A Framed $f(3,-1)$ Structure on the Cotangent Bundle of a Hamilton Space

Manuela Gîrțu
Faculty of Sciences, University of Bacău, Bacău, Romania
e-mail: manuelag@ub.ro

Abstract

For the cotangent bundle $\left(T^{*} M, \tau^{*}, M\right)$ of a smooth manifold M, the kernel of a differential τ_{*}^{*} of the projection τ^{*} defines the vertical subbundle $V T^{*} M$ of the bundle $\left(T T^{*} M, \tau_{T^{*} M}, T^{*} M\right)$. A supplement $H T^{*} M$ of it is called a horizontal subbundle or a nonlinear connection on $M,[6,7]$. The direct decomposition $T T * M=H T * M \oplus V T * M$ gives rise to a natural almost product structure P on the manifold $T * M$. A general method to associate to P a framed $f(3,-1)$ - structure of any corank is pointed out. This is similar to that given by us in [2] for the tangent bundle of a Lagrange space. When we endow M with a regular Hamiltonian H and use as the nonlinear connection that canonically induced by H, a framed $f(3,-1)$-structure P_{2} of corank 2 naturally appears on $T^{*} M$. This reduces to that found by us in [3] when $H=K^{2}$, for K the fundamental function of a Cartan space $K^{n}=(M, K)$. Then we show that on some conditions for H the restriction of P_{2} to the submanifold $H=1$ of $T_{0}^{*} M$ provides an almost paracontact structure on this submanifold. The conditions taken on H hold for the φ-Hamiltonians introduced by us in [4] as well as for $H=K^{2}$. The idea of this study has the origin in the paper [1] of M. Anastasiei.

2000 Mathematics Subject Classification: 53C60

1. A framed $f(3,-1)$ structure on $T * M$

Let M be a smooth i.e. C^{∞} manifold of dimension n with local coordinates $\left(x^{i}\right)$, $i, j, k, \cdots=1, \cdots, n$. And let $\left(T^{*} M, \tau^{*}, M\right)$ be its cotangent bundle. On $T^{*} M$ we shall take as local coordinates $\left(x^{i} \equiv x^{i} \circ \tau, p_{i}\right)$, where $\left(p_{i}\right)$ are the coordinates of a covector from $T_{x}^{*} M, x\left(x^{i}\right)$, in the natural cobasis $\left(d x^{i}\right)$.

The set $V T * M=\underset{u \in T^{*} M}{\cup} V_{u} T * M$ for $V_{u} T * M=\operatorname{ker} \tau_{*, u}^{*}$, projected over $T * M$ gives the vertical bundle over $T^{*} M$. A supplement $H T * M$ of it is called horizontal bundle or a nonlinear connection on M. We have the decomposition

$$
\begin{equation*}
T_{u} T * M=H_{u} T * M \oplus V_{u} T * M, u \in T * M \tag{1.1}
\end{equation*}
$$

The distribution $u \rightarrow V_{u} T^{*} M$ is locally spanned by $\dot{\partial}^{i}:=\frac{\partial}{\partial p_{i}}$ and one takes $\delta_{i}=\partial_{i}+N_{i k}(x, p) \dot{\partial}^{k}$ as a local basis for the horizontal distribution $u \rightarrow H_{u} T * M$. Thus the basis $\left(\delta_{i}, \dot{\partial}^{i}\right)$ is adapted to the decomposition (1.1). The Einstein convention on summation over the indices i, j, k, \cdots is implied.

