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Abstract. In this paper, we prove the following theorem: Let F be a family of holomorphic
functions in the unit disc D and let a be a nonzero complex number. If, for any f e F,

f(z) =a= f'(z) =a, f'(z) =a= f"(z) = a, then F is uniformly normal in D, that is,

there exists a positive constant M such that (1 — | z |2) f#(z) <M foreach f e F and z € D,
where M is independently of f. This result improves related results due to [2], [8], and [3].
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1. Introduction

Let f and g be two meromorphic functions, and let a be a complex number. If
g(z) = a whenever f(z) =a, wedenoteitby f =a=g=a,andf =a< g=a
means f(z) = a ifandifonlyif g(z) = a.

Let D denote the unit disk in the complex plane C. A function f meromorphic in D
is called a normal function, in the sense of [6], if there exist a constant M (f) such that

(1-|z[*)f#(z) < M(f) foreach z e D, where

1@
PO LT

denotes the spherical derivative.
Let F be a family of meromorphic functions defined in D. F is said to be normal in
D (see [9]), in the sense of Montel, if for any sequence f, e F there exists a

subsequence fnj , such that fnj converges spherically, locally and uniformly in D, to a

meromorphic function or o« .
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Suppose that F is a family of functions meromorphic in D such that each function
of Fis a normal function, then, for each function f € F, there exists a constant M (f)

such that
(1—|z|2)f#(z)s|v|(f)

for each z e D. In general, M(f) is a constant dependent on f, and we can not
conclude that {M(f), f € F} is bounded. If {M(f), f € F} is bounded, we give the
definition as follows

Definition. Let F be a family of meromorphic functions in the unit disc D. If there
exists a positive constant M such that

sup{(1—|z|2)f#(z) :zeD, feF }< M,
we call the family F a uniformly normal family in D.

Remark 1. The idea of this definition is suggested by Pang (see [7]).

Remark 2. A well-known result due to Marty (see [4], [9] and [11]) says that a
family F of functions meromorphic in D is a normal family if and only if for each

compact subset K of D there exists a constant M such that f#(z) < M, for each
f € Fand for each z € K. Clearly, by Marty's criterion if F is a uniformly normal

family in D, then F must be normal in D . However, it is obvious that the converse is
not always true.

It is natural to ask: When is a normal family F in D also uniformly normal in D?
(The question is first introduced by Bergweiler and Pang (see [7]).)

Schwick [10] discovered a connection between normality criteria and sharing values.
He proved

Theorem A. Let F be a family of meromorphic functions in the unit disc D and
let a,a, and a; be distinct complex numbers. If, for any f eF,

f(z)=a < f'(z) =4 (i =12,3), then Fisnormal in D.

Pang [7] proved that the family F in Theorem A is also uniformly normal, as
follows

Theorem B. Let F be a family of meromorphic functions in the unit disc D and
let a,a, and a; be distinct complex numbers. If, for any f eF,
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f(z)=a, © f'(z) =4 (i =1,2,3), then F is uniformly normal in D, that is, there
exists a positive constant M such that

(1-12)2)1*@) < ™
foreach f € F and z € D, where M is independent of f.

Remark 3. In fact, from the proof in [7], we see that Theorem B still remains true if
f(z)=a = f'(z2) =4 (i=1273) forany f € F.

Chen and Hua [2], Pang and Zalcman [8] proved the following normality criterion.

Theorem C. Let F be a family of holomorphic functions in the unit disc D and let a
be a nonzero complex number. |If, for any feF, f(z2) =a < ' = a,

f'=a = f"(z) =a, thenF is normal in D.

In [3], Fang improved Theorem C as follows

Theorem D. Let F be a family of holomorphic functions in the unit disc D and let a be
a nonzero complex number. If, for any feF, f(z)=a= f'(2) =a,

f'(z) =a= f"(z) = a, thenF isnormal in D.

In this paper, by using a method different from that used in [3], we obtain the
following stronger result.

Theorem 1. Let F be a family of holomorphic functions in the unit disc D and let a
be a nonzero complex number. If, for any feF, f(z)=a= f'(z) =a,

f'(z) =a= f"(z) = a, then Fis uniformly normal in D, that is, there exists a positive
constant M such that

(1—|z|2)f#(z)s M
foreach f € Fand z € D, where M is independent of f.

Remark 4. The following example (see [2] and [3]) shows that a = 0 cannot be
omitted in Theorem 1.

Let F={f(z)=e":n=123--} D={z:|z|<1}. Then, forevery f, eF,
it is easy to see that f2)=0 = f(2)=0 = f,/(z) = 0. However,
f#0)=n/2 -« as n — o, thus F is not uniformly normal in D.

We shall use the standard notations in Nevanlinna theory (see [4], [11]).
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2. Lemmas

For convenience, we define

.I:I f/l f!
LD(r, f):=¢m|r,— |+cCcom|r,— |+ C.m|T,
0= em{r o conf 1 L e[ v L
+ c,m rL + Ccm rL (aeC)
U f-a f-a)

where ¢, C,, C5, C4, C5 are constants, which may have different values at different
occurrences.

