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1. Introduction

Let X, X,,---, X, be independent rv’s each of which has the same continuous
distribution function (df) F(X). Let X,.,, X,.5, -, X,,., denote the order statistics of
the rv’s X, X,,---, X,,. Assume that a, > 0 and b, be suitable normalizing constants
and v, be a positive integer valued rv. In many biological, agricultural and in some
quality control problems it is almost impossible to have a fixed sample size because some

observations always get lost for various reasons. Therefore, in applications the sample
sizenin X,.,,1 <r <n, itself is frequently a rv. Hence, much attention has been paid

to weak convergence of X,., , 1 <r <V,, when properly normalized.

Here, the normalization is very important. Galambos [15,16] pointed out that if we
allow normalization by a, >0 and b, with the (same) random indices, then the

normalizing constants may dominate both the conditions for convergence and the actual
form of the limiting distribution. So, the only interesting weak convergence results are
those when the normalizing constants are not random. The main aim of this paper is to

w

investigate the weak convergence (—)) of the random sequence
n

X"\/n:vrI _bn
—nn— as N — o,
where 1<r, <n, and the df of the normalized v, weakly converges to a

nondegenerate df. Many authors considered the preceding problem in the following
cases:
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(1) Extreme case (I, = r =constant or I, = n—r): See, for example [12], [14],
[17], [18], [6], [4], [5], [9] and [11].

. I I
(2) Intermediate case (—” — 0-~—>1, where r, > and (—)) means
n n n n n n

convergence as N — oo) . See, for example [21], [3], [7] and [8].
(3) Central case (x/ﬁ(%” - /1) —>0,0< 1< lj: See, for example [22] and [19].
n

The paper is organized as follows: In Section 2, the above stated problem will be
considered for the central case when the random index v, is assumed to be independent

of all basic rv’s X, X,,:-+, X,;. Moreover, the study will be carried under each of the
following exhaustive assumptions:

() Yn(2-2)>t,0<1<1,~0<t<oo.
n
(i1) Jn (%”— A) is bounded but does not tend to a limit, as n — oo.

In Section 3, by combining the results of Section 2 with the results concerning the above
three cases, a general theorem for the limit df’s of order statistics with random indices is
established. Finally, Section 4 is devoted to the study the case when the interrelation
between the sample size V,, and the basic rv’s is not restricted.

2. Weak convergence of general central order statistics with random index

Throughout this paper the following abbreviations will be adopted

Yom = 2000 nm =12, Gy() = P(X, 0 €305 Ga(X) = P(Yop < %),

m

Yo(X) = P(Yvn:n < Xx). Furthermore, let ®(-) stand for the standard normal df.

r,:n

When the rank sequence {r,}, is assumed to satisfy the regular condition

Iy .
Jn (F+-4) —n> 0, Shokry [22], proved the following theorem.
Theorem 2.1.  Consider the following three conditions:
w
(A) Gi(x) > @ (WP(x), ie {1234},
n

where Wi(ﬂ)(x) has one and only one of the following possible limiting types:
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Typel WA = X2
P ’ ! “|exf, x>0,c,8>0,
_ B
Typell : WA (x) = c[x|", x<0
0, x>0,c, >0,
_ B
Type Il : WA (x) alx|”, x<0,¢ >0,
C,xP, Xx>0,¢,8>0,
—o, Xx<-1,
Type IV : WA () =W, (x) =4 0, —1<x<1, (2.1)
0, X>1.
V, w .
(B) A (nx) = P(T" < x) —n> A(X), where A(x) isadf such that A(+0) = 0.

(C) P(X) N Y(X) = E(CD (x/ZWi(/’)(x))), where Z is a rv which is assumed to be
distributed as A(x). ie., E(0(VZ WP x0))= [ @VZ WP x)dAw).

The implications between the aforesaid conditions are

1) (ANB) < (©),
2 ANnEC =B,
3 BNECcA.

Remark 2.1. The implication (3) (in Theorem 2.1) is proved, by [22], only for the
types Wl(ﬂ ), Wz(ﬂ ) and W3(ﬂ ).

We now consider the following three exhaustive cases:

Case 1: x/ﬁ(%"—/l)—n)t, —o<t<ow,

Case 2: x/ﬁ(%"—ﬁ)—n)ioo.

