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Abstract.  In this paper, we prove the following theorem:  Let F be a family of holomorphic 
functions in the unit disc D and let a be a nonzero complex number.  If, for any ,Ff ∈  

,)()( azfazf =′⇒= ,)()( azfazf =′′⇒=′  then F is uniformly normal in D, that is, 

there exists a positive constant M such that Mzfz ≤− )(#)1( 2  for each Ff ∈  and ,Dz ∈  

where  M  is independently of  f.   This result improves related results due to [2], [8],  and [3]. 
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1. Introduction 
 
Let  f  and g  be two meromorphic functions, and let  a  be a complex number.  If 

azg =)(  whenever ,)( azf =  we denote it by ,agaf =⇒=  and agaf =⇔=  
means azf =)(  if and if only if .)( azg =  

Let D denote the unit disk in the complex plane C.  A function f meromorphic in D      
is called a normal function, in the sense of [6], if there exist a constant )( fM  such that 

)()()1( #2 fMzfz ≤−  for each ,Dz ∈  where  
 

2
#

|)(|1
|)(|)(

zf
zfzf

+
′

=  

 
denotes the spherical derivative. 

Let F be a family of meromorphic functions defined in D.  F is said to be normal in 
D (see [9]), in the sense of Montel, if for any sequence Ffn ∈  there exists a 
subsequence 

jnf , such that 
jnf converges spherically, locally and uniformly in D, to a 

meromorphic function or ∞ . 
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Suppose that F is a family of functions meromorphic in D  such that each function 
of F is a normal function, then, for each function ,Ff ∈  there exists a constant )( fM  
such that 
 

( ) )()(1 #2 fMzfz ≤−  
 
for each .Dz ∈   In general, )( fM  is a constant dependent on  f,  and we can not 
conclude that },)({ FffM ∈  is bounded.  If },)({ FffM ∈  is bounded, we give the 
definition as follows 
 
Definition. Let F be a family of meromorphic functions in the unit disc D.  If there 
exists a positive constant M such that  
 

( ){ } ,,:)(1sup #2 MFfDzzfz <∈∈−  
 
we call the family F a uniformly normal family in D. 
 
Remark 1. The idea of this definition is suggested by Pang (see [7]). 
 
Remark 2. A well-known result due to Marty (see [4], [9] and [11]) says that a 
family F of functions meromorphic in D  is a normal family if and only if for each 
compact subset K of D  there exists a constant KM  such that KMzf ≤)(#  for each 

Ff ∈ and for each Kz ∈ .  Clearly, by Marty’s criterion if F  is a uniformly normal 
family in D , then F must be normal in D .  However, it is obvious that the converse is 
not always true. 
 
     It is natural to ask: When is a normal family F in D also uniformly normal in D?  
(The question is first introduced by Bergweiler and Pang (see [7]).) 
 
    Schwick [10] discovered a connection between normality criteria and sharing values. 
He proved 
 
Theorem A. Let F be a family of meromorphic functions in the unit disc D and                 
let 21 , aa  and 3a  be distinct complex numbers.  If, for any ,Ff ∈  

,)3,2,1()()( ==′⇔= iazfazf ii  then F is normal in D. 
 

Pang [7] proved that the family F  in Theorem A is also uniformly normal, as 
follows 
 
Theorem B. Let F be a family of meromorphic functions in the unit disc D and                 
let 21 , aa  and 3a  be distinct complex numbers.  If, for any ,Ff ∈  
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,)3,2,1()()( ==′⇔= iazfazf ii  then F is uniformly normal in D, that is, there 
exists a positive constant M such that  
 

( ) Mzfz ≤− )(1 #2  
 
for each Ff ∈  and ,Dz ∈  where M is independent of  f. 
 
Remark 3.  In fact, from the proof in [7], we see that Theorem B still remains true if 

)3,2,1()()( ==′⇒= iazfazf ii  for any Ff ∈ . 
 

Chen and Hua [2], Pang and Zalcman [8] proved the following normality criterion. 
 
Theorem C. Let F be a family of holomorphic functions in the unit disc D and let  a   
be a nonzero complex number.  If, for any  ,)(, afazfFf =′⇔=∈  

,)( azfaf =′′⇒=′  then F  is  normal in D. 
     

In [3], Fang improved Theorem C as follows 
 

Theorem D.   Let F be a family of holomorphic functions in the  unit disc D and let a be 
a nonzero complex number. If, for any ,Ff ∈ ,)()( ' azfazf =⇒=  

,)()( azfazf =′′⇒=′  then F  is normal in D. 
 

