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Abstract. For the cotangent bundle (T * M, 7t*, M) of a smooth manifold M, the kernel of a
differential 7, of the projection 7* defines the vertical subbundle VT * M of the bundle

(IT * M, 774y, T * M'). A supplement HT * M of it is called a horizontal subbundle or a

nonlinear connection on M, [6,7]. The direct decomposition 77 * M = HT * M @ VT * M gives
rise to a natural almost product structure P on the manifold 7 * M . A general method to associate
to P aframed f(3,— 1)- structure of any corank is pointed out. This is similar to that given by us in
[2] for the tangent bundle of a Lagrange space. When we endow M with a regular Hamiltonian H
and use as the nonlinear connection that canonically induced by H, a framed f(3, — 1) - structure

P, of corank 2 naturally appears on T * M . This reduces to that found by us in [3] when
H = K?, for K the fundamental function of a Cartan space K” = (M, K). Then we show that on

some conditions for H the restriction of P, to the submanifold H =1 of Ty M provides an almost
paracontact structure on this submanifold. The conditions taken on H hold for the ¢ - Hamiltonians
introduced by us in [4] as well as for H = K2 . The idea of this study has the origin in the paper [1]
of M. Anastasiei.
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1. Aframed f(3,—1) structureon T* M

Let M be a smooth i.e. C* manifold of dimension n with local coordinates (x'),
i, j,k,»~-=1--,n. And let (T * M,7*, M) be its cotangent bundle. On T * M we

shall take as local coordinates (x’ = x o 7, p;), where (p;) are the coordinates of a
covector from T, M, x(x'), in the natural cobasis (dx’).

Theset VT*M = v V,T*M for V,T * M =kert},, projected over T * M
uelT*M ’
gives the vertical bundle over 7 * M. A supplement HT * M of it is called horizontal

bundle or a nonlinear connection on M. We have the decomposition
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TT*M=HT*M®V,T*M,uecT*M. (1.1)

The distribution u — V,T* M is locally spanned by o :z% and one takes

0; =0; + Ny (x, p)o* as a local basis for the horizontal distribution u — H,T*M.

Thus the basis (0;, o) is adapted to the decomposition (1.1). The Einstein convention
on summation over the indices i, j, k,--- is implied.
The linear operator P on 7,7 * M defined by

P(8,) = &;, P(0") = —0", (1.2)

gives an almost product on 7 * M, thatis P?> = I, where I is the identity operator.
The dual basis of (5;,0") is (dx',dp; = dp; — N;(x, p)dx/).
Let &,,¢&,,++,&, be rlinearly independent horizontal vector fields and ¢§,45,:++,¢

S

be s linearly independent vertical vector fields on 7' * M, suchthat m = r + s < 2n. We

consider also the r horizontal 1-forms @,,@,, ", 0, (®, = oudx', a, B, =1,,r)

and s vertical 1-forms 771,772,---,77S(77a = néépi, a,b,---=1,---,5) such that

0, (Sp) = Ogp, (&) =0, (1.3)
Notice that we have also
0,(&,)=0,1,,)=0. (1.3)

We clearly have P(&,)=¢,, P($,) =—-¢,, Va,a and

Lemma 1.1. w,oP=w, n,oP=-n, Vaa.
Now we put
Py=P-30,®&5+2n,®L (14)
a a
and we have

Theorem 1.1.  The triple F,, = (P,,(&,.6,),(@y,1,)) defines a framed f(3,—1)-

structure on T*M, that is, we have
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})ﬂ‘l(gll) = 0’ Pm(é/d) = 030)11 ° Eﬂ = 0’ na ° ])’ﬂ = O’ va’a

(1.5)
Bp=1-30,0&-3n,0¢,.
a a
Proof. One uses (1.3), (1.3)' and the Lemma 1.1.
This result is completed by
Theorem 1.2.  The operator P, is of rank 2n — m and it satisfies
P>-P,=0. (1.6)

