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Abstract.  The study of group code as an ideal in a group algebra has been developed long           
time ago.  If ,||)(char GF  then FG is semisimple, and therefore, decomposes into a direct                

sum i
i

FGeFG ⊕=  where iFGe  are minimal ideals generated by the idempotent .ie                     

The idempotent ie  provides useful information about the minimum distance of group codes.              

In this paper, we consider group code generated by extra-special p-group of order ,3p  and 
construct two families of group codes, one defined using linear idempotents, and the other defined 
using nonlinear idempotents.  Our primary task is to determine the parameters of these two 
families of group codes. 
 
2000 Mathematics Subject Classification:  94B60 

 
 
1.  Introduction 
 
Throughout this paper, p is a prime number, G denotes a finite group, F denotes a finite 
field whose characteristic is a primitive root modulo p and .|||)(char GF  A group code 
is defined as an ideal I in a group algebra FG and we often say I is defined by G.                  
If ,|||)(char GF  then FG is semisimple and is a direct sum of some minimal ideals, 

say j

s

j
IFG

1=
⊕= .  Each jI  is generated by an idempotent  ,je  i.e., .jj FGeI =   Let 

s
jjeM 1}{ == .  Any ideal I of FG is a direct sum of some of the ,jI  say 

.,
1

stII
kj

t

k
≤⊕=

=
  We say that I  is generated by t

kjke 1}{ = .  Let t
kjkeM 1}{\ ==μ .  

Then .}0,|{ μ∈∀=∈=
rr jj eueFGuI   For technical reason, we denote I by .μI              

Note that μ  plays the role of parity check matrix defining a linear code, and so we 
expect to derive some information about the minimum distance of μI  from .μ   Let us 

recall some notations and definitions.  The length N of a group code FGIμ  is defined 
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to be .|| G  The weight of any element gu g
Gg
λ

∈
∑=  is equal to }0|{ ≠gg λλ   and is 

denoted by .)(wt u   If μI  has dimension K (as a vector space over F) and minimum 

distance ,})0|)(wt{min( μIuud ∈≠=  then μI  is called an ],,[ dKN  group code.  In 

this paper, we consider group codes defined by extra-special p-group of order ,3p  and 
construct two families of group codes.  We determine dimension K of μI  in Section 3 
and its minimum distance in Section 4 and 5.  Note that the basic theories in Section 2 
and 3 can be found in [3, 5, 6].                       
 
 
2.  Extra-special p-group of order p3 
 
In this paper, we follow the notation in [3, 5].  A finite p-group G is extra-special if 

,)(' GZG =  pG =′||  and GG ′/  is elementary abelian.  From now onward, G              

always denotes a p-group of order ,3p  which is always extra-special.  Let gG ='  and  

.|/|2 GGpn ′==   We fixed a set of transversal T of 'G  in G, i.e., 

,},,,,1{ 1210 −== nttttT  and so .
1

0
itGG

n

i
′=

−

=
∪  We now state the following 

properties of extra-special p-group.   For the proof we refer to .]5,3[  
 
P1.  G has 12 −+ pp  conjugacy classes; p of these has size 1 and the other 12 −p  

each has size p. 
 

P2.  .1|)(Irr| 2 −+= ppG  
 

P3.  G has 1−p  nonlinear irreducible characters of degree p and 2p  linear characters. 
 

P4.  All nonlinear irreducible characters are faithful. 
 

P5.  Assume ,)(char pF ≠  then ii eFGeFG
i

⋅⊕=  can be computed using the 

formula  
  

gg
G i

Gg

i )(
||
)1( 1−

∈
∑ χ

χ  where  .}{)(Irr 1
1

2 −+
== pp

iiG χ  

 
From P5, we see that distinct irreducible character determines distinct idempotent and ie  
are orthogonal to one another.  ie  is called linear idempotent if iχ  is linear and ie  is 
called nonlinear idempotent if iχ  is nonlinear.  To distinguish linear and nonlinear 

idempotent, we let ie  be linear for ,1 2pi ≤≤  and ie′  be nonlinear for .11 −≤≤ pi   
Let  iiL eeM |{=  linear idempotent} and  iiN eeM ′′= |{  nonlinear idempotent}. 
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3.  Group codes defined using extra-special p-group of order p3 
 
To study a group code, we need the following trivial result [2, Lemma 1.3]. 
 