In this paper, by using a method different from that used in [3], we obtain the 
following stronger result. 

 
Theorem 1.   Let F be a family of holomorphic functions in the  unit disc D and let a     
be a nonzero complex number. If, for any Ff ∈ , ,)()( azfazf =′⇒=  

,)()( azfazf =′′⇒=′  then F is uniformly normal in D, that is, there exists a positive 
constant M such that 
 

( ) Mzfz ≤− )(1 #2  
 
for each Ff ∈ and Dz ∈ , where M is independent of  f. 
 
Remark 4. The following example (see [2] and [3]) shows that 0≠a  cannot be 
omitted in Theorem 1. 
 
 Let  .}1:{,}3,2,1:)({ <==== zzDnezfF nz

n   Then, for every ,Ffn ∈  
it is easy to see that  .0)(0)(0)( =′′⇒=′⇒= zfzfzf nnn   However, 

∞→= 2/)0(# nfn  as  ,∞→n  thus F is not uniformly normal in D. 
 

We shall use the standard notations in Nevanlinna  theory (see [4], [11]). 
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2.  Lemmas 
 
For convenience, we define 
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⎝
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′
′′

+⎟⎟
⎠
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⎜⎜
⎝

⎛ ′
=

af
frmc

f
frmc

f
frmcfrLD ,,,:),( 321  

 )(,,, 54 C∈⎟⎟
⎠
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⎝

⎛
−′
′′

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
′′

+ a
af
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af
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where 54321 ,,,, ccccc  are constants, which may have different values at different 
occurrences. 
 
Lemma 1. Let  f  be a non-constant holomorphic functions on the unit disc D, and a be 
a nonzero complex  number.   Let 

 

( ) .
)(

)(2
)(

)()()(:)(
azf

zf
azf

zfzfzfz
−′
′′

−
−
′′+′

== ψψ  

 
If ,afaf =′⇒=  afaf =′′⇒=′ on D, and ,)0(,)0( afaf ≠′≠ ,0)0( ≠′′f  

)0()0( ff ′′≠′  and ,0)0( ≠ψ   then 
 

)0()0(
)0(

log3)1(),(),(
ff
af

OfrLDfrT
′−′′

−
++≤  

                     
)0(

1log2
)0(

))0(())0((
log

ψ
+

′′
−′−

+
f

afaf
. 

 
Proof.   Let  .)( 0 azf =   By the assumptions we may assume that, near 0z  
 

( ) ( ) ( ),)(
2

)()( 4
0

3
0

2
00 zzOzzbzzazzaazf −+−+−+−+=  

 
where 6/)( 0

)3( zfb =  is a constant.  Then  
 

( ) ( ) ( )

( ) ( ),)(6)(

,)(3)(

2
00

3
0

2
00

zzOzzbazf

zzOzzbzzaazf

−+−+=′′

−+−+−+=′
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and thus 
 

 )(62
)(

)()(
0

0
zzO

a
b

zzazf
zfzf

−++
−

=
−
′′+′
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 )(62
)(

)(2
0

0
zzO
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zzazf
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−++
−

=
−′
′′
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Hence ,0)( 0 =zψ  and 
 

( )
)0(

1log,1,1,
ψ

ψ
ψ
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⎝
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1log,,
ψ

ψ ++≤ frLDrN        (2.1) 
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1log,1,0 ψ
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−′

= frLD
af
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where ))(/1,(0 afrN −′  is the counting function for the zeros of af −′   which are not  
zeros of af − .  Since ,afaf =′⇒=  form  (2.1) we get 

 

      ( )
)0(

1log,1,1,2
ψ
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af

rN
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On the other hand, by the assumptions we have 
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Next we need the estimate of ),( 1
frN ′ .  Since 
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we obtain 
 

 
)0(

)0(
log)1(),(1,1,

f
af

OfrLD
af

rN
f

rN
′
−

+++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

.        (2.4) 

 
Thus, from (2.2),  (2.3)  and  (2.4) , we get 
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Using Milloux’s inequality, we have 
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Substituting (2.5) and (2.6) in the above inequality yields the conclusion. 
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Lemma 2. (Bureau [1])  Let 21 , bb , and 3b   be positive numbers and )(rU  a 
nonnegative, increasing and continuous function on an interval .,),[ 0 ∞<RRr   If 

 

)(log1log)( 321 ρ
ρ

Ub
r

bbrU ++ +
−

+≤  

 
for any ,0 Rrr <<< ρ   then 
 

rR
BBrU

−
+≤ + 1log)( 21  

 
for ,0 Rrr <≤   where 1B   and  2B   depend on )3,2,11( =ib only. 
 