The linear operator P on $T_{u} T * M$ defined by

$$
\begin{equation*}
P\left(\delta_{i}\right)=\delta_{i}, P\left(\dot{\partial}^{i}\right)=-\dot{\partial}^{i} \tag{1.2}
\end{equation*}
$$

gives an almost product on $T^{*} M$, that is $P^{2}=I$, where I is the identity operator.
The dual basis of $\left(\delta_{i}, \dot{\partial}^{i}\right)$ is $\left(d x^{i}, \delta p_{i}=d p_{i}-N_{i j}(x, p) d x^{j}\right)$.
Let $\xi_{1}, \xi_{2}, \cdots, \xi_{r}$ be r linearly independent horizontal vector fields and $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{s}$ be s linearly independent vertical vector fields on $T * M$, such that $m=r+s<2 n$. We consider also the r horizontal 1-forms $\omega_{1}, \omega_{2}, \cdots, \omega_{r}\left(\omega_{\alpha}=\omega_{\alpha i} d x^{i}, \alpha, \beta, \cdots=1, \cdots, r\right)$ and s vertical 1-forms $\eta_{1}, \eta_{2}, \cdots, \eta_{s}\left(\eta_{a}=\eta_{a}^{i} \delta p_{i}, a, b, \cdots=1, \cdots, s\right)$ such that

$$
\begin{equation*}
\omega_{\alpha}\left(\xi_{\beta}\right)=\delta_{\alpha \beta}, \eta_{a}\left(\zeta_{b}\right)=\delta_{a b} \tag{1.3}
\end{equation*}
$$

Notice that we have also

$$
\begin{equation*}
\omega_{\alpha}\left(\zeta_{a}\right)=0, \eta_{a}\left(\xi_{\alpha}\right)=0 \tag{1.3}
\end{equation*}
$$

We clearly have $P\left(\xi_{\alpha}\right)=\xi_{\alpha}, P\left(\zeta_{a}\right)=-\zeta_{a}, \forall \alpha, a$ and

Lemma 1.1. $\quad \omega_{\alpha} \circ P=\omega_{\alpha}, \eta_{a} \circ P=-\eta_{a}, \quad \forall \alpha, a$.

Now we put

$$
\begin{equation*}
P_{m}=P-\sum_{\alpha} \omega_{\alpha} \otimes \xi_{\alpha}+\sum_{a} \eta_{a} \otimes \zeta_{a} \tag{1.4}
\end{equation*}
$$

and we have
Theorem 1.1. The triple $\mathrm{F}_{m}=\left(P_{m},\left(\xi_{\alpha}, \zeta_{a}\right),\left(\omega_{\alpha}, \eta_{a}\right)\right)$ defines a framed $f(3,-1)$ structure on $T^{*} M$, that is, we have

$$
\begin{align*}
& P_{m}\left(\xi_{\alpha}\right)=0, P_{m}\left(\zeta_{a}\right)=0, \omega_{\alpha} \circ P_{m}=0, \eta_{a} \circ P_{m}=0, \forall \alpha, a \\
& P_{m}^{2}=I-\sum_{\alpha} \omega_{\alpha} \otimes \xi_{\alpha}-\sum_{a} \eta_{a} \otimes \zeta_{a} . \tag{1.5}
\end{align*}
$$

Proof. One uses (1.3), (1.3)' and the Lemma 1.1.
This result is completed by
Theorem 1.2. The operator P_{m} is of rank $2 n-m$ and it satisfies

$$
\begin{equation*}
P_{m}^{3}-P_{m}=0 . \tag{1.6}
\end{equation*}
$$

Proof. The equality (1.6) follows from (1.5). In order to prove that rank $P_{m}=2 n-m$, we show that ker P_{m} is spanned by the vector fields $\left(\xi_{\alpha}, \zeta_{a}\right), \alpha=1, \cdots, r, a=1, \cdots, s$, $r+s=m$. $\operatorname{By}(1.5), \operatorname{Span}\left(\xi_{\alpha}, \zeta_{a}\right)$ is contained in ker P_{m}. For proving the converse inclusion, let be $Z=X^{i} \delta_{i}+Y_{i} \dot{\partial}^{i} \in \operatorname{ker} P_{m}$. Then by (1.4),

$$
\begin{gathered}
P_{m}(Z)=X^{i} \delta_{i}-Y_{i} \dot{\partial}^{i}-\sum_{\alpha}\left(\omega_{\alpha k} X^{k}\right) \xi_{\alpha}^{i} \delta_{i}+\sum_{a}\left(\eta_{a}^{k} Y_{k}\right) \zeta_{i a} \dot{\partial}^{i} \text { and } P_{m}(Z)=0 \\
X^{i}=\sum_{\alpha}\left(\omega_{\alpha k} X^{k}\right) \xi_{\alpha}^{i}, Y_{i}=\sum_{a}\left(\eta_{a}^{k} Y_{k}\right) \zeta_{i a}
\end{gathered}
$$

