Normal Functions and Normal Families

Yan XU

Department of Mathematics, Nanjing Normal University, Nanjing 210097 e-mail: xuyan@njnu.edu.cn

Abstract. In this paper, we prove the following theorem: Let F be a family of holomorphic functions in the unit disc D and let a be a nonzero complex number. If, for any $f \in F$, $f(z)=a \Rightarrow f^{\prime}(z)=a, f^{\prime}(z)=a \Rightarrow f^{\prime \prime}(z)=a$, then F is uniformly normal in D, that is, there exists a positive constant M such that $\left(1-|z|^{2}\right) f^{\#}(z) \leq M$ for each $f \in F$ and $z \in D$, where M is independently of f. This result improves related results due to [2], [8], and [3].

2000 Mathematics Subject Classification: 30D45

1. Introduction

Let f and g be two meromorphic functions, and let a be a complex number. If $g(z)=a$ whenever $f(z)=a$, we denote it by $f=a \Rightarrow g=a$, and $f=a \Leftrightarrow g=a$ means $f(z)=a$ if and if only if $g(z)=a$.

Let D denote the unit disk in the complex plane \boldsymbol{C}. A function f meromorphic in D is called a normal function, in the sense of [6], if there exist a constant $M(f)$ such that $\left(1-|z|^{2}\right) f^{\#}(z) \leq M(f)$ for each $z \in D$, where

$$
f^{\#}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}
$$

denotes the spherical derivative.
Let F be a family of meromorphic functions defined in D. F is said to be normal in D (see [9]), in the sense of Montel, if for any sequence $f_{n} \in F$ there exists a subsequence $f_{n_{j}}$, such that $f_{n_{j}}$ converges spherically, locally and uniformly in D, to a meromorphic function or ∞.

Suppose that F is a family of functions meromorphic in D such that each function of F is a normal function, then, for each function $f \in F$, there exists a constant $M(f)$ such that

$$
\left(1-|z|^{2}\right) f^{\#}(z) \leq M(f)
$$

for each $z \in D$. In general, $M(f)$ is a constant dependent on f, and we can not conclude that $\{M(f), f \in F\}$ is bounded. If $\{M(f), f \in F\}$ is bounded, we give the definition as follows

Definition. Let F be a family of meromorphic functions in the unit disc D. If there exists a positive constant M such that

$$
\sup \left\{\left(1-|z|^{2}\right) f^{\#}(z): z \in D, f \in F\right\}<M
$$

we call the family F a uniformly normal family in D.
Remark 1. The idea of this definition is suggested by Pang (see [7]).
Remark 2. A well-known result due to Marty (see [4], [9] and [11]) says that a family F of functions meromorphic in D is a normal family if and only if for each compact subset K of D there exists a constant M_{K} such that $f^{\#}(z) \leq M_{K}$ for each $f \in F$ and for each $z \in K$. Clearly, by Marty's criterion if F is a uniformly normal family in D, then F must be normal in D. However, it is obvious that the converse is not always true.

It is natural to ask: When is a normal family F in D also uniformly normal in D ? (The question is first introduced by Bergweiler and Pang (see [7]).)

Schwick [10] discovered a connection between normality criteria and sharing values. He proved

Theorem A. Let F be a family of meromorphic functions in the unit disc D and let a_{1}, a_{2} and a_{3} be distinct complex numbers. If, for any $f \in F$, $f(z)=a_{i} \Leftrightarrow f^{\prime}(z)=a_{i}(i=1,2,3)$, then F is normal in D.

Pang [7] proved that the family F in Theorem A is also uniformly normal, as follows

Theorem B. Let F be a family of meromorphic functions in the unit disc D and let a_{1}, a_{2} and a_{3} be distinct complex numbers. If, for any $f \in F$,
$f(z)=a_{i} \Leftrightarrow f^{\prime}(z)=a_{i}(i=1,2,3)$, then F is uniformly normal in D, that is, there exists a positive constant M such that

$$
\left(1-|z|^{2}\right) f^{\#}(z) \leq M
$$

for each $f \in F$ and $z \in D$, where M is independent of f.

