, u-ulC, UC, u--~quj cKeX-C,.

s+1

It follows by (7.3) that C; < K for every q # m,. That means that C, has the
property P (with respect to the system S).

Finally, mg > 0 by (7.2); hence mg is the required index k. This completes the

proof of the theorem.

Theorem 7.7.  In a connected g-directed space (X,u), let S be an infinite family of
disjoint connected sets. If S, and S, are two arbitrary elements of S, there exists in
X —§, orin X — S, aconnected set, which contains infinitely many elements of S.

Proof. Let C; (for j=0,1) be the component of X —S; which contains S,_j.
Condition S; = C;_; < X = §,_; implies S;_; < X —=C,_j = X = §j, which implies

in turn that

since the set X — C,_; is connected (by Theorem 7.5).
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Suppose that C,, contains only a finite number of elements of S. Hence there exist
infinitely many elements of S contained in X — C, and therefore, in C; according to
(7.4). So X —S; contains a connected set, namely C,;, which contains infinitely many
elements of the family S. This proves the theorem.

8. Quasi-nodal sets, separating points, end points and the ending property

Definition 8.1. A non-empty set N in a connected monotone space (X,u) is called

quasi-nodal if the boundary of N in X is degenerate. (A set is degenerate if it is either
empty or singleton).

Definition 8.2. Let (X,u) be a monotone space. A point p € X is said to be a
separating point of a connected subset C of X provided that C — { p} is not connected.
A point p € X is said to be an endpoint of (X,u) if p is not a separating point of

any connected subset C of X.

A subset E of X is said to have e.p. (the ending property) in X provided that there is
no connected subset C of X such that E separates C (i.e., such that C — E is not
connected).

Remark 8.1. By definition, it follows that an endpoint of X has e.p.

Theorem 8.1. The interior of any quasi-nodal set of a quasi-directed space (X,u) has
e.p.inX.

Proof. Let N be a quasi-nodal set of X and let C be a connected set in X. Let
b(N) = {p}. We now consider the following two cases:

Casel. Let peC. If possible, le¢ C—-IntN =AU B, where A and B are
non-empty, semi-separated sets. Since p ¢ IntN, so let p € B. Therefore, p ¢ A
Clearly, C=AuUBU(C nIntN) =AuUuBUQ, where Q=C nIntN. Now,
UA) " Q= u(A) n (CnIntN)=C n(u(A) n IntN). We assert that u(A) N

IntN = ¢. For, if & € U(A) "nInt N then o € U(A) and o € IntN. Now « €IntN

implies N is a neighbourhood of «. So, by Theorem 2.6, N " A= ¢ as «a € U(A).
Hence (IntNuU{p})nA=¢g, ie, INtNNA=¢g since pg A  This is a
contradiction.  Also, ANu@Q) c Anu(ntN)c Anu(N)=An(IntN U {p})
=(AnIntN) U (AN {p}) =¢. Hence A and B are semi-separated. Consequently,
A and B U Q are semi-separated as (X,u) is g-directed and A, B are semi-separated.
So, C = AU (B U Q) has a semi-separation contradicting the connectedness of C. Thus
C —Int N is connected.
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CaseIl. Let p ¢ C. The proof of this case is same as of Case I and hence omitted.
This proves the theorem.

Theorem 8.2. If E has e.p. in X, then the intersection of any connected set with
X — E is connected, where (X,u) is a monotone space.

Proof. Let C be any connected setin X. So, CN(X —E)=XN(C-E)=C-E is
connected since E has e.p. in X.

Theorem 8.3.  Let (X,u) be a quasi-directed space. Then the components of any set
E that has e.p. in X also have e.p. in X.

Proof. Let P be any connected set in X and C be any component of E. If P " C = ¢,
then clearly, P—-C =P is connected. Now, let PN C = ¢. If possible, let
P-C=MUN where uM)n N =¢=M nu(N). Now, P-EcP-C
=M U N. So, by Theorem 5.10, it can be assumed that (P -E)"M =¢ as P-E
is connected since E has ep. in X. Hence (P-E)n(CuUM)=¢, because

P—-E c P-C. Consequently, CuUM c E. For, if C UM ¢ E then there exists a
peCuUM suchthat peg E. Clearly, pgC as Cc E. So, peM and p ¢ E.

Therefore, pe P—E as M <« P. Thus pe (P -E)n(CuM) which contradicts
that (P-E)n(CuUM)=¢g. Now, by Theorem 7.1, C UM 1is a connected set
contained in E. But C is a component of E, so, Cc CuUM implies M =¢. So,
P — C is connected which implies that C has e.p. in X. This proves the theorem.

9. Endings and boundaries of endings

Definition 9.1. A non-empty connected set with e.p. in a monotone space (X,u) is
called an ending of X.

Theorem 6.1, Theorem 6.2 (ii) and Theorem 8.3 enable us to disassemble a set with
e.p. into endings in a g-directed space. Reassembly raises some difficulties. However,
we have the following.

Theorem 9.1.  The union of a finite collection of sets with e.p. in a monotone space
(X,u) hase.p.inX.

Proof. Let E and F have e.p. in X and let C be any connected set in X. Now, since E
has e.p. in X, C — E is connected. Again, since F has e.p. in X, so, (C—-—E)-F is

connected. But C—-(EuUF)=(C-E)-F. So, C—-(EuF) is connected. Hence
E U F hase.p.in X. This proves the theorem.
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Obviously, the intersection of two sets with e.p. in X need not have e.p. in X.
However, the intersection of a nested collection is more tractable.

Theorem 9.2. If E is a nested collection of sets with e.p. in a monotone space
(X,u), then N E has e.p. (possibly trivially) in X.

Proof. Let N = nE and suppose there is a connected set C such that C — N is the

union of semi-separated sets A and B. Since A can not be contained in all the elements
of E, there is a member E, of E such that A— E, # ¢. Similarly, there is a set Egz of

E suchthat B-Eg #¢. Let E=E, nEg. Since E isnested, E€E and A-E
and B - E are both non-empty. But then C-E =(A-E)u(B-E), a semi-

separation. This is a contradiction. Hence C — N is connected. This proves the
theorem.

Theorem 9.3.  If p is any point of a connected monotone space (X,u), then there is

an ending of X that is minimal with respect to being an ending of X and
containing p.

Proof. X is (trivially) an ending of X that contains p. Form a maximal nest E of
endings of X that contain p, and let E = nE.

Definition 9.2. A boundary point p of a set E is called an external boundary point of
Eif peE.

Theorem 9.4.  Let E be an ending of a monotone space (X,u) and let B be the set of
external boundary points of E. Then B cannot contain two mutually semi-separated sets.

Proof. Let A and C be two mutually semi-separated sets such that AU C < B. Now,
EcEUAUCcEUB=U(E). So, by Corollary 5.3, E U AuC is connected.

But (EUWAUC)-E=AuUC, a semi-separation as EN(AuUC)=¢. This is a
contradiction since E has e.p. in X. This proves the theorem.

Corollary 9.1.  The external boundary of any ending of a monotone space (X,u)is
connected.

Corollary 9.2.  For any two points of external boundary B of any ending of a monotone
space X, one is a cluster point of the other. Hence, if X is T,, then B is degenerate.

Proof of Corollary 9.2.  Let «, f e B. If possible, let u({a}) N {f} =¢ and
u({fp}) N {a} = ¢. Then {a} and {F} are two mutually semi-separated sets contained

in B, a contradiction of Theorem 9.4. Hence for any two points of B of any ending of X,
at least one is a cluster point of the other. Hence, if X is T, then B is degenerate.
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