Lemma 3.  (see Hiong [4])  If )(zf  is meromorphic in a disk Rz <  such that  

,,0)0( ∞≠f  then,  for ,Rro <<< ρ   
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where kC   is a constant depending only on  k. 
 

The following is the wellknown Zalcman’s lemma [12]. 
 
Lemma 4.  Let F be a family of functions meromorphic in a domain D.  If F is not 
normal at ,0 Dz ∈  then there exist a sequence of points ,Dzn ∈  ,0zzn →  a sequence 
of positive numbers ,0→nρ  and a sequence of  functions Ffn ∈   such that  
 

)()()( ζζρζ gzfg nnnn →+=  
 
locally uniformly with respect to the spherical metric, where g is a non-constant 
meromorphic function on C. 
 
 
3.   Proof of Theorem 1 
 
Proof. Suppose that F is not uniformly normal in D. Then, we can find  

,, DzFf nn ∈∈  such that 
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( )zzzfzg nnnn )1()( 2−+=  
 

satisfies 
 

( ) ∞→−= )(1)0( #2#
nnnn zfzg  

 

as  ∞→n .  It follows that )}({ zgn  is not normal at 0=z .  We distinguish two cases: 
 
(1)  nn gg ′=  for every N∈n  then z

nn eCzg =)( , which is normal at .0=z  

(2)  Consider the case that ng  and ng ′  are not identical. By Lemma 4, there exist a 
subsequence ng (without loss generality, we may assume ng ), a sequence 

0, →∈ nn D ηη , and a positive sequence 0→nρ such that 
 

( )ζρηζρηζ nnnnnnnnnn zzzfgG )1()1()()( 22 −+−+=+=  
 
converges uniformly to a non-constant entire function )(ζG  on each compact subset of 
C.  Thus, for any positive integer k, 
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k
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k
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k
n zzzfzG )1()1(1)( 22)(2)( −+−+−= .         (3.1) 

 
 We claim that )(ζG  is not a polynomial of degree less than 3.  Indeed, if )(ζG is a 
polynomial, then there exists a point 0ζ  such that .)( 0 aG =ζ   By Hurwitz’ theorem, 
there is a sequence 0ζζ →n  such that 
 

( ) azzzfgG nnnnnnnnnnnnn =−+−+=+= ζρηζρηζ )1()1()()( 22  
 
for n sufficiently large.  It follows from the hypotheses on F  that  
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 ( ) azzzf nnnnnnn =−+−+′′= ζρη )1()1( 22  
 
for n  sufficiently large.  On the other hand, by (3.1), we have 
 

( ) ( ) )()1()1(1)( 0
222 ζζρηρζ GzzzfzG nnnnnnnnnnn ′→−+−+′−=′ , 

( ) ( ) .)()1()1(1)( 0
22222 ζζρηρζ GzzzfzG nnnnnnnnnnn ′′→−+−+′′−=′′  
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Thus  .0)()( 00 =′′=′ ζζ GG  
 

Choose 1ζ  with 
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On the other hand, we claim that there are only finitely many nf  such that .0)( ≡nfψ  
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and thus 
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Letting ,∞→j  we get ,0)( ≡′′ ζG  a contradiction.  Then we may assume that            
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as .∞→n   For ,,2,1=n  set  
                                                             

( ).)1()1()( 1
22 zzzzfzP nnnnnnn +−+−+= ζρη  

 

Let n be sufficiently large.  Then nP  is defined and holomorphic on the disk 

2
10 << z , since  
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By (3.2) and (3.3),  we have 
 

 ,,0)()()0( 11 aGGP nn ≠→= ζζ                 (3.7) 

                ( ) ,
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Therefore, by (3.7)−(3.10) we may apply Lemma 1 to ,)(zPn  and using (3.4), (3.5) and 
(3.6) we obtain 
 

( ) ( ),,, nn PrLDPrT ≤  
 

for sufficiently large n.  Hence by Lemma 2 and Lemma 3, we get 
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⎠
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⎜
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where M is a constant independent of n.  It follows that )(zfn  are bounded for 
sufficiently large n and .8

1<z   But, from 
 

( ) ( ) 0)()()1()1(1 111
22222 ≠′′→′′=−+−+′′− ζζζρηρ GGzzzfz nnnnnnnnn  

 
we know that )(zfn  cannot be bounded in .8

1<z   We arrive at a contradiction.             
This completes the proof of Theorem 1. 
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