
BULLETIN of the Bull. Malays. Math. Sci. Soc. (2) 27 (2004), 161−168 
     MALAYSIAN  

MATHEMATICAL  
     SCIENCES  

     SOCIETY 
 
 
 

A Framed )13,( −f   Structure on the 
Cotangent Bundle of a Hamilton Space 

 
MANUELA GÎRŢU 

Faculty of Sciences, University of Bacău, Bacău, Romania 
e-mail:  manuelag@ub.ro 

 
 

Abstract.   For the cotangent bundle )*,,*( MMT τ  of a smooth manifold M, the kernel of a 

differential ∗
∗τ  of the projection *τ  defines the vertical subbundle MVT *  of the bundle 

)*,,*( * MTMTT MTτ .  A supplement MHT *  of it is called a horizontal subbundle or a 
nonlinear connection on M, [6,7].  The direct decomposition MVTMHTMTT *** ⊕=  gives 
rise to a natural almost product structure P on the manifold MT * .  A general method to associate 
to P a framed -)1,3( −f structure of any corank is pointed out.  This is similar to that given by us in 
[2] for the tangent bundle of a Lagrange space.  When we endow M with a regular Hamiltonian H 
and use as the nonlinear connection that canonically induced by H, a framed  -)1,3( −f structure  

2P  of corank 2 naturally appears on MT * .  This reduces to that found by us in [3] when 
2KH = , for K the fundamental function of a Cartan space ),( KMK n = .  Then we show that on 

some conditions for H the restriction of 2P  to the submanifold 1=H  of MT *
0  provides an almost 

paracontact structure on this submanifold.  The conditions taken on H hold for the ϕ - Hamiltonians 

introduced by us in [4] as well as for 2KH = .  The idea of this study has the origin in the paper [1] 
of M. Anastasiei. 
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1. A framed 1)3,( −f  structure on M*T  
 
Let M be a smooth i.e. ∞C  manifold of dimension n with local coordinates )( ix , 

nkji ,,1,,, = . And let )*,,*( MMT τ  be its cotangent bundle. On MT *  we 
shall take as local coordinates ),( i

ii pxx τ≡ , where )( ip  are the coordinates of a 
covector from ,*MTx  ),( ixx  in the natural cobasis )( idx . 
 The set MTVMVT uMTu

**
*∈
∪=  for ,ker* ,

∗
∗= uu MTV τ  projected over MT *  

gives the vertical bundle over .* MT   A supplement MHT *  of it is called horizontal 
bundle or a nonlinear connection on M.  We have the decomposition 
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  MTVMTHMTT uuu * * * ⊕= , MTu *∈ . (1.1) 
 
The distribution MTVu u *→  is locally spanned by 

ip
i

∂
∂=∂ :  and one takes 

k
ikii pxN ∂+∂= ),(δ as a local basis for the horizontal distribution MTHu u *→ . 

Thus the basis ),( i
i ∂δ  is adapted to the decomposition (1.1).  The Einstein convention 

on summation over the indices ,,, kji  is implied. 
 The linear operator P on MTTu *  defined by 

 
 iiP δδ =)( , iiP ∂−=∂ )( , (1.2)  
 
gives an almost product on ,* MT  that is ,2 IP =  where I is the identity operator. 
 The dual basis of ),( i

i ∂δ  is )),(,( j
ijii

i dxpxNdppdx −=δ . 

 Let rξξξ ,,, 21  be r linearly independent horizontal vector fields and sζζζ ,,, 21  
be s linearly independent vertical vector fields on ,* MT  such that nsrm 2<+= . We 
consider also the r horizontal 1-forms rωωω ,,, 21  ( i

idxαα ωω = , r,,1,, =βα ) 

and s vertical 1-forms sηηη ,,, 21 ( i
i
aa pδηη = , sba ,,1,, = ) such that 
 

 αββα δξω =)( , abba δζη =)( . (1.3)  
 

Notice that we have also 
 

 0)( =aζωα , 0)( =αξηa . (1.3)′ 
 
We clearly have αα ξξ =)(P , aaP ζζ −=)( , a,α∀  and 
 
Lemma 1.1. aα,   PP aa ∀−== ,   , ηηωω αα . 
 