Proof. The equality (1.6) follows from (1.5). In order to prove that rank P, = 2n —m,
we show that ker P, is spanned by the vector fields (&,,¢,), a=1,---,r, a=1---,s,

r+s=m. By (l.5), Span(¢&,,¢,) is contained in ker P,. For proving the converse

inclusion, let be Z = X5, + Y,0' € ker P,. Then by (1.4),

P,(2) = X5, ~ Y — 3 (w0 X¥)éS, + Y (1Y), and P(Z) = 0

a

gives X! ZZ(waka)fé’ Y :Z(’le(Yk)?m-

a

It follows

Z= Z(a)aka)fa + Z(ﬂng)ga , hence Z e Span(&,,<,).
a a

Theorem 1.2 says that the framed f(3,— 1)- structure F,, is of corank m. The term
f(3,— 1)-structure is suggested by (1.6). We refer to the book [5] for an account of
framed f(3,— 1)- structures and the other related structures.

The existence of F,, is heavily based on the existence of linearly independent vector
fields &,,¢, .

In the next section we shall exhibit a natural framed f(3,— 1)- structure on 7 * M
when M is a Hamilton space.

2. Aframed f(3,—1)-structureon T * M, when M is a Hamilton space

A Hamilton space is a pair (M,H), where H :T*M — R is a smooth regular
Hamiltonian. This means that the matrix with the entries
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g”(x,y)=56’ 0/ H(x, p) (2.1)

is of rank n.

The regular Hamiltonian A induces (see Ch. 4 in [7]) a nonlinear connection of local
coefficients

N, (%, p) :%{gij,H}—%(gikékajH-i-gjk 0%o,H), 2.2)

where {,} denotes the usual Poisson brackets and g, denotes the inverse of the matrix

(g/¥). Thus we may consider the almost product structure P completely determined by
H.
Assume that g% (x, p)p; p ; > 0 on the slit cotangent bundle 7y'M =7 * M \ 0 and

set &2 = g¥(x,p) p;p ; - From now on we restrict our considerations to 75M .

We consider the vector fields

1 . |
§=—po, {=—p0 (23)
& g

and the 1-forms

o =gy )ar's n=L(e, )i, 2

It follows that
o@) =1 ng)=1 (2.4)
w()=0, n(&)=0, (2.4)

andthe Lemma l holdsfora =a =1 & =¢, =4, 0, =0, 7, =17.
We set

P=P-0®&+n®(. (2.5)

Using (2.3), (2.3)' and Lemma 1 for the present case, one gets

Theorem 2.2.  The triple F, = (B,(&,0),(@,n))is a framed f(3,-1) -structure on
Ty M, that is,
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B(§) =h() =0, we P, =n°h =0,
(2.6)
P=1-0®-n®.

Remark 2.1. The framed f(3,—1)-structure F, is of corank 2 and depends only on
the Hamiltonian H on 75 M .

We consider T;M as a Riemannian manifold with the Sasaki type metric

G(x, p) = gydx' @ dx/ + gdp; @ &p; . 2.7
One easily checks that
o(X) = G(X,8), n(X)=G(X.{), VX ey ([}M). 2.8)
We have
Theorem 2.3.  The Riemannian metric G satisfies

G(RX.PY) = G(X.Y) - 0(X)o®) - n(XnM). ¥X.Y e £('M). (29

Proof.  First, we notice that G(£,&) = G({,¢) =1 and G(&,¢) = 0 and we have that
G(PX,¢) = w(PX) = w(X), G(PX,{)=-n(X) by (2.8) and Lemma 1.1. Then we
have

G(PX — o(X)E + n(X)S, PY — o(Y)é + n(Y)$) = G(PX, PY) — w(Y)G(PX, &)
+ n(NG(PX, &) — o(X)G(PY, &) + o(X)o(Y) + n(X)G(PY, ) + n(X)n(Y)
= G(X,Y) = o(X)a(Y) - n(X)n(Y),

because of G(PX, PY) = G(X,7Y).

Theorem 2.3 says us that (F,,G) is a Riemannian framed f(3,— 1)-structure on
5 M.
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3. On structure induced by F, on the indicatrix bundle over T;M

The set I, ={(x,p) e TyM |H(x, p) =1} is a (2n —1)-dimensional submanifold on

Ty M . We call it the indicatrix bundle of the Hamilton space H" = (M, H), extending a
term used in Finsler geometry.

We consider again 7'M as a Riemannian manifold with the Sasaki type metric G.