Lemma 1.  Let H be a subgroup of K.  If T is a set of right transversal of H in K,             
then every element FKu ∈  can be written uniquely in the form ,tau t

Tt∈
∑=                            

with .FHhba h
Hh

t ∈∑=
∈

 

 
 From P5 and by taking 'GH =  in Lemma 1, every idempotent ke  in FG can be 
written as 

 

 ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑ ∑

−

=

−

=

−−
1

0

1

0

1
3

)1( n

j

p

i
j

ii
jk

k
k tggt

p
e χ

χ                (3.1)  

 

 ke  can also be written as ,
1

0
kje

n

j

−

=
∑ j

ii
jkpkj tggte

p

i

k ][ )( 1)1( 1

0
3

−−
−

=
∑= χχ  is a linear 

combination of elements in jtG'   and we simply say kje  corresponds to jtG'  or the             

“jth-component” of .ke   Similarly, by Lemma 1 any word  FGgu g
Gg

∈∑=
∈

λ  can be 

written uniquely as 
 

 .,
1

0

1

0
Ftgu ji

n

j
j

i
p

i
ji ∈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∑

−

=

−

=
λλ     (3.2)  

 

j
i

jij tgu
p

i
λ

1

0

−

=
∑=  that corresponds to jtG'  is called the “jth - component” of  .

1

0
juu

n

j

−

=
∑=   

Multiplication between u and ke  is given by ,
1

0

1

0 ikjk euue
n

j

n

i
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑=
−

=

−

=
 which is called the 

parity check equation of .ke  
  
Remark.  The property )(' GZG =  provides an easy way to do calculation because we 
can always concentrate in 'G , whose elements commute with all the other elements in G.  
Because of this, in (3.1) and (3.2) we decompose the words and idempotents of FG into 
distinct “component” where each “component” corresponds to a unique coset of 'G .  
 
 To obtain the dimension of ,μI  we need the help from the following theorem               
[5, Theorem 3.2]. 
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Theorem 2.  Let K be a finite group of order n, and F be an algebraically closed field 
with .|)(char nF   Then ,)()(

1
FMatFMatFK

snn ⊕⊕≈  where .22
1 snnn ++=  

FK has exactly s nonisomorphic irreducible modules, of dimensions ,,,1 snn  and s is 
the number of conjugacy classes of K. 
 

  FG can be written as )()( '
1

11

2

ji FGeFGeFG
p

j

p

i

−

==
⊕⊕⊕=  where iMe Li ∀∈ ,  and 

., jMe Ni ∀∈′   It follows from Theorem 2 that ,,)(1 Lii MeFMatFGe ∈∀≈  and 
.,)( Nipi MeFMateFG ∈′∀≈′   Thus, if ,Li Me ∈  then ,1)dim( =iFGe  and if 

,Ni Me ∈′  then .)(dim 2peFG i =′   We can immediately construct the following 2 
families of group codes: 
 
(1) If LM⊆μ  then ,||)(dim||)(dim)(dim 3 μμμ −=−= pFGeFGI i  and so μI  

is a ],||,[ 1
33 dpp μ−  group code where .)(1 μIdd =   We call μI  the Type 1 

Group Code. 
 
(2) If ,NM⊆μ  then ,||)(dim||)(dim)(dim 23 μμμ ppFGeFGI i −=−=  and 

so μI  is a ],||,[ 2
233 dppp μ−  group code where .)(2 μIdd =   We call μI  the 

Type 2 Group Code. 
 