Lemmal. Let f be anon-constant holomorphic functions on the unit disc D, and a be
a nonzero complex number. Let

')+ '@  2f"(@)

w(z2) = l//(f (Z)) = f(z)-a f'(z)—a

If f=a=f'=a, f'=a= f"=aon D, and f(0) #a, f'(0)=a, f"(0) =0,
f'(0) = f""(0) and w(0) # 0, then

| £(0) - a
T(r,f)sLD(r,f)+0(1)+3|og—|f”(0)_f,(0)|
|(£(0) - ) (f/(0) - )|
| log———.
M [170)] 0]

Proof. Let f(zy) =a. By the assumptions we may assume that, near z,
f(z)=a+al(z —zo)+%(z — )% +b(z- 20)3+O((z—zo)4),
where b = f®)(z,)/6 isaconstant. Then
fl)=a+a(z-25)+30(z-12)%+0((z-12)3),

f'(z)=a+6b(z- zo)+O((z - 20)2),
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and thus

@)+ 1"@) __ 2 +6—b+O(Z—Z)
f(z) —a z-12, a 07

21"(2) = 2 +6—b+0(z—zo).
f(z)-a z-2z, a

Hence w(z,) =0, and

ikl

f-a (0)|

<N(ry)+LD(r, f)+ Iog|w(0)| (2.1)
1

:No(r,mj+LD(r,f) Iog| (O)|

where Ng(r,1/(f" —a)) is the counting function for the zeros of f'—a which are not
zerosof f —a. Since f =a = f’' =a, form (2.1) we get

1 1
2N |r, <SN|r,—— |+ LD(r, f)+ log—— 2.2
On the other hand, by the assumptions we have
N r,L <N r,,,# <T r,f— +Iog—|ﬂ|—+0(l)
f-a . f [ £"0) - F0)]
fl
f” |f'(0)|
=N|r—|+log———=—+LD(r,f)+0O() (2.3)
( f] | 7(0) - (0]

v 'O
= N[r, f'j+log|f"(0)_ O] +LD(r, f)+0(@).
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Next we need the estimate of N (r, -1/). Since

m(r, . ia)s m(r,%}+ LD (r, f)

sT(r,f')—N[r,%)+LD( +log ———

<T(r, f)- N(r,iJ+LD(r,f)+log| f'tO)|

sT(r, ! ]—N[ 1] rf)+O(1)+Iog|f(0,)_al
1

If(0)|

[ 'O

:m(r, ! j+N(r, J—N(r 1j+LD(r fY+0(Q)
f-a f-a f’

we obtain

[f©@-a]

2.4
70| (2.4)

N(riJ<N( 1 ]+LD(r,f)+O(l)+Iog
f’ f-a

Thus, from (2.2), (2.3) and (2.4) , we get

| £(0) - a
| £7(0) - (0]

N(r,fiajs LD (r, f) + O (1) + log + log (2.5)

lw ()|’

| £(0)-a| +log L
FO- 10 O]

N(r, f,l aJS LD (r, f)+O() + 2log

(2.6)

Using Milloux's inequality, we have

T(r,f)gN(r, j+N(r,ﬁj+LD(r,f)+O(l)

I(f(0)—a)(f (0)—a)|
770

Substituting (2.5) and (2.6) in the above inequality yields the conclusion.
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Lemma 2. (Bureau [1]) Let b;,b,, and b; be positive numbers and U(r) a
nonnegative, increasing and continuous function on an interval [r;,R), R < 0. If

U(r) < b, +b, log* + by log* U (p)

p—r

forany ry, <r < p <R, then

1
U(r) < B, +B, logt ——
(r)<B 29R_r

for ry <r <R, where B, and B, dependon b;(1=12,3)only.

Lemma 3. (see Hiong [4]) If f(z) is meromorphic in a disk |z| < R such that
f(0) # 0,0, then, foro<r < p <R,

f () 1
m|r,—|<C, y1+log*logt ——
f |f(0)|

+log* p + log* T(p, f) }

+Iog+1+log+L
r p—r

where C, is a constant depending only on k.

The following is the wellknown Zalcman’s lemma [12].

Lemma4. Let F be a family of functions meromorphic in a domain D. If F is not
normal at z, € D, then there exist a sequence of points z, € D, z, —> z,, asequence

of positive numbers p, — 0, and a sequence of functions f, € F such that

gn(é/) = fn(zn + pné/) - g(é/)

locally uniformly with respect to the spherical metric, where g is a non-constant
meromorphic function on C.

3. Proof of Theorem 1

Proof. Suppose that F is not uniformly normal in D. Then, we can find
f, € F, z, € D, such that
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0,(2) = Tz, + (1 -] 2D 2)

satisfies
610 = (1-12,]2) £ (2) > 0

as n — oo. Itfollows that {g,(z)} isnot normal at z = 0. We distinguish two cases:

(1) g, =g, forevery ne N then g,(z) = C,e, which isnormal at z = 0.