Case 3: x/ﬁ (%" - /1) is bounded, but does not tend to a limit, as n — .

In the Case 1, the next theorem shows that Theorem 2.1 is still true (with only the
obvious modifications).
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Theorem 2.2. Consider the following three conditions:

w
(A) GI(X) > ®WAxX) +c,t), i e {1,234}, where Vn (%”—/1)—) t,
n

n

1

Jaa=2)°

(B) A,(nx) ﬁ A(X), Ax) isa df suchthat A(+0) = 0.

—o<t<w,0<A<landc, =

©) ¥ (0 —:} ¥ (x) = E (0(vZ (WP +1c,))).

The implications between the conditions (A), (B) and (C) are
() (AN (B) < (C),
2) (AN(C)c(B),

B) BN () cA).

Remark 2.2. The implication (3) (in Theorem 2.1) will be proved only for the types
Wl(ﬂ)’ Wz(ﬂ) and W3(/7) )

We notice that the method of the proof of Theorem 2.2 is similar to the proof of
Theorem 2.1 [22]. On the other hand, the proof of Theorem 2.1 is essentially based on a
lemma which individually express a very interesting fact. This lemma states that the
convergence in condition (A) (in Theorem 2.1) is uniform (although the limit df’s may
not be continuous). We will extend this lemma to cover the Case 1. Thus, in this case,
Theorem 2.2 will be followed by the same method given in [22].

Lemma2.1. Assume that
Jﬁ(—”—ﬁ]—)t, —w<t<om 0< A<l 2.2)

Then,

F(x)— ™

Gy (X) = D[ 4/n —r() r” +R,(x), n=123,-,
(=)
n n

where R,(x) — 0, uniformly with respectto x.
n
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F()

Proof. It is well known that G,(X) = W I 211 = z)"" dz.

. r, -1
putting Z = ——

+ Yo, ), where
o= |—""h -0,
hL-D(n-1

-1
LR

¢ n —+H
G " dy,
)= V T ¢r 1 A n -1 Jll g

we obtain

where 6, =

By virtue of (2.2) and (2.3), we get

and

(n-=1)3 B n3 0
(n=r)m -1 h(h=ry) n

Now, consider the difference

A, :L(“‘l F(x)—lj—x/ﬁ G

N -1 ‘\)%n(n_rn)

n

173

Hence, by

2.3)

al

ad2m

(2.4)

2.5)

=F(x)[\/ (n-1)3 _J n3 J_(\/(rn—l)(n—l) _\/ nr, ]
(n - r.n)(rn _1) rn(n - rn) n-r n-r,
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From (2.3), (2.4), (2.5) and the fact that F(X) <1, we deduce that, A, — 0, uniformly
n

with respect to X. On the other hand, by simple calculations we can show that

230 1 -
=1 =1+0|=|, |0|<1. 2.6
fa =1+ 22(12a) " [aj | |< 6)

Using (2.6) and the fact that min (r,,,n —r,) —> c, we have
n

SN 2.7
¢rn—1¢n—rn N ()

Now, we can write

LELF0-D i
J'an -1 ez +6, dy — Z(_l)l |r(1|)(x),
i=1

.
an

where
1 —y2 1
10(x) = 10 :j “eidy = 21 d|-— |0, 2.8)
o a ) n
RO ¥
1900 = [5F (En -et ay,
I | Foo-/ | — '”J e
13(x) = ") e dy >0 2.9
i (X) T y — (2.9)
and

19(x) = /27 © Jn P-4

Jra=

Therefore, we get G,(X) = # 1{P(x) + R,(X), where
T
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RU) = xS 0
N2 ¢rn—1 ¢n—rn n-1 i=1
1 o n o
TRLRCE (n R 1} (2.10)