In Section 4 and Section 5, we will determine 1d and .2d  
 
 
4.  d1 = d(Iμ), minimum distance of the type 1 group code 
 
Assume F contains a primitive pth root of unity such that pF ≠)(char  and K be the base 
field of F.  For example, if ,3=p  then we can take F  to be the algebraic closure of 32F  

where 32F denotes the finite field of size .23   We now determined the minimum distance 
of   Type 1 group codes defined by G over F.  The idempotent corresponds to the 
principal character is called the principal idempotent and is denoted by .principale   Let 

.}{0 principale=μ  
0μI has length 3p  and .1||)(dim 3

0
3

0
−=−= ppI μμ   To proceed 

further, we need the following results: 
 
 (i) By (3.1) and the definition of principal character, principale  can be written as:  

 

      ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

∈Gg
principal g

p
e 3

1                            (4.1) 
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 (ii) By direct calculation,  principalprincipal eheGh =∈∀ ,                                   (4.2) 
 

 (iii) FGtgtggu n
i

in

p

i
i

i

p

i
i

i

p

i
∈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑+∑=∀ −−

−

=

−

=

−

=
1)1(

1

0
11

1

0
0

1

0
λλλ  where 

,Fji ∈λ  by using (4.1) and (4.2), the parity check equation of principale  is as 
follows: 

 

 principal

p

i

p

i
in

p

i
iiprincipal eue ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++= ∑ ∑∑

−

=

−

=
−

−

=

1

0

1

0
)1(

1

0
10 λλλ  (4.3) 

 
 With (4.3), we can now show .2)(d

0
=μI   Take any word in FG of weight 1,              

i.e.,  gu λ=  for .Gg ∈   Assume 
0μIu ∈ , so 0== principalprincipal eue λ  which                 

implies .0=λ   This contradicts .1)(wt =u   Therefore, .
0μλ Igu ∉=   So      

.1)(d
0

>μI  We next consider FGhgu ∈−= λλ  with .2)(wt =u    

0))(( =−+= principalprincipal eue λλ  and so .
0μIu ∈   This implies .2)(

0
=μId                

We conclude that 
0μI  is a  ]2,1,[ 33 −pp   group code. 

 
 Now, we consider any .||1, 2pM L ≤≤⊆ μμ   It is clear that μI  have length 3p  

and .||)(dim 3 μμ −= pI   Before pressing on, we list a few useful results: 
 

i. By (3.1) and Gggk ′∈∀= 1)(χ  where kχ  is linear, every linear idempotent 
can be written as: 

 

   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

−

=

−
−

=

1

0

1
1

0
3 )(1 n

j
jjk

p

i

i
k ttg

p
e χ                 (4.4) 

 

ii. Let  ∑
−

=
=

1

0

p

i

igA  and  ,)(, 1

0

1∑
−

=

−=
n

j
jjkk tte χ  then 

 

   ,1
3 kk eA

p
e =                            (4.5) 

 
iii. A is the sum of distinct element in 'G .  Thus, ,Gg ′∈∀   

 
    AgA =                                (4.6) 
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iv. By (4.6), for ,
1

0
GFg

p

i

i
i ′∈∑

−

=
λ  we see that 

 

     AAg
p

i
i

p

i

i
i ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑∑
−

=

−

=

1

0

1

0
λλ  (4.7) 

 

 For any   FGtgtggu n
i

in

p

i
i

i

p

i
i

i

p

i
∈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑= −−

−

=

−

=

−

=
1)1(

1

0
11

1

0
0

1

0
λλλ  we 

denote j
i

ji

p

i
j tgu ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑=
−

=
λ

1

0
 for .1,,2,1,0 −= nj   The parity check equation is as 

follows: 
 

 .1210 knkkkk eueueueuue −++++=   (4.8) 
 