gives
It follows

$$
Z=\sum_{\alpha}\left(\omega_{\alpha k} X^{k}\right) \xi_{\alpha}+\sum_{a}\left(\eta_{a}^{k} Y_{k}\right) \zeta_{a}, \text { hence } Z \in \operatorname{Span}\left(\xi_{\alpha}, \zeta_{a}\right)
$$

Theorem 1.2 says that the framed $f(3,-1)$-structure F_{m} is of corank m. The term $f(3,-1)$ - structure is suggested by (1.6). We refer to the book [5] for an account of framed $f(3,-1)$-structures and the other related structures.

The existence of F_{m} is heavily based on the existence of linearly independent vector fields ξ_{α}, ζ_{a}.

In the next section we shall exhibit a natural framed $f(3,-1)$ - structure on $T^{*} M$ when M is a Hamilton space.

2. A framed $f(3,-1)$-structure on $T * M$, when M is a Hamilton space

A Hamilton space is a pair (M, H), where $H: T^{*} M \rightarrow \mathrm{R}$ is a smooth regular Hamiltonian. This means that the matrix with the entries

$$
\begin{equation*}
g^{i j}(x, y)=\frac{1}{2} \dot{\partial}^{i} \dot{\partial}^{j} H(x, p) \tag{2.1}
\end{equation*}
$$

is of rank n.

The regular Hamiltonian H induces (see Ch. 4 in [7]) a nonlinear connection of local coefficients

$$
\begin{equation*}
N_{i j}(x, p)=\frac{1}{4}\left\{g_{i j}, H\right\}-\frac{1}{4}\left(g_{i k} \dot{\partial}^{k} \partial_{j} H+g_{j k} \dot{\partial}^{k} \partial_{i} H\right) \tag{2.2}
\end{equation*}
$$

where $\{$,$\} denotes the usual Poisson brackets and g_{i j}$ denotes the inverse of the matrix $\left(g^{j k}\right)$. Thus we may consider the almost product structure P completely determined by H.

Assume that $g^{i j}(x, p) p_{i} p_{j}>0$ on the slit cotangent bundle $T_{0}^{*} M=T * M \backslash 0$ and set $\varepsilon^{2}=g^{i j}(x, p) p_{i} p_{j}$. From now on we restrict our considerations to $T_{0}^{*} M$.

We consider the vector fields

$$
\begin{equation*}
\xi=\frac{1}{\varepsilon} p^{i} \delta_{i}, \quad \zeta=\frac{1}{\varepsilon} p_{i} \dot{\partial}^{i} \tag{2.3}
\end{equation*}
$$

and the 1 -forms

$$
\begin{equation*}
\omega=\frac{1}{\varepsilon}\left(g_{i j} p^{j}\right) d x^{i}, \quad \eta=\frac{1}{\varepsilon}\left(g^{i j} p_{j}\right) \delta p_{i} \tag{2.3}
\end{equation*}
$$

It follows that

$$
\begin{gather*}
\omega(\xi)=1, \quad \eta(\zeta)=1 \tag{2.4}\\
\omega(\zeta)=0, \quad \eta(\xi)=0 \tag{2.4}
\end{gather*}
$$

and the Lemma 1 holds for $\alpha=a=1, \xi_{1}=\xi, \zeta_{1}=\zeta, \omega_{1}=\omega, \eta_{1}=\eta$.
We set

$$
\begin{equation*}
P_{2}=P-\omega \otimes \xi+\eta \otimes \zeta \tag{2.5}
\end{equation*}
$$

Using (2.3), (2.3)' and Lemma 1 for the present case, one gets

Theorem 2.2. The triple $\mathrm{F}_{2}=\left(P_{2},(\xi, \zeta),(\omega, \eta)\right)$ is a framed $f(3,-1)$-structure on $T_{0}^{*} M$, that $i s$,

$$
\begin{align*}
& P_{2}(\xi)=P_{2}(\zeta)=0, \omega \circ P_{2}=\eta \circ P_{2}=0 \tag{2.6}\\
& P_{2}^{2}=I-\omega \otimes \xi-\eta \otimes \zeta
\end{align*}
$$

Remark 2.1. The framed $f(3,-1)$-structure F_{2} is of corank 2 and depends only on the Hamiltonian H on $T_{0}^{*} M$.