It remains to prove that R,(X)—>0, uniformly with respect to X. Using (2.7)
n

119 (%

N

to zero with respect to X, as n—>o. To prove 1P(x)—> 0, let us write
n

and the fact that <1, the last term on the RHS of (2.10) tends uniformly

r,—1
n-r,

ow,) =, —DIn(l+w,)+(n—-r,)In(1 - W,), where W, = ya,. Then, we

get ¢(Wn)—y72+ 6,. By differentiating ¢(w,) with respect to Ww,, we get

m-1.1,
, (1, ~D(n-1) w, " (r, =) (n=1) L Wa
PWy) = == 57— % s and ¢i(wy) = — e x YEIE
n (lfwn)(lfn,rn Wn) n (H’Wn) (lfﬁwn)
When y changes from — L to "In  the variable W, changes from -1 to |
a a, rh-1 r, -1

r,-1
n-r,

which implies 1+w, > 0 and 1 - w, > 0. Thus, ¢'(w,) and w, have opposite

signs. Moreover, ¢"”"(w,) < 0. Therefore, forany A > 0, it is easy to show that

A
I ] e/ dy < ’; ef(=Aay) (2.11)
Tan and (—Aay)

and

Zin(r’;—illF(X)—l) e¢(wn)dy < '_—1e¢(Aan) . (212)
and'(Aay)

Using the Maclaurin’s expansion for the function ¢(w,) we get

s = 90+ L0, Loz 1400, (> 0),

where |o(1)| < %, when |Wn | < 0, . Therefore, if | Aan| < 0, we get

(h-Dn-D alA? A 2.13)

Aa,) < —
#Ac) n-r, 4 4
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Moreover, ¢'(W,) = ¢"'(0) + w,(1+0o(1)), w, = 0. By choosing &, such that
n

0< 9, <6, when |Wn| < d,, we get |an¢’(wn)| > |Wn| w Therefore, if

|Aan| < J,, we get

| (Acy)| > | A |¢”((;)|“” - A“ﬂ'f"m” - g. (2.14)

Now, by using (2.11), (2.12), (2.13) and (2.14) under the condition that |Aan| < 0,,

we get

-A @ Fe0-D :
I e/ dy + I ot e?Wndy < Aot (2.15)
_i A A
On the other hand, we can easily prove that
Ay a@RFO-D 2 s
J‘ 1e%dy+J‘Z""‘ ” eyZdy<%eA2. (2.16)

From (2.15) and (2.16), it follows that

n-1

— 2 1 —_ _y2
‘J‘ f[emwn) _ e—yzj dy + J':n(rn—l FO0-1) (e¢(wn) _ e;) dy

an

2

B AT
Le .

Forevery 0 <M< 1, let A = 4, lnim. Then

Ao I 2.13)
A 4

We now show that for every > 0 there exists N such that

A -2
Jle
-A

e — 1| dy < gL whenever n > N. (2.19)
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For this purpose let us rewrite 6, , in the following form

5 _
6, = y?-‘r(rn -DIn(1+ye,)+(n- rn)ln[l— rr]“ rl yanj

“In

— 2 3
_ 2l rn{yan ) | (Yan) +}

n-1| 3 4 5

2
, =11 r, —1 I 5 511
-y —ya +—aly — | 4+
y n—1[3y ""n-r,) A ny n—r,

Since a, -0 we can take N, large enough such that for n > N;, we have | 9n| <1
n

(note that 6, — 0, as a, — 0). Hence, it follows that

G —1|dy<5 max |6’n|<5—m’=1n.’
—A<y<A 25 5

Ay
[e
-A

Therefore, in view of (2.17), (2.18) and (2.19), for every > 0, there exists N, such
that

[1®| < M whenever n > N, . (2.20)

Finally, from (2.8), (2.9), (2.20) and (2.10), we get lim R,(X) = 0. This completes the
n—oo

proof of the lemma.

We discuss the Cases 2 and 3 throughout an example, which shows that either ¥(x)
does not exist or it is degenerate.

Example 2.1. Under the conditions of the Case 2, Wu [23] has shown that the class of
all possible limit nondegenerate df’s of the term Y,., contains only the types

@ (VP (x)), i =1,2,3, where

Type I: V,(x) = VP(x) = x, V x;
— fBIn{x|, x<0,
Types I: v;m(x):{ pinlx]
0, X>0;
) -, x50,
Types III:  V37/(X) =
Plnx, x>0;
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w
Where S is some positive constant. Moreover, G;(X) —> d)(Vi(ﬂ)(x)), ie{l,23},
n

if and only if U,,(x) = n(F(@x+b,)-2c, -»VPx),c, = Jﬁ where

a, >0 and b, are suitable normalizing constants. Assume now that the positive

integer rv Vv, is independent of all basic rv’s X, X,,:--,X,. Furthermore, let

w w
A(X)—> AX), x>0 and Gi(x) > ®(V,\P(x)), i € {1,2,3}. Then by using the total
n n