Consider the jth-component kj eu  of  .kue  
 

 ,1
3

1

0
kj

p

i

i
jikj eA

p
tgeu ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

=
λ  

 

 ,1 1

0
3 kj

p

i

i
ji etAg

p ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

=
λ  

         ,1 1

0
3 kj

p

i
ji etA

p ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

=
λ             (By (4.7)) 

 

  kj

p

i
ji et⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

=

1

0
λ   (4.9) 

 
By substituting (4.9) into (4.8) for ,1,,2,1,0 −= nj  we obtain  

 

 kn

p

i
in

p

i
i

p

i
i

p

i
ik etttue

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

−

=
−

−

=

−

=

−

=
∑∑∑∑ 1

1

0
)1(2

1

0
21

1

0
1

1

0
0 λλλλ  (4.10) 

 
  We now show that the products of any element in the set of right transversal T of 'G  
in G with any linear idempotent ke  are nonzero. 
 

( ) .)(1,,1,1,,
1

0

1
333 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∈∈∀ ∑

−

=

−
n

j
jijkkikikiLki tttA

p
etA

p
eA

p
tetMeTt χ  
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Let jij tts =  for 1,,1,0 −= nj  and so .)( 1
1

0
1

3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑= −
−

=
jjk

n

jpki stAet χ   Since 

},,{ 10 −nss  is also a set of right transversal of 'G  in G, then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑= −
−

=
jjk

n

jpki Astet )( 1
1

0
1

3 χ   is a sum of linear combination of distinct elements in G. 

Therefore, 
 

 .0≠ki et                                                   (4.11) 
 

Lemma 3.  Let  .
1

0
i

n

i
uu

−

=
∑=   If one of the iu   has weight 1, then .μIu ∉  

 
Proof.   Suppose 121 −+++= nuuuu  and 1)(wt =su  for some s.  Thus, 

.s
j

ss tgu λ=   By (4.10), .1)1(0 knin
i

ssi
i

k ettue ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∑++++⎟

⎠

⎞
⎜
⎝

⎛ ∑= −−λλλ  By 

using (4.11), 0=keu  implies 0=sλ  and this contradicts .1)(wt =su   So .μIu ∉  
 
 An immediate consequence of Lemma 3 is that any nonzero u in μI  has weight at 

least 2, i.e., .2)(d ≥μI   The next theorem shows .2)(d =μI  
 
Theorem 4.  .2)(d, =⊆∀ μμ IM L  
 
Proof.  Lemma 3 shows .2)(d ≥μI   So we try to find a codeword of weight 2 in .μI   

Choose FGgu ∈−= 1  for .Gg ′∈  By  (4.10), μ∈∀=−+= kkk eeue 0)1(1(  
which implies μIgu ∈−= 1  and so .2)(d =μI  
 
 We next show a general result for the group codes μI  in FG where G is the extra-
special 2-group. 
 
Theorem 5.  For the extra-special 2-group G, FGIM L μμ ,⊆∀  is an even 
weight group code. 
 
Proof.  Let G be an extra-special 2-group.  By definition of G, we know that .2|| =′G  
And so },1{' ggG ==  where .12 =g   Let  μIu ∈  be written as  

.1210 −++++= nuuuuu   Since each cosets of 'G  has size 2, each component iu  
has either weight 0 or weight 2.  Evidently, the element  iii tgu )1( −= α  where 0=iα  
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or 1, is in μI .  Thus i

n

i
uu

1

0

−

=
∑=  is in μI  and so μI  contains elements of weight 

.2,,6,4,2 n   This clearly shows that u has even weight.  Therefore, μI  is an even 
weight group code. 
 