 Now we put 

 
 ∑∑ ⊗+⊗−=

a
aam PP ζηξω

α
αα  (1.4) 

 
and we have  
 
Theorem 1.1. The triple )),(),,(,( aamm P ηωζξ αα=F  defines a framed )1,3( −f -
structure on ,MT∗  that is, we have 
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.

, ,0 ,0 ,0)( ,0)(

2 ∑∑ ⊗−⊗−=

∀====

a
aam

mamamm

IP

aPPPP

ζηξω

αηωζξ

α
αα

αα

 (1.5) 

 
Proof. One uses (1.3), (1.3)' and the Lemma 1.1. 
 
 This result is completed by 
 
Theorem 1.2. The operator mP  is of rank mn −2  and it satisfies 

 
 03 =− mm PP . (1.6) 
 
Proof. The equality (1.6) follows from (1.5).  In order to prove that rank ,2 mnPm −=  
we show that mPker  is spanned by the vector fields ),( aζξα , r,,1=α , ,,,1 sa =  

msr =+ .  By (1.5), ),(Span aζξα  is contained in mPker .  For proving the converse 

inclusion, let be .ker m
i

ii
i PYXZ ∈∂+= δ   Then by (1.4),  

 
( )∑−∂−=

α
αα δξωδ i
ik

k
i

ii
i

m XYXZP  )(  ( )∑ ∂+
a

i
iak

k
aY ζη    and 0)( =ZPm  

gives      ( )∑=
α

αα ξω ik
k

i XX  , ( )∑=
a

iak
k
ai YY ζη  .  

It follows  
 

( ) ( )∑∑ +=
a

ak
k
a

k
k YXZ ζηξω

α
αα   ,  hence  ( )aZ ζξα ,Span∈ . 

 
 Theorem 1.2 says that the framed -)1,3( −f structure mF  is of corank m.   The term  

-)1,3( −f structure is suggested by (1.6).  We refer to the book [5] for an account of 
framed  -)1,3( −f structures and the other related structures. 
 The existence of mF  is heavily based on the existence of linearly independent vector 
fields aζξα , . 
 In the next section we shall exhibit a natural framed -)1,3( −f structure on MT *  
when M is a Hamilton space. 
 
 
2. A framed 1)(3,−f -structure on ,M*T  when M is a Hamilton space 
 
A Hamilton space is a pair ,),( HM  where R*: →MTH  is a smooth regular 
Hamiltonian.  This means that the matrix with the entries 
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 ),(
2
1),( pxHyxg jiij ∂∂=  (2.1) 

 
is of rank  n. 
 
 The regular Hamiltonian H induces (see Ch. 4 in [7]) a nonlinear connection of local 
coefficients 

 

 { } ( )HgHgHgpxN i
k

jkj
k

ikijij ∂∂+∂∂−=  
4
1, 

4
1),( , (2.2) 

 
where } , {  denotes the usual Poisson brackets and ijg  denotes the inverse of the matrix 

)( jkg .  Thus we may consider the almost product structure P completely determined by 
H. 
 Assume that 0),( >ji

ij pppxg  on the slit cotangent bundle 0\*0 MTMT =∗  and 

set ji
ij pppxg ),(2 =ε . From now on we restrict our considerations to MT ∗

0 . 
 We consider the vector fields 

 

 i
ii

i pp ∂==
ε

ζδ
ε

ξ 1   ,1  (2.3) 

 
and the 1-forms 

 

 ( ) ( ) ij
ijij

ij ppgdxpg δ
ε

η
ε

ω   1   ,  1
== . (2.3)′ 

It follows that 
 

 1)(   ,1)( == ζηξω  (2.4) 
 