Remark 3. In fact, from the proof in [7], we see that Theorem B still remains true if $f(z)=a_{i} \Rightarrow f^{\prime}(z)=a_{i}(i=1,2,3)$ for any $f \in F$.

Chen and Hua [2], Pang and Zalcman [8] proved the following normality criterion.
Theorem C. Let F be a family of holomorphic functions in the unit disc D and let a be a nonzero complex number. If, for any $f \in F, f(z)=a \Leftrightarrow f^{\prime}=a$, $f^{\prime}=a \Rightarrow f^{\prime \prime}(z)=a$, then F is normal in D.

In [3], Fang improved Theorem C as follows
Theorem D. Let F be a family of holomorphic functions in the unit disc D and let a be a nonzero complex number. If, for any $f \in F, f(z)=a \Rightarrow f^{\prime}(z)=a$, $f^{\prime}(z)=a \Rightarrow f^{\prime \prime}(z)=a$, then F is normal in D.

In this paper, by using a method different from that used in [3], we obtain the following stronger result.

Theorem 1. Let F be a family of holomorphic functions in the unit disc D and let a be a nonzero complex number. If, for any $f \in F, f(z)=a \Rightarrow f^{\prime}(z)=a$, $f^{\prime}(z)=a \Rightarrow f^{\prime \prime}(z)=a$, then F is uniformly normal in D, that is, there exists a positive constant M such that

$$
\left(1-|z|^{2}\right) f^{\#}(z) \leq M
$$

for each $f \in F$ and $z \in D$, where M is independent of f.
Remark 4. The following example (see [2] and [3]) shows that $a \neq 0$ cannot be omitted in Theorem 1.

Let $F=\left\{f_{n}(z)=e^{n z}: n=1,2,3 \cdots\right\}, D=\{z:|z|<1\}$. Then, for every $f_{n} \in F$, it is easy to see that $f_{n}(z)=0 \Rightarrow f_{n}^{\prime}(z)=0 \Rightarrow f_{n}^{\prime \prime}(z)=0$. However, $f_{n}^{\#}(0)=n / 2 \rightarrow \infty$ as $n \rightarrow \infty$, thus F is not uniformly normal in D.

We shall use the standard notations in Nevanlinna theory (see [4], [11]).

2. Lemmas

For convenience, we define

$$
\begin{aligned}
L D(r, f):= & c_{1} m\left(r, \frac{f^{\prime}}{f}\right)+c_{2} m\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+c_{3} m\left(r, \frac{f^{\prime}}{f-a}\right) \\
& +c_{4} m\left(r, \frac{f^{\prime \prime}}{f-a}\right)+c_{5} m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-a}\right),(a \in \boldsymbol{C})
\end{aligned}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are constants, which may have different values at different occurrences.

Lemma 1. Let f be a non-constant holomorphic functions on the unit disc D, and a be a nonzero complex number. Let

$$
\psi(z):=\psi(f(z))=\frac{f^{\prime}(z)+f^{\prime \prime}(z)}{f(z)-a}-\frac{2 f^{\prime \prime}(z)}{f^{\prime}(z)-a}
$$

If $f=a \Rightarrow f^{\prime}=a, \quad f^{\prime}=a \Rightarrow f^{\prime \prime}=a$ on D, and $f(0) \neq a, f^{\prime}(0) \neq a, f^{\prime \prime}(0) \neq 0$, $f^{\prime}(0) \neq f^{\prime \prime}(0)$ and $\psi(0) \neq 0$, then

$$
\begin{aligned}
T(r, f) & \leq L D(r, f)+O(1)+3 \log \frac{|f(0)-a|}{\left|f^{\prime \prime}(0)-f^{\prime}(0)\right|} \\
& +\log \frac{\left|(f(0)-a)\left(f^{\prime}(0)-a\right)\right|}{\left|f^{\prime \prime}(0)\right|}+2 \log \frac{1}{|\psi(0)|} .
\end{aligned}
$$