Theorem 6.  Let G be an extra-special p-group G of order 3p  where p is an odd 
prime.  μμ IM L ,⊆∀  contains codeword of weight  h  for  .,2 NhGh ∈≤≤  

 
Proof.  By definition of G,  .|| pG =′   And so gG ='  where .1=pg                              
For any integer k, .2 pk ≤≤   Let 121 −+++= nuuuu  and 

i
kj

k

j
i tgkgu ⎥

⎦

⎤
⎢
⎣

⎡
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑= −
−

=

1
2

0
)1(  with ,)(wt kui =  then etkkeu ii ])1()1[( −−−=  

.0 μ∈∀= e   This implies .μIui ∈   Consequently 0121 =+++= − eueueuue n  

and so .μIu ∈    We see that they may happen that  iuu =  for  ,0≠iu  then 

.)(wt2 pu ≤≤    If ji uuu +=  where ji uu ,  are distinct and nonzero, then 

.2)(wt)(wt)(wt4 puuu ji ≤+=≤    Thus, if i

r

i
uu

1

0

−

=
∑=  where all iu  are nonzero and 

distinct, then .)(wt2 rpur ≤≤   Since G has 2pn =  right cosets of 'G , so u has at most 

n components.  Thus, for i

n

i
uu

1

0

−

=
∑=  where some ui may be zeros, we have 

.)(wt2 Gnpu =≤≤   That is, μI  contains elements of weight 

.,,2,12,,1,,,3,2 3ppppp −+   
 
Example 1.  Consider FG where 39 ZZG θ×=  is the extra-special 3-group of order 27.  
By arbitrariness in the choice of linear idempotents of FG, we obtain 9 different families 
of group codes all with minimum distance 2.  Theorem 6 ensures that we can find 
codeword of weight h for .,272 N∈≤≤ hh   We now try to find some codeword of 
weight 3 in μI  for arbitrary choice of .μ   ,LM⊆∀μ  from (4.5) we know that μ∈ie  

has the form .,3
1

ipi eAe =   Knowing ,},,1{' 63 bbG =  then 631 bbA ++= . Thus, 

')1( 63
27
1

ii ebbe ++=  for  .9,,2,1=i   Take 22FF =  and let ε  be a                    

primitive 3th root of unity in F.  We see that μεε Ibbbu ∈++= 274  because 

.0)1()(, 274
27
1 =′++++=∈∀ iii ebbbuee εεμ  Similarly,   ε31 bu +=  26εb+   

,μI∈ μεε Iababbau ∈++= 227242  and so on.  
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5.  d2 = d(Iμ), minimum distance of the type 2 group code 
 
We shall now determine the minimum distance of the Type 2 Group Codes. The 
following results are essential.  
 

i. For all kχ  that are nonlinear, .,0)( Gggk ′∉∀=χ   Thus, ,Nk Me ∈∀  
 

 ,11,1 1

0
−≤≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

=

− pkg
p

e i
p

i

ki
k ε               (4.12) 

 
where ε  is a primitive thp  root of unity in F. 

 

ii. Nk Me ∈∀  and ,Tt ∈  

 0≠kte  (4.13) 
 

iii. Let 110 −+++= nuuuu  where j
i

ji

p

i
j tgu ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑=
−

=
λ

1

0
 for  

.1,,2,1,0 −= nj   For ,Nk Me ∈  the parity check equation of ke  is             
given by  

 

   
⎢
⎢
⎣

⎡
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⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
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⎝

⎛
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−

=

−

=

−

=
2

1

0
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1

0
1

1

0
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p

i
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i

p

i
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i
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p

i
ik ελελελ   

            kn

p

i

ki
in et

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ −

−

=
−∑ 1

1

0
)1( ελ  (4.14) 

 

 From (4.13), we know that kiet  is a linear combination of elements in itG'  and 
since ,'G

1
,,' 1 −

′
ntGtG  are all disjoint cosets, we see that 0=kue  if and only if all 

coefficients are zeros, that is,   
 

∑∑∑
−

=

−

=

−

=
===

1

0
2

1

0
1

1

0
0 ,0,0,0

p

i

ki
i

ki
p

i
i

p

i

ki
i ελελελ   and  .0

1

0
)1( =∑

−

=
−

ki
p

i
in ελ  

 