(2)  Consider the case that g, and g; are not identical. By Lemma 4, there exist a
subsequence g, (without loss generality, we may assume g,), a Sequence
7, € D,n, — 0, and a positive sequence p, — 0such that

Gn(g) = gn(77n + pné’) = fn(zn + (1_|Zn|2) h + (1_|Zn|2)pné/)

converges uniformly to a non-constant entire function G(¢) on each compact subset of
C. Thus, for any positive integer k,

Q) = (1-]2)7) 210 (20 +@ =22 1 + (L= | 2) 2L ). (3.0)

We claim that G(¢) is not a polynomial of degree less than 3. Indeed, if G({)is a
polynomial, then there exists a point ¢, such that G({,) = a. By Hurwitz’ theorem,
there is a sequence &, — ¢, such that

Gu(4) = 9l + 21l) = o (20 + (1= |2 m + (1= |2 o) = 2
for n sufficiently large. It follows from the hypotheses on F that
2+ (W= |2 m + (1= 2% o o)
=tz (-2 + (1= ]2 s = 2
for n sufficiently large. On the other hand, by (3.1), we have
Gi(c) = (1-1a2) otz + @[z m + -2 P) ) > G,

Gr'l,(é’n) = (1 — | anz)zpn2 fn”(zn + (1 - | an 2) M + (1 - | an 2) pné’n) - G”(@o)-



Normal Functions an d Normal Families 157

Thus  G'(¢p) = G"(&,) = 0.

Choose ¢; with

G(<&y) #0,a; G'(4y) =0;G"(<4y) = 0. (3.2)
Then
.
o2 (1-] )
x fn (Zn+(1_|zn|2)77n+(1_|Zn|2)pn§1)_a

(20 + =2y + -2 pue) - 1 (20 + @ |20 + = 2 280)

G(c1)
G"(¢y)

-
puli-1z/7)
§ (f,(z,+ @ |2)m + @-12P)ouc)-a) (8220 + A= |2 D) e + @ ]2 ) - 2)
7 (20 + @2l + -2/ )

L GGG -a)
G"(&)

On the other hand, we claim that there are only finitely many f, such that w(f,) = 0.
Indeed, suppose that there is a subsequence { fnj} c { f,} such that w( fnj) =0.

Then

2
fn'J(an'*' (1_ )Unj+(1_

z
nj

2
i+ @t ) 87 (2 + 1

z
nj

Z
nj

Z)pnjfj

2
fnJ (an +(1_ )77nj +(1_

Z
nj

Z
nj

2) pn,{j -a

2
21, (an +(1- )1, + (1=

Z,,

Z,,

2)pn,.§)

fn'j(znj +(1-

2
)77n]- +(1_

Z,, Z,,

2)pn,.§] -a



158 Y. Xu

Pn, (1_

and thus

2 rn
j%xa
2] '
Letting j —> o, we get G'({) =0, a contradiction. Then we may assume that
w(f,) =0, forall n. Thus

z
nj

oo 201-
an(é/)_a B

z
nj

Ga@)—apm@—

Z,

_G0) (33)

oz + W= |2 Hm + 1= 2] ) - G(¢)-a’

where y, = w(f,). Sowe have

20+ (@27 + (- 2% )

fn” (Zn + (1_|Zn|2) T + (1_| an 2) pngl)_ fn' (Zn + (1_| an 2)77n + (1_|Zn| 2) pngl)‘
— —o, (3.4)

log

‘(fn(zn +(1_|Zn|2)77n +(l_|zn|2)pné‘1)_a)(fn’(zn +(1_|Zn|2)77n +(1_|Zn|2)pn§1)_a)‘

log
0 (20 + 0|2y + (-2 o)
—> —00, (3.5)
1
and log — — o, (3.6)

vl + =23+ -] 29 2

asn—o Forn=12,---, set
2 2
P2 = (20 + (1= |22 + A= |2 D 0+ 2)

Let n be sufficiently large. Then P, is defined and holomorphic on the disk

0<|z| <%, since

Zn +(1_|Zn|2)77n +(1_|Zn|2)pn§l_>0'
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By (3.2) and (3.3), we have

PO) = G(&) — G #0, a (37)
PI0) = ————— Gi(&) > o, 39)
(1- | Zn| ) Pn
,, 1 ,,
F)n (O) = Gn( 1) - % (3-9)

(1-|2|*)" P2
v(RO) = valza+ @ -lzf)m+-|zP pG) > = (10

Therefore, by (3.7)—(3.10) we may apply Lemma 1 to PB,(z), and using (3.4), (3.5) and

(3.6) we obtain

T(r,P,) < LD(r,P,),

for sufficiently large n. Hence by Lemma 2 and Lemma 3, we get

T(%,Pnjs M,

where M is a constant independent of n. It follows that f,(z) are bounded for

sufficiently large nand | z| < 4. But, from

(1= 2P) 2287 (20 + (1= 2] 2)m + (1= ] 2]%) 2u) = GG —> 6" (&) # O

we know that f,(z) cannot be bounded in |z| < % We arrive at a contradiction.
This completes the proof of Theorem 1.
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