 0)(   ,0)( == ξηζω , (2.4)'  
 
and the Lemma 1 holds for ηηωωζζξξα ====== 1111   ,  ,  ,  ,1a . 
 We set 

 
 ζηξω ⊗+⊗−= PP2 . (2.5) 

 
Using (2.3), (2.3)' and Lemma 1 for the present case, one gets 
 
Theorem 2.2.  The triple )),(),,(,( 22 ηωζξP=F is a framed )1,3( −f -structure on 

,0 MT ∗  that is, 
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.

,0   ,0)()(

2
2

2222

ζηξω

ηωζξ

⊗−⊗−=

====

IP

PPPP
 (2.6)  

 

Remark 2.1. The framed  )1,3( −f -structure 2F  is of corank 2 and depends only on 
the Hamiltonian H on MT∗

0 . 
 
 We consider MT ∗

0  as a Riemannian manifold with the Sasaki type metric  
 

 ji
ijji

ij ppgdxdxgpxG δδ ⊗+⊗=),( . (2.7) 
 
One easily checks that 

 
 )(   ),,()(   ),,()( 0 MTXXGXXGX ∗∈∀== χζηξω . (2.8)  
 
We have 
 
Theorem 2.3. The Riemannian metric G satisfies 

 

 ( ) ( ) ( )MTYXYXYXYXGYPXPG ∗∈∀−−= 022 ,   ),()()()(,, χηηωω . (2.9) 
 

Proof. First, we notice that 1),(),( == ζζξξ GG  and 0),( =ζξG  and we have that 
)()(),( XPXPXG ωωξ == , )(),( XPXG ηζ −=  by (2.8) and Lemma 1.1. Then we 

have 
 

( ) ( ) ),()(,)()(,)()( ξωζηξωζηξω PXGYPYPXGYYPYXXPXG −=+−+−  

)()(),()()()(),()(),()( YXPYGXYXPYGXPXGY ηηζηωωξωξη +++−+  

,YXYXYXG  )()()()(),( ηηωω −−=  
 

because of .),(),( YXGPYPXG =  
 
 Theorem 2.3 says us that ),( 2 GF  is a Riemannian framed )1,3( −f -structure on 

.0 MT∗  
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3. On structure induced by 2F  on the indicatrix bundle over MT ∗
0  

 
The set }1),(),{( 0 =∈= ∗ pxHMTpxI H  is a -)12( −n dimensional submanifold on 

MT ∗
0 .  We call it the indicatrix bundle of the Hamilton space ,),( HMH n =  extending a 

term used in Finsler geometry. 
 We consider again MT ∗

0  as a Riemannian manifold with the Sasaki type metric G. 
 We are interested to find the unit normal vector field to HI .  We recall that 

1),( =ξξG  and 1),( =ζζG .   As for 2KH = , where K is the fundamental function of 
a Cartan space it is known that ζ  is the unit normal vector field to KI , we look for 
conditions on  H such that ζ  to be the unit normal vector field for the indicatrix bundle 
of the Hamilton space ),( HMH n = .  For the geometry of the Cartan spaces we refer to 
the Ch. 6 in [7]. 

Let be 

  
12 , ,2 ,1, )(

, )(
−==

=

nupp
uxx

ii

ii

αα

α
 (3.1) 

 
a parametrization of the submanifold HI .  The local vector fields αu∂

∂  that form a basis 

of the tangent space to HI  can be put in the form 
 

 ( ) i
j

ij
i

i

i

u
xpxN

u
p

u
x

u
∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+
∂
∂

=
∂
∂

αααα δ , . (3.2) 

 
If one derives the identity 1))(),(( ≡αα upuxH  with respect to ,αu  one obtains 

 

 ( ) ( ) .0 ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

∂+
∂
∂

αααδ
u
xN

u
pH

u
xH

j

ij
ii

i

i  (3.3)  

 
On using (3.2) we see that ζ  is normal to HI  if and only if 

 

 ( ) ( ) 0)(),( 1, =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

ααα ε
ζ

u
xupuxN

u
ppg

u
G

j

ij
i

j
ij  (3.4) 

 
for every 12 , ,2 ,1 −= nα . 
 