Proof. Let $f\left(z_{0}\right)=a$. By the assumptions we may assume that, near z_{0}

$$
f(z)=a+a\left(z-z_{0}\right)+\frac{a}{2}\left(z-z_{0}\right)^{2}+b\left(z-z_{0}\right)^{3}+O\left(\left(z-z_{0}\right)^{4}\right),
$$

where $b=f^{(3)}\left(z_{0}\right) / 6$ is a constant. Then

$$
\begin{aligned}
& f^{\prime}(z)=a+a\left(z-z_{0}\right)+3 b\left(z-z_{0}\right)^{2}+O\left(\left(z-z_{0}\right)^{3}\right) \\
& f^{\prime \prime}(z)=a+6 b\left(z-z_{0}\right)+O\left(\left(z-z_{0}\right)^{2}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
\frac{f^{\prime}(z)+f^{\prime \prime}(z)}{f(z)-a} & =\frac{2}{z-z_{0}}+\frac{6 b}{a}+O\left(z-z_{0}\right) \\
\frac{2 f^{\prime \prime}(z)}{f^{\prime}(z)-a} & =\frac{2}{z-z_{0}}+\frac{6 b}{a}+O\left(z-z_{0}\right)
\end{aligned}
$$

Hence $\psi\left(z_{0}\right)=0$, and

$$
\begin{align*}
& N\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{\psi}\right) \leq T(r, \psi)+\log \frac{1}{|\psi(0)|} \\
& \quad \leq N(r, \psi)+L D(r, f)+\log \frac{1}{|\psi(0)|} \tag{2.1}\\
& \quad=N_{0}\left(r, \frac{1}{f^{\prime}-a}\right)+L D(r, f)+\log \frac{1}{|\psi(0)|}
\end{align*}
$$

where $N_{0}\left(r, 1 /\left(f^{\prime}-a\right)\right)$ is the counting function for the zeros of $f^{\prime}-a$ which are not zeros of $f-a$. Since $f=a \Rightarrow f^{\prime}=a$, form (2.1) we get

$$
\begin{equation*}
2 N\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{f^{\prime}-a}\right)+L D(r, f)+\log \frac{1}{|\psi(0)|} \tag{2.2}
\end{equation*}
$$

On the other hand, by the assumptions we have

$$
\begin{align*}
N\left(r, \frac{1}{f^{\prime}-a}\right) \leq & N\left(r, \frac{1}{\frac{f^{\prime \prime}}{f^{\prime}}-1}\right) \leq T\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+\log \frac{\left|f^{\prime}(0)\right|}{\left|f^{\prime \prime}(0)-f^{\prime}(0)\right|}+O(1) \\
& =N\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+\log \frac{\left|f^{\prime}(0)\right|}{\left|f^{\prime \prime}(0)-f^{\prime}(0)\right|}+L D(r, f)+O(1) \tag{2.3}\\
& =\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\log \frac{\left|f^{\prime}(0)\right|}{\left|f^{\prime \prime}(0)-f^{\prime}(0)\right|}+L D(r, f)+O(1)
\end{align*}
$$