We are interested to find the unit normal vector field to /,;. We recall that
G, &) =1and G(&,¢) =1. Asfor H = K?, where K is the fundamental function of
a Cartan space it is known that ¢ is the unit normal vector field to 7, we look for
conditions on H such that  to be the unit normal vector field for the indicatrix bundle
of the Hamilton space H" = (M, H). For the geometry of the Cartan spaces we refer to

the Ch. 6 in [7].
Let be

Xl = xi(u),

" 3.
p;=p;(u®),a=12--,2n-1

~

a parametrization of the submanifold /; . The local vector fields —%- that form a basis

ou”

of the tangent space to /; can be put in the form

ou*  ou* ! ou? ou?

i . JY. .
o _ o 5A+(6p’ —N,.j(x,p)aijal. (3.2)

If one derives the identity H (x (u%), p(u*)) = 1 with respect to u%, one obtains

ox' . op; ox/
O.H +|(0H)|—%+ - N, = 0. 33
© )0u“ ( ) (au“ v 8uaj 3-3)

On using (3.2) we see that ¢ is normal to [, if and only if

G( o~ ,C) =—(¢'p)) (5 — Ny(x(w), pw)) W] =0 (3.4)
forevery ¢ =1,2,---,2n - 1.
Comparing (3.3) with (3.4) it comes out that (3.4) holds if

SH =0, 0'H = fg"p;, for f asmooth function on 75 M. (3.5)



AFramed f(3, - 1) Structure on the Cotangent Bundle of a Hamilton Space 167

The conditions (3.5) are quite complicated. We noticed them having in mind the
case H = K?, for K the fundamental function of a Cartan space. In such a case, it is

well known that 5,K* =0 and from the equality K* = g¥(x, p)p;p; it follows that

OK? = 2g¥ p;- The question is whether exist non-homogeneous Hamiltonians that

satisfy (3.5).
We show now that the so-called ¢ -Hamiltonians introduced and studied by us in

[4], fulfill the conditions (3.5).
Let K" =(M,K) be a Cartan space and ¢ : R, — R a function of class C*.
Assume that ¢ has the properties:

@) =0, @)+ 2" (1) # 0 for ¢ e Im(K?). (3.6)

Then H = ¢(K?) is a regular Hamiltonian on 7y M called the ¢ -Hamiltonian

associated to K" .
As we have seen in [4] the Hamiltonians H = @(K?) and K? define the same

nonlinear connection. We have 5;H = ¢'(K?)5,K* = 0. Hence the first condition (3.5)
holds for any ¢ -Hamiltonian.

Let g¥(x, p) = %%’gg be the metric tensor of K" and g¥(x, p) the metric tensor

(2.1) of H = p(K?). A direct calculation gives

g¥(x, p) = co’(g’” 25 p! pf] 3.7
4
where
° 1 oK?
! = y _x’ ;) = e —
p'=¢g"(x, p)p, 2,
We have
1 o ( " r 2
op, :(o,(HziiKz)pi _ g2 Kol
‘ @ 20" op;
2
because of o = go’ai .
op; op;

2
i = 0.

Thus the second condition (3.5) holds with f = ———
¢l + 2¢"K2
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Let us consider a Hamilton space H" = (M,H) such that { is the unit normal
vector field of the indicatrix bundle 7, defined by H.

We restrict to 7, the elements of the triple F, and indicate this fact by a bar over
those elements. We have

= £ =& since & is tangent to / >
= 77 =0onIy,since n(X)=G(X,{) =0 for any vector field X tangentto [,
= P =P-0®& on I, because of G(BX,{)=G(PX,()=n(PX)
= —7(X) = 0 for any vector field X tangent to /.
We have

Theorem 3.1.  The triple (}_’2,4?,5) defines a Riemannian almost paracontract

structure on I, that is,
) @) =1 P&)=0, P =0
(i) PEP=1-0Q®& only
(iii) G(P,X,PY)=G(X,Y)—a(X)@(Y), for any vector fields X, Y tangent to I, .

Proof:  All the assertions follow from Theorems 2.2 and 2.3.

For L = K? we regain our results from [3]. Concluding, we have enlarged the set
of Hamiltonians for which Theorem 3.1 holds good.
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