 Comparing (3.3) with (3.4) it comes out that (3.4) holds if 
 
 j

iji
i pfgHH =∂=    ,0δ ,  for  f  a smooth function on .0 MT∗  (3.5) 
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 The conditions (3.5) are quite complicated.  We noticed them having in mind the 
case ,2KH =  for K the fundamental function of a Cartan space.  In such a case, it is 
well known that 02 =Kiδ  and from the equality ji

ij pppxgK ),(2 =  it follows that 

.22
j

iji pgK =∂  The question is whether exist non-homogeneous Hamiltonians that 
satisfy (3.5). 
 We show now that the so-called ϕ -Hamiltonians introduced and studied by us in 
[4], fulfill the conditions (3.5). 
 Let ),( KMK n =  be a Cartan space and RR: →+ϕ  a function of class ∞C . 
Assume that ϕ  has the properties: 

 
 0)("2)(',0)(' ≠+≠ tttt ϕϕϕ  for )(Im 2Kt ∈ . (3.6) 

 
Then )(: 2KH ϕ=  is a regular Hamiltonian on MT∗

0  called the ϕ -Hamiltonian 
associated to nK . 
 As we have seen in [4] the Hamiltonians )( 2KH ϕ=  and 2K  define the same 
nonlinear connection. We have .0 )(' 22 == KKH ii δϕδ   Hence the first condition (3.5) 
holds for any ϕ -Hamiltonian. 

 Let 
ji pp

Kij pxg ∂∂
∂= 22

2
1),(  be the metric tensor of nK  and ),( pxg ij  the metric tensor 

(2.1) of .)( 2KH ϕ=   A direct calculation gives 
 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= jiijij ppgpxg

'
"2',

ϕ
ϕϕ  (3.7) 

 
where 
 

( )
i

j
iji

p
Kppxgp
∂
∂

==
2

2
1, . 

 
We have 

 

i

i
j

ij
p
HKpKpg
∂
∂+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

'2
"2'

'
"21'

2
2

ϕ
ϕϕ

ϕ
ϕϕ  

 

because of    
ii p

K
p
H

∂
∂

=
∂
∂ 2

'ϕ . 

 

Thus the second condition (3.5) holds with .0
"2'
'2

2 ≠
+

=
K

f
ϕϕ
ϕ  
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 Let us consider a Hamilton space ),( HMH n =  such that ζ  is the unit normal 
vector field of the indicatrix bundle HI  defined by H. 
 We restrict to HI  the elements of the triple 2F  and indicate this fact by a bar over 
those elements.  We have 
 

 ξξ =  since ξ  is tangent to HI , 

 0=η  on HI , since 0),()( == ζη XGX  for any vector field X  tangent to HI , 

 ξω ⊗−= PP2  on HI , because of )(),(),( 2 PXPXGXPG ηζζ ==  
0)( =−= Xη for any vector field X  tangent to HI . 

 
 We have 
 
Theorem 3.1. The triple ),,( 2 ωξP  defines a Riemannian almost paracontract 
structure on HI , that is, 
 
 (i) 0,0)(,1)( 22 === PP ωξξω  

 (ii) ξω ⊗−= IP 2
2  on HI  

 (iii) )()(),(),( 22 YXYXGYPXPG ωω−= , for any vector fields X, Y tangent to .HI  
 
Proof. All the assertions follow from Theorems 2.2 and 2.3. 
 For 2KL =  we regain our results from [3].  Concluding, we have enlarged the set 
of Hamiltonians for which Theorem 3.1 holds good. 
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