Next we need the estimate of $\bar{N}\left(r, \frac{1}{f^{\prime}}\right)$. Since

$$
\begin{aligned}
m\left(r, \frac{1}{f-a}\right) & \leq m\left(r, \frac{1}{f^{\prime}}\right)+L D(r, f) \\
& \leq T\left(r, f^{\prime}\right)-N\left(r, \frac{1}{f^{\prime}}\right)+L D(r, f)+\log \frac{1}{\left|f^{\prime}(0)\right|} \\
& \leq T(r, f)-N\left(r, \frac{1}{f^{\prime}}\right)+L D(r, f)+\log \frac{1}{\left|f^{\prime}(0)\right|} \\
& \leq T\left(r, \frac{1}{f-a}\right)-N\left(r, \frac{1}{f^{\prime}}\right)+L D(r, f)+O(1)+\log \frac{|f(0)-a|}{\left|f^{\prime}(0)\right|} \\
= & m\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-a}\right)-N\left(r, \frac{1}{f^{\prime}}\right)+L D(r, f)+O(1) \\
& +\log \frac{|f(0)-a|}{\left|f^{\prime}(0)\right|},
\end{aligned}
$$

we obtain

$$
\begin{equation*}
N\left(r, \frac{1}{f^{\prime}}\right) \leq N\left(r, \frac{1}{f-a}\right)+L D(r, f)+O(1)+\log \frac{|f(0)-a|}{\left|f^{\prime}(0)\right|} \tag{2.4}
\end{equation*}
$$

Thus, from (2.2), (2.3) and (2.4), we get

$$
\begin{align*}
& N\left(r, \frac{1}{f-a}\right) \leq L D(r, f)+O(1)+\log \frac{|f(0)-a|}{\left|f^{\prime \prime}(0)-f^{\prime}(0)\right|}+\log \frac{1}{|\psi(0)|}, \tag{2.5}\\
& N\left(r, \frac{1}{f^{\prime}-a}\right) \leq L D(r, f)+O(1)+2 \log \frac{|f(0)-a|}{\left|f^{\prime \prime}(0)-f^{\prime}(0)\right|}+\log \frac{1}{|\psi(0)|} . \tag{2.6}
\end{align*}
$$

Using Milloux's inequality, we have

$$
\begin{gathered}
T(r, f) \leq N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f^{\prime}-a}\right)+L D(r, f)+O(1) \\
\quad+\log \frac{\left|(f(0)-a)\left(f^{\prime}(0)-a\right)\right|}{\left|f^{\prime \prime}(0)\right|}
\end{gathered}
$$

Substituting (2.5) and (2.6) in the above inequality yields the conclusion.

Lemma 2. (Bureau [1]) Let b_{1}, b_{2}, and b_{3} be positive numbers and $U(r)$ a nonnegative, increasing and continuous function on an interval $\left[r_{0}, R\right), R<\infty$. If

$$
U(r) \leq b_{1}+b_{2} \log ^{+} \frac{1}{\rho-r}+b_{3} \log ^{+} U(\rho)
$$

for any $r_{0}<r<\rho<R$, then

$$
U(r) \leq B_{1}+B_{2} \log ^{+} \frac{1}{R-r}
$$

for $r_{0} \leq r<R$, where B_{1} and B_{2} depend on $b_{i}(1=1,2,3)$ only.
Lemma 3. (see Hiong [4]) If $f(z)$ is meromorphic in a disk $|z|<R$ such that $f(0) \neq 0, \infty$, then, for $o<r<\rho<R$,

$$
\begin{gathered}
m\left(r, \frac{f^{(k)}}{f}\right) \leq C_{k}\left\{1+\log ^{+} \log ^{+} \frac{1}{|f(0)|}+\log ^{+} \frac{1}{r}+\log ^{+} \frac{1}{\rho-r}\right. \\
\left.+\log ^{+} \rho+\log ^{+} T(\rho, f)\right\}
\end{gathered}
$$

where C_{k} is a constant depending only on k.
The following is the wellknown Zalcman's lemma [12].
Lemma 4. Let F be a family of functions meromorphic in a domain D. If F is not normal at $z_{0} \in D$, then there exist a sequence of points $z_{n} \in D, z_{n} \rightarrow z_{0}$, a sequence of positive numbers $\rho_{n} \rightarrow 0$, and a sequence of functions $f_{n} \in F$ such that

$$
g_{n}(\zeta)=f_{n}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g(\zeta)
$$

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function on \boldsymbol{C}.