 Let us now demonstrate the fact that the nonlinear idempotent in NM  is an 
idempotent of .GF ′  
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From (4.12), .1,,2,1
1

0
1

⎭
⎬
⎫

⎩
⎨
⎧

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑== −
−

=
pkgeM iki

p

ipkN ε   gG ='  has p linear 

characters, and each linear character iχ  of 'G  corresponds to a linear idempotent of 
'FG .  We denote the linear idempotent of 'FG  by 

'Gie  and the set consisting of all 
'Gie  is 

denoted by 
'GNM . 

 

.)(1)()1(1,
1

0

1
1

0
∑∑
−

=

−
−

=

− =
′

∈∀
′′

p

j

g
i

p

j

jj
iiiNi

j

GG
g

p
gg

G
eMe χχχ  

 

Since ,1=pg  then .1)1()()( === χχχ pp gg   If χ  is not the principal character, 
then εχ =)(g  where ε  is a primitive pth root of unity in F.   So jjg εχ =)(  for 

.11 −≤≤ pj   In general, ijj
i g −− = εχ )(  for  .1 pi ≤≤   Therefore,  

 

∑∑
−

=

−
−

=

− ==
′

1

0

1

0
)(11 p

j

ji
p

j

jij
i g

p
g

p
e

G
εε  for  .1,,2,1 −= pi  

 
From (4.12), we see that 

'GNN MM = – {principal idempotent in 'FG }.  We collect this 
fact in the following lemma. 
 
Lemma 7.  

'GNN MM = – {principal idempotent in 'FG }. 
 
Example 2.  Consider .93 ZZG θ×=   It can be found from the character table of G 
that )1( 632

3
1

1 bbe θθ ++=  and )1( 362
3
1

2 bbe θθ ++=  are nonlinear idempotents 

of FG.  Let },,1{ 633 bbbG ==′  where 19 =b  and .1,1 3 =∈≠ θθ F                      

'FG  consists of 3 linear idempotents, i.e., )1( 63
3
1

1 '
bbe

G
++  the principal idempotent, 

)1( 632
3
1

2 '
bbe

G
θθ ++=  and .)1( 623

3
1

3 '
bbe

G
θθ ++=   We see that 

'21 G
ee = and 

.
'32 G

ee =  
 
  Recall that .},,,{ 121 −= pN eeeM   If  NM⊆μ  and },,,{ 1 kjjj eee ++=μ  
then we say μ  is a consecutive set.  In Section 5.1, we shall show that if μ  is a 
consecutive set then .1||)(d += μμI   In Section 5.2, we shall show that the result still 
holds if we carefully choose a suitable field. 
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5.1. Group codes defined using consecutive set that consists of nonlinear 
idempotents 

 
We now find the minimum distance of μI  if μ  happens to be a consecutive set.  We first 

state some definitions and notation.   Let ε be a primitive pth root of unity in F.   
),,,( 21 liiiM εεε  is a pl ×  matrix that has 1, kkk ipii )1(2 ,,, −εεε  as its kth row for  

 

,,,2,1 lk =  that is,  .

1
....
....

1
1

),,,(

)1(2

)1(2

)1(2

222

111

21

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−

−

−

lll

l

ipii

ipii

ipii

iiiM

εεε

εεε
εεε

εεε   

 
For convenience, we write ),,,( 21 liiiMM εεε= .  We now let 

,}1,,2,1,0{ −⊆ pJ  then JM  is the submatrix of M consists of the columns indexed 
by elements of J.   A pp ×  matrix  V of the form 
 

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−− 11
2

1
1

22
2

2
1

21

..
.....

..

..
1..11

p
p

pp

p

p

εεε

εεε
εεε

 

 
is called a Vandermonde matrix and 0)()det(

1
≠−= ∏

≤<≤ nji
ijV εε  (refer [2]). 