probability rule, we get
() ~ [ @ Uy ,00)dA(m),
0

where Unn(X) = Jm (F(ax+b, - %) C,. However, we can write
Upa(X) = \/@(Un,n(x) ++nec, (- rFm)) Thus, if we put m=nz, we get
Upn) =>VP (%), i € {1,2,3} and ﬁ?ﬁ. On the other hand, in view of
CorollarynZ of [23], there exists a subsequence {ny}; of natural numbers, such that
%—) L > 1. Moreover, the sequence {\/E (r;—: - rns+|)} possesses a positive limit

s.n

point, which has infinite value. Therefore forall z > 1, we get

Ns = s M54

. r, o . ! f
lim supx/ﬁ (—“—ﬂj > lim sup./ng ( O —M] =,
n nz

where (and in the sequel), if / is not integer, ,, is understood as I;,; and as usual [/]

denotes the integer part of /. The above relation implies

lim sup~/n [r—“—::—Zj -, forall z > 1, 2.21)
Z

n—oo n

which in turn shows that W(X), under our assumptions, either does not exist or is

degenerate. Clearly, this example is still true, when \/ﬁ (rT" — A1) — — o and also in the
n

Case 3.
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3. General asymptotic behaviour of order statistics with random index
which is independent of the basic rv’s

Let a, > 0 and b, be suitable normalizing constants and Vv,, be a positive integer valued
rv such that

‘P,T(X)i Y(x), (3.1)

where W(X) is a nondegenerate df. Let ©, be the class of all nondegenerate limits df’s

Y(x) in (3.1). The following theorem is obtained by unifying the results of Section 2

and the known results given in the three cases in Section 1. This theorem characterizes
the class ®Vn for any order statistics with a random index, which is assumed to be

independent of the basic rv’s.

Theorem 3.1.  For any nondegenerate df W(x), W(x) € K, if and only if one of the
conditions (1), (11) and (I11) holds

(i) r, =r = constant (extreme case).
w
(i) Gr0—> LU (X)),
n
where T, (-) is the incomplete Gamma function.
w

@iii) A, (nx) > A(X), A(x) is a df such that A(+0) = 0.

)

The limit df ¥(x), has the form ¥(x) = E([,(ZU{?)), i € {1,2,3}, where Z is a rv,
which is distributed as A(x), UP(x)=x, x> 0;UP(x) = (-x)#, x<0; and
U3(ﬂ)(x):ex,—oo< X<ow, f>0.
0] Jﬁ(%"—ﬂ)—) t,—w<t<ow,0<A<1 (central case).
n

(D 1) G0 - dWP (%) +tc,),

(iii) A, (nx) l A(X), A(x) is a df such that A(+0) = 0.

The limit df W(x) has the form W(x)= E(@(Z WP (x) + tc,))), where W, (x),
i =1,2,3,4 are defined in (2.1).
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w
(') \/rn-#zn _\/E - L;s’
n
for any sequence of integer values {z,,} for which Z"a - 0,
n'"2 o
(1) 0<a<l1,¢>0and & isany real number (intermediate case).
w
(i) Gr(x) - oV (x)).
n
a w
iy  A,(n'"Tx+n) > AX) is a df.
n
The limit df W(x) has the form
Y(x) = E@(V,P(x) + Z((1 - a))). (3.2)

If r, does not satisfy any of the conditions (i-1), (i-11) and (i-111), then y(x) can only
have a degenerate type or does not exist.

In most of the sampling techniques, when we have to consider the sample size as a
rv, this rv will have the same df for all order statistics under consideration (extreme,
intermediate and central terms). Therefore, we can formulate the following result.