3. Proof of Theorem 1

Proof. Suppose that F is not uniformly normal in D. Then, we can find $f_{n} \in F, z_{n} \in D$, such that

$$
g_{n}(z)=f_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) z\right)
$$

satisfies

$$
g_{n}^{\#}(0)=\left(1-\left|z_{n}\right|^{2}\right) f_{n}^{\#}\left(z_{n}\right) \rightarrow \infty
$$

as $n \rightarrow \infty$. It follows that $\left\{g_{n}(z)\right\}$ is not normal at $z=0$. We distinguish two cases:
(1) $g_{n}=g_{n}^{\prime}$ for every $n \in N$ then $g_{n}(z)=C_{n} e^{z}$, which is normal at $z=0$.
(2) Consider the case that g_{n} and g_{n}^{\prime} are not identical. By Lemma 4, there exist a subsequence g_{n} (without loss generality, we may assume g_{n}), a sequence $\eta_{n} \in D, \eta_{n} \rightarrow 0$, and a positive sequence $\rho_{n} \rightarrow 0$ such that

$$
G_{n}(\zeta)=g_{n}\left(\eta_{n}+\rho_{n} \zeta\right)=f_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta\right)
$$

converges uniformly to a non-constant entire function $G(\zeta)$ on each compact subset of C. Thus, for any positive integer k,

$$
\begin{equation*}
G_{n}^{(k)}(\zeta)=\left(1-\left|z_{n}\right|^{2}\right)^{k} \rho_{n}^{k} f_{n}^{(k)}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta\right) \tag{3.1}
\end{equation*}
$$

We claim that $G(\zeta)$ is not a polynomial of degree less than 3. Indeed, if $G(\zeta)$ is a polynomial, then there exists a point ζ_{0} such that $G\left(\zeta_{0}\right)=a$. By Hurwitz' theorem, there is a sequence $\zeta_{n} \rightarrow \zeta_{0}$ such that

$$
G_{n}\left(\zeta_{n}\right)=g_{n}\left(\eta_{n}+\rho_{n} \zeta_{n}\right)=f_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{n}\right)=a
$$

for n sufficiently large. It follows from the hypotheses on F that

$$
\begin{aligned}
f_{n}^{\prime}\left(z_{n}\right. & \left.+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{n}\right) \\
& =f_{n}^{\prime \prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{n}\right)=a
\end{aligned}
$$

for n sufficiently large. On the other hand, by (3.1), we have

$$
\begin{aligned}
& G_{n}^{\prime}\left(\zeta_{n}\right)=\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} f_{n}^{\prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{n}\right) \rightarrow G^{\prime}\left(\zeta_{0}\right) \\
& G_{n}^{\prime \prime}\left(\zeta_{n}\right)=\left(1-\left|z_{n}\right|^{2}\right)^{2} \rho_{n}^{2} f_{n}^{\prime \prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{n}\right) \rightarrow G^{\prime \prime}\left(\zeta_{0}\right)
\end{aligned}
$$

Thus $\quad G^{\prime}\left(\zeta_{0}\right)=G^{\prime \prime}\left(\zeta_{0}\right)=0$.

Choose ζ_{1} with

$$
\begin{equation*}
G\left(\zeta_{1}\right) \neq 0, a ; G^{\prime}\left(\zeta_{1}\right) \neq 0 ; G^{\prime \prime}\left(\zeta_{1}\right) \neq 0 \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{gathered}
\frac{1}{\rho_{n}^{2}\left(1-\left|z_{n}\right|^{2}\right)^{2}} \\
\times \frac{f_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)-a}{f_{n}^{\prime \prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)-f_{n}^{\prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)} \\
\rightarrow \frac{G\left(\zeta_{1}\right)}{G^{\prime \prime}\left(\zeta_{1}\right)}, \\
\frac{1}{\rho_{n}\left(1-\left|z_{n}\right|^{2}\right)} \\
\times \frac{\left(f_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)-a\right)\left(f_{n}^{\prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)-a\right)}{f_{n}^{\prime \prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)} \\
\rightarrow \frac{G^{\prime}\left(\zeta_{1}\right)\left(G\left(\zeta_{1}\right)-a\right)}{G^{\prime \prime}\left(\zeta_{1}\right)} .
\end{gathered}
$$