We consider $T_{0}^{*} M$ as a Riemannian manifold with the Sasaki type metric

$$
\begin{equation*}
G(x, p)=g_{i j} d x^{i} \otimes d x^{j}+g^{i j} \delta p_{i} \otimes \delta p_{j} . \tag{2.7}
\end{equation*}
$$

One easily checks that

$$
\begin{equation*}
\omega(X)=G(X, \xi), \quad \eta(X)=G(X, \zeta), \quad \forall X \in \chi\left(T_{0}^{*} M\right) \tag{2.8}
\end{equation*}
$$

We have
Theorem 2.3. \quad The Riemannian metric G satisfies

$$
\begin{equation*}
G\left(P_{2} X, P_{2} Y\right)=G(X, Y)-\omega(X) \omega(Y)-\eta(X) \eta(Y), \quad \forall X, Y \in \chi\left(T_{0}^{*} M\right) \tag{2.9}
\end{equation*}
$$

Proof. First, we notice that $G(\xi, \xi)=G(\zeta, \zeta)=1$ and $G(\xi, \zeta)=0$ and we have that $G(P X, \xi)=\omega(P X)=\omega(X), G(P X, \zeta)=-\eta(X)$ by (2.8) and Lemma 1.1. Then we have

$$
\begin{aligned}
& G(P X-\omega(X) \xi+\eta(X) \zeta, P Y-\omega(Y) \xi+\eta(Y) \zeta)=G(P X, P Y)-\omega(Y) G(P X, \xi) \\
& +\eta(Y) G(P X, \xi)-\omega(X) G(P Y, \xi)+\omega(X) \omega(Y)+\eta(X) G(P Y, \zeta)+\eta(X) \eta(Y) \\
& =G(X, Y)-\omega(X) \omega(Y)-\eta(X) \eta(Y)
\end{aligned}
$$

because of $G(P X, P Y)=G(X, Y)$.
Theorem 2.3 says us that $\left(\mathrm{F}_{2}, G\right)$ is a Riemannian framed $f(3,-1)$-structure on $T_{0}^{*} M$.

3. On structure induced by F_{2} on the indicatrix bundle over $T_{0}^{*} \boldsymbol{M}$

The set $I_{H}=\left\{(x, p) \in T_{0}^{*} M \mid H(x, p)=1\right\}$ is a $(2 n-1)$-dimensional submanifold on $T_{0}^{*} M$. We call it the indicatrix bundle of the Hamilton space $H^{n}=(M, H)$, extending a term used in Finsler geometry.

We consider again $T_{0}^{*} M$ as a Riemannian manifold with the Sasaki type metric G.
We are interested to find the unit normal vector field to I_{H}. We recall that $G(\xi, \xi)=1$ and $G(\zeta, \zeta)=1$. As for $H=K^{2}$, where K is the fundamental function of a Cartan space it is known that ζ is the unit normal vector field to I_{K}, we look for conditions on H such that ζ to be the unit normal vector field for the indicatrix bundle of the Hamilton space $H^{n}=(M, H)$. For the geometry of the Cartan spaces we refer to the Ch. 6 in [7].