Theorem 3.2. If we have a sample of random size and intermediate term with rank
sequence satisfying the condition (i-111) (Chibisov’s condition, see [13]) such that the
relations (ii-Ill) and (iii-lll) of Theorem 3.1 hold with nondegenerate

df oV,P(x)), i e{1,2,3yand A(x), then (3.2) will be satisfied with nondegenerate
df W(x). In the same time, the df’s of all extreme and central terms can only weakly
converge to the df’s T, (U{?(x)), i € {1,2,3} and ® (W, (x) +c,t), i e {1,2,3,4},
respectively. On the other hand, the convergence of the df’s for extreme or central terms
to nondegenerate df’s (such that the relations (ii-1) and (iii-1) or the relations (ii-1l) and

(iii-11) are satisfied with nondegenerate df’s) implies the nonconvergence of all
intermediate terms.

o w
Proof. Assume that, we have a random index v, for which Aw(nl_fx +n)—> A(X),
n

where A(X) is a nondegenerate df. Let I, be a rank sequence satisfying Chibisov’s

a
2

condition, i.e., I, ~ £%n

,0<a<1. Since ]”a — oo, then by using Lemma 4.1.1
n

n 2

in [15] we get

x<1,

w (0,
A(nx)—>{ (3.3)
n |1, x>1.
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It is easy to show that (3.3) is the necessary and sufficient condition to get
Y(x) = T (UP(x), in (I) and ¥(x) = ® (WP (x) + c,t), in Theorem 2.1. The second
part of the theorem follows from (I), Theorem 2.1 and [3] (see the example). This
complete the proof of the theorem.

Example 3.1.  Consider the rth order statistic from a sample of size n obtained from
the uniform distribution on the interval (0,1) with 1<r, <n, and

min (r,,N —1,) > . Itis well known that (see [2])
n

w
P(an X + By < %) > O(X),
n- n

1
1

r,(n—r, 2 .. .
where o, = ("n—;“’) 2 and g, - —'7"/ nw? - If we have a positive integer valued rv
|~ n

w w
v, such that A (nx)—> A(x), then P(a,X, . + f < X) > E(®(ZX)), holds only
n nn n

for the order statistics X, ., for which there exist A and t such that

—o<t<w,0<A<1l and 4/n (rn" - 4A) > t. If we have a rv v, such
n

w
that, A(%x +1) = A(X), then
n

. 0 M E@Z-a)+ ), r~n2,
(an rvn:Vn +ﬂn_X) n_> (D(X)a ﬁ(%—ﬂ)—)t’—w<t<w-
n

4. General asymptotic behaviour of order statistics with general random
index

When the interrelation between the random index and the basic rv’s is not restricted,
parallel theorems of Theorems 3.1, 3.2 may be proved by replacing the conditions
(ii)—(D), (II), (II) by stronger conditions. Namely, the weak convergence of the df’s

A,(nx) and An(nl_%x+ n) must be replaced respectively by the convergence in

V,—n

probability of the rv’s an and

to a positive rv Z. For maximum order statistics

_a
n 2

(part (I)). The parallel theorem of Theorem 3.1 is proved in [15] (Theorem 6.2.1).
This result is extended to the extreme order statistics by [6]. For the intermediate case,
under Chibisov condition, this parallel result is obtained by [3] and [7], [8]. Finally,
[1] studied the central case with regular rank and general random index. However, the
key ingredient of the proof of this parallel result (for the extreme, the intermediate and
the central cases) is to prove the mixing property, due to Rényi (see, [10]) of the sequence



182 H.M. Barakat and M.A. El-Shandidy

of order statistics under consideration. In the sense of Rényi a sequence {X,} of rv’s is
called mixing if for any event “® of positive probability, the conditional distribution
function of {X,}, under the condition &, converges weakly to a nondegenerate df,
which does not depend on =,as n — «. In Theorem 3.1 of [10], any sequence of

order statistics with general variable rank (min(r, n—r,)—>o) was proved to be
n

mixing. Therefore, when the interrelation between the random index and the basic rv’s is
not restricted, Theorem 3.1 can be extended to the Case 1. However, we can combine the
two parallel theorems to obtain a general result, which may be useful in practical purpose.

Theorem 4.1. Let A,(x) be any general sequence of df’s (the interrelation between
these df’'s and G (x) is not restricted). Moreover, assume that one of the conditions
(ii)—(1), (1) and (111). Then Theorem 3.1 will be satisfied with the class K ., where

* *

vV, = V(@) =inf{x: @ < A,(nX)}, Yo € (0,1), in the extreme and the central cases

and v = Vi(w) = inf {x: @ < A,(N""2x + n)}, Yo € (0,1), in the intermediate case.

Proof. The proof is immediately followed by Theorem 3.1 and Skorohod’s
representation theorem (see [20]).

Acknowledgement. The authors would like to thank the anonymous referee for several
helpful comments.
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