On the other hand, we claim that there are only finitely many f_{n} such that $\psi\left(f_{n}\right) \equiv 0$. Indeed, suppose that there is a subsequence $\left\{f_{n_{j}}\right\} \subset\left\{f_{n}\right\}$ such that $\psi\left(f_{n_{j}}\right) \equiv 0$.
Then

$$
\begin{gathered}
\frac{f_{n_{j}}^{\prime}\left(z_{n_{j}}+\left(1-\left|z_{n_{j}}\right|^{2}\right) \eta_{n_{j}}+\left(1-\left|z_{n_{j}}\right|\right)^{2} \rho_{n_{j}} \zeta\right)+f_{n_{j}}^{\prime \prime}\left(z_{n_{j}}+\left(1-\left|z_{n_{j}}\right|^{2}\right) \eta_{n_{j}}+\left(1-\left|z_{n_{j}}\right|^{2}\right) \rho_{n_{j}} \zeta\right)}{f_{n_{j}}\left(z_{n_{j}}+\left(1-\left|z_{n_{j}}\right|^{2}\right) \eta_{n_{j}}+\left(1-\left|z_{n_{j}}\right|^{2}\right) \rho_{n_{j}} \zeta\right)-a} \\
=\frac{2 f_{n_{j}}^{\prime \prime}\left(z_{n_{j}}+\left(1-\left|z_{n_{j}}\right|^{2}\right) \eta_{n_{j}}+\left(1-\left|z_{n_{j}}\right|^{2}\right) \rho_{n_{j}} \zeta\right)}{f_{n_{j}}^{\prime}\left(z_{n_{j}}+\left(1-\left|z_{n_{j}}\right|^{2}\right) \eta_{n_{j}}+\left(1-\left|z_{n_{j}}\right|^{2}\right) \rho_{n_{j}} \zeta\right)-a},
\end{gathered}
$$

and thus

$$
\frac{\rho_{n_{j}}\left(1-\left|z_{n_{j}}\right|^{2}\right) G_{n_{j}}^{\prime}(\zeta)+G_{n_{j}}^{\prime \prime}(\zeta)}{G_{n_{j}}(\zeta)-a}=\frac{2 \rho_{n_{j}}\left(1-\left|z_{n_{j}}\right|^{2}\right) G_{n_{j}}^{\prime \prime}(\zeta)}{G_{n_{j}}^{\prime}(\zeta)-a \rho_{n_{j}}\left(1-\left|z_{n_{j}}\right|^{2}\right)} .
$$

Letting $j \rightarrow \infty$, we get $G^{\prime \prime}(\zeta) \equiv 0$, a contradiction. Then we may assume that $\psi\left(f_{n}\right) \not \equiv 0$, for all n. Thus

$$
\begin{equation*}
\rho_{n}^{2} \psi_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right) \rightarrow \frac{G^{\prime \prime}(\zeta)}{G\left(\zeta_{1}\right)-a}, \tag{3.3}
\end{equation*}
$$

where $\psi_{n}=\psi\left(f_{n}\right)$. So we have

$$
\log \frac{\left|f_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)-a\right|}{\left|f_{n}^{\prime \prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)-f_{n}^{\prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)\right|}
$$