Let be

$$
\begin{align*}
x^{i} & =x^{i}\left(u^{\alpha}\right) \tag{3.1}\\
p_{i} & =p_{i}\left(u^{\alpha}\right), \alpha=1,2, \cdots, 2 n-1
\end{align*}
$$

a parametrization of the submanifold I_{H}. The local vector fields $\frac{\partial}{\partial u^{\alpha}}$ that form a basis of the tangent space to I_{H} can be put in the form

$$
\begin{equation*}
\frac{\partial}{\partial u^{\alpha}}=\frac{\partial x^{i}}{\partial u^{\alpha}} \delta_{i}+\left(\frac{\partial p_{i}}{\partial u^{\alpha}}-N_{i j}(x, p) \frac{\partial x^{j}}{\partial u^{\alpha}}\right) \dot{\partial}^{i} \tag{3.2}
\end{equation*}
$$

If one derives the identity $H\left(x\left(u^{\alpha}\right), p\left(u^{\alpha}\right)\right) \equiv 1$ with respect to u^{α}, one obtains

$$
\begin{equation*}
\left(\delta_{i} H\right) \frac{\partial x^{i}}{\partial u^{\alpha}}+\left(\dot{\partial}^{i} H\right)\left(\frac{\partial p_{i}}{\partial u^{\alpha}}-N_{i j} \frac{\partial x^{j}}{\partial u^{\alpha}}\right) \equiv 0 \tag{3.3}
\end{equation*}
$$

On using (3.2) we see that ζ is normal to I_{H} if and only if

$$
\begin{equation*}
G\left(\frac{\partial}{\partial u^{\alpha}}, \zeta\right)=\frac{1}{\varepsilon}\left(g^{i j} p_{j}\right)\left(\frac{\partial p_{i}}{\partial u^{\alpha}}-N_{i j}(x(u), p(u)) \frac{\partial x^{j}}{\partial u^{\alpha}}\right)=0 \tag{3.4}
\end{equation*}
$$

for every $\alpha=1,2, \cdots, 2 n-1$.
Comparing (3.3) with (3.4) it comes out that (3.4) holds if

$$
\begin{equation*}
\delta_{i} H=0, \dot{\partial}^{i} H=f g^{i j} p_{j}, \text { for } f \text { a smooth function on } T_{0}^{*} M . \tag{3.5}
\end{equation*}
$$

The conditions (3.5) are quite complicated. We noticed them having in mind the case $H=K^{2}$, for K the fundamental function of a Cartan space. In such a case, it is well known that $\delta_{i} K^{2}=0$ and from the equality $K^{2}=g^{i j}(x, p) p_{i} p_{j}$ it follows that $\dot{\partial}^{i} K^{2}=2 g^{i j} p_{j}$. The question is whether exist non-homogeneous Hamiltonians that satisfy (3.5).

We show now that the so-called φ-Hamiltonians introduced and studied by us in [4], fulfill the conditions (3.5).

Let $K^{n}=(M, K)$ be a Cartan space and $\varphi: \mathrm{R}_{+} \rightarrow \mathrm{R}$ a function of class C^{∞}. Assume that φ has the properties:

$$
\begin{equation*}
\varphi^{\prime}(t) \neq 0, \varphi^{\prime}(t)+2 t \varphi^{\prime \prime}(t) \neq 0 \text { for } t \in \operatorname{Im}\left(K^{2}\right) \tag{3.6}
\end{equation*}
$$

Then $H:=\varphi\left(K^{2}\right)$ is a regular Hamiltonian on $T_{0}^{*} M$ called the φ-Hamiltonian associated to K^{n}.

As we have seen in [4] the Hamiltonians $H=\varphi\left(K^{2}\right)$ and K^{2} define the same nonlinear connection. We have $\delta_{i} H=\varphi^{\prime}\left(K^{2}\right) \delta_{i} K^{2}=0$. Hence the first condition (3.5) holds for any φ-Hamiltonian.