$\log \frac{\left|\left(f_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)-a\right)\left(f_{n}^{\prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)-a\right)\right|}{\left|f_{n}^{\prime \prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)\right|}$

$$
\begin{equation*}
\rightarrow-\infty, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \frac{1}{\left|\psi_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)\right|} \rightarrow-\infty, \tag{3.6}
\end{equation*}
$$

as $n \rightarrow \infty$. For $n=1,2, \cdots$, set

$$
P_{n}(z)=f_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}+z\right)
$$

Let n be sufficiently large. Then P_{n} is defined and holomorphic on the disk $0<|z|<\frac{1}{2}$, since

$$
z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1} \rightarrow 0
$$

By (3.2) and (3.3), we have

$$
\begin{gather*}
P_{n}(0)=G_{n}\left(\zeta_{1}\right) \rightarrow G\left(\zeta_{1}\right) \neq 0, a, \tag{3.7}\\
P_{n}^{\prime}(0)=\frac{1}{\left(1-\left|z_{n}\right|^{2}\right) \rho_{n}} G_{n}^{\prime}\left(\zeta_{1}\right) \rightarrow \infty, \tag{3.8}\\
P_{n}^{\prime \prime}(0)=\frac{1}{\left(1-\left|z_{n}\right|^{2}\right)^{2} \rho_{n}^{2}} G_{n}^{\prime \prime}\left(\zeta_{1}\right) \rightarrow \infty, \tag{3.9}\\
\psi\left(P_{n}(0)\right)=\psi_{n}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right) \rightarrow \infty . \tag{3.10}
\end{gather*}
$$

Therefore, by (3.7)-(3.10) we may apply Lemma 1 to $P_{n}(z)$, and using (3.4), (3.5) and (3.6) we obtain

$$
T\left(r, P_{n}\right) \leq L D\left(r, P_{n}\right)
$$

for sufficiently large n. Hence by Lemma 2 and Lemma 3, we get

$$
T\left(\frac{1}{4}, P_{n}\right) \leq M
$$

where M is a constant independent of n. It follows that $f_{n}(z)$ are bounded for sufficiently large n and $|z|<\frac{1}{8}$. But, from

$$
\left(1-\left|z_{n}\right|^{2}\right)^{2} \rho_{n}^{2} f_{n}^{\prime \prime}\left(z_{n}+\left(1-\left|z_{n}\right|^{2}\right) \eta_{n}+\left(1-\left|z_{n}\right|^{2}\right) \rho_{n} \zeta_{1}\right)=G_{n}^{\prime \prime}\left(\zeta_{1}\right) \rightarrow G^{\prime \prime}\left(\zeta_{1}\right) \neq 0
$$

we know that $f_{n}(z)$ cannot be bounded in $|z|<\frac{1}{8}$. We arrive at a contradiction. This completes the proof of Theorem 1.

Acknowledgement. Supported in part by NSF of China (Grant 10171047) and NSF of Education Department of Jiangsu Province (03KJB110058).

References

1. F. Bureau, Mémoire sur les fonctions uniformes à point singuliar essentiel isolé, Mém. Soc. Roy. Sci. Liége 17 (1932).
2. H.H. Chen and X.H. Hua, Normal families concerning shared values, Israel J. Math. 115 (2000), 355-362.
3. M.L. Fang, On a result of Jank-Mues-Volkmann, to appear.
4. W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
5. K. Hiong, Sur les fonctions holomorphes dont les dérivées admettant une valeur exceptionelle, Ann. École Norm. Sup. 72 (1955), 165-197.
6. O. Lehto and K. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47-56.
7. X.C. Pang, Normal Families and normal functions of meromorphic functions, Chinese Ann. Math. 21A (2000), 601-604.
8. X.C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 18 (1995), 437-450.
9. J. Schiff, Normal Families, Springer-Verlag, 1993.
10. W. Schwick, Sharing values and normality, Arch. Math. 59 (1992), 50-54.
11. L. Yang, Value Distribution Theory, Springer-Verlag \& Science Press, Berlin, 1993.
12. L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813-817.

Keywords: Holomorphic function, normal family, normal function, uniformly normal family.