Let $g^{\circ}(x, p)=\frac{1}{2} \frac{\partial^{2} K^{2}}{\partial p_{i} \partial p_{j}}$ be the metric tensor of K^{n} and $g^{i j}(x, p)$ the metric tensor (2.1) of $H=\varphi\left(K^{2}\right)$. A direct calculation gives

$$
\begin{equation*}
g^{i j}(x, p)=\varphi^{\prime}\left(\stackrel{\circ}{g^{i j}}+2 \frac{\varphi^{\prime \prime}}{\varphi^{\prime}} \stackrel{\circ}{p^{i}} \stackrel{\circ}{p^{j}}\right) \tag{3.7}
\end{equation*}
$$

where

$$
\stackrel{\circ}{p}^{i}=\stackrel{\circ}{g}^{i j}(x, p) p_{j}=\frac{1}{2} \frac{\partial K^{2}}{\partial p_{i}}
$$

We have

$$
g^{i j} p_{j}=\varphi^{\prime}\left(1+\frac{2 \varphi^{\prime \prime}}{\varphi^{\prime}} K^{2}\right) \dot{p}^{i}=\frac{\varphi^{\prime}+2 \varphi^{\prime \prime} K^{2}}{2 \varphi^{\prime}} \frac{\partial H}{\partial p_{i}}
$$

because of

$$
\frac{\partial H}{\partial p_{i}}=\varphi^{\prime} \frac{\partial K^{2}}{\partial p_{i}}
$$

Thus the second condition (3.5) holds with $f=\frac{2 \varphi^{\prime}}{\varphi^{\prime}+2 \varphi^{\prime \prime} K^{2}} \neq 0$.

Let us consider a Hamilton space $H^{n}=(M, H)$ such that ζ is the unit normal vector field of the indicatrix bundle I_{H} defined by H.

We restrict to I_{H} the elements of the triple F_{2} and indicate this fact by a bar over those elements. We have

- $\bar{\xi}=\xi$ since ξ is tangent to I_{H},
- $\bar{\eta}=0$ on I_{H}, since $\eta(X)=G(X, \zeta)=0$ for any vector field X tangent to I_{H},
- $\bar{P}_{2}=P-\omega \otimes \xi \quad$ on $\quad I_{H}$, because of $\quad G\left(\bar{P}_{2} X, \zeta\right)=G(P X, \zeta)=\eta(P X)$ $=-\eta(X)=0$ for any vector field X tangent to I_{H}.

We have

Theorem 3.1. The triple $\left(\bar{P}_{2}, \bar{\xi}, \bar{\omega}\right)$ defines a Riemannian almost paracontract structure on I_{H}, that is,
(i) $\bar{\omega}(\bar{\xi})=1, \bar{P}_{2}(\bar{\xi})=0, \bar{\omega} \circ \bar{P}_{2}=0$
(ii) $\bar{P}_{2}^{2}=I-\bar{\omega} \otimes \bar{\xi}$ on I_{H}
(iii) $G\left(\bar{P}_{2} X, \bar{P}_{2} Y\right)=G(X, Y)-\bar{\omega}(X) \bar{\omega}(Y)$, for any vector fields X, Y tangent to I_{H}.

Proof. All the assertions follow from Theorems 2.2 and 2.3.
For $L=K^{2}$ we regain our results from [3]. Concluding, we have enlarged the set of Hamiltonians for which Theorem 3.1 holds good.

References

1. M. Anastasiei, A framed f-structure on tangent manifold of a Finsler space, An. Univ. Bucuressti, Mat. Inform. 49 (2000), 3-9.
2. M. Gîr̦̦u, A framed $f(3,-1)$-structure on the tangent bundle of a Lagrange space. To appear.
3. M. Gîr̦̦u, A framed $f(3,-1)$-structure on the cotangent bundle of a Cartan space. To appear.
4. M. Gîrțu, On a class of regular Hamiltonians, Libertas Math. 23 (2003), 57-64.
5. I. Mihai, R. Roşca and L. Verstraelen, Some aspects of the differential geometry of vector fields, PADGE, Katholieke Universiteit Leuven 2 (1996).
6. R. Miron and M. Anastasiei, The geometry of Lagrange spaces: theory and applications, Fundamental Theories of Physics, 59, Kluwer Academic Publishers Group, Dordrecht, 1994.
7. R. Miron, D. Hrimiuc, H. Shimada and V.S. Sabău, The geometry of Lagrange and Hamilton spaces, Fundamental Theories of Physics, 118, Kluwer Academic Publishers Group, Dordrecht, 2001.

Keywords and phrases: cotangent bundle, framed $f(3,-1)$-structures, Hamilton spaces.