 
Lemma 8.  If ε is a primitive pth root of unity in F and tJ =||  then 

J
tiii

J MM ),,,( 11 −++= εεε  has rank t. 
 
Proof.  M has the form  
 

pt
tiptiti

ipii

ipii

×
−+−−+−+

+−++

−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

)1)(1()1(21

)1)(1()1(21

)1(2

1
....
....

1
1

εεε

εεε
εεε

. 
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Case 1. If }1,,2,1,0{ −⊆ pJ  is consecutive, i.e., }1,,1,{ −++= tkkkJ  
with 0≥k  and  ,pkt ≤+  then  
 

 

tt
tktiktikti

tkikiki

tkikiik

jM

×
−+−++−+−+

−+++++

−++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)1)(1()1)(1()1(

)1)(1()1)(1()1(

)1()1(

...
εεε

εεε
εεε

. 

 
Divide each entry in the mth  row of JM  with kmi )1( −+ε  for  ,1 tm ≤≤  then we obtain  
 

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−+−−+−+

+−++

+−++

−

)1)(1()1(21

)2)(1()2(22

)1)(1()1(21

)1(2

.1
.....

.1

.1

.1

tittiti

itii

itii

itii

R

εεε

εεε
εεε
εεε

. 

 
TR  is a Vandermonde matrix with .0)(det)(det ≠= RRT   Since )det()det( RhM J =  

for some ,0 Fh ∈≠  then 0)det( ≠JM  and so rank(MJ) = t. 
 
Case 2.  If  }1,,2,1,0{ −⊆ pJ  is not consecutive, i.e., ,},,,{ 21 tkkkJ =   then  
 

tt
ktiktikti

kikiki

ikikik

J

t

t

t

M

×
−+−+−+

+++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)1()1()1(

)1()1()1(

21

21

21

...
εεε

εεε
εεε

. 

 
Divide each entry in the mth column of JM  with mikε  for  ,1 tm ≤≤ 1  then we obtain  
 

tt
ktktkt

kkk

t

t

S

×
−−− ⎟⎟

⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

)1()1()1( 21

21

...

111

εεε

εεε
. 

 
S is again a Vandermonde matrix with 0)(det ≠S  and hence )(det JM  is nonzero. 
Therefore, .)(rank tM J =  
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    Now, we determine .)(d μI   If }{ ke
i Itgu ∈= λ  for Gg i ′∈  and Tt ∈  then 

.)( k
ik

k teue λε=   By (4.13), 0≠kte  and so .0≠kue   This shows that }{ keIu ∉ , and 

so .1)(d }{ >
keI   On the other hand, we can choose FGtggu jkjii ∈−= − )( )(ε  for 

ji ≠  so that  .0)( )( =−= −
k

jkkjijk
k teue εεε   Therefore, }{ keIu ∈ . This shows that 

.2)(d }{ =
keI  

 
Theorem 9.  If  NM⊆μ   and },,,{ 21 tkkk eee +++=μ  then .1)(d += tIμ  
 
Proof.  We proceed by induction on .|| μ  For ,1|| =μ  we have showed                    

above.  Assume that the theorem is true if .},,,{,
121 −+++= tkkk eeeu  So 

.1|,|)(d tI =+=′ μμ   Let .}{,
1+∪= keμμ   Since μμ ⊆,  then .)(d)(d tII =≥ ′μμ   

We separate our proof into two parts.  In Part (i), we show μI  does not contains 

codeword of weight t, and then in Part (ii) we show μI  contains at least one codeword of 
weight ,1+t  then our theorem is proved. 
 
Part (i).  To proof Part (i), we assume μI  contains codeword of weight t and try to 
obtain a contradiction.  Note that a word u of weight t in FG may be a sum of one or 
more components, that is , 110 −+++= nuuuu  where some iu  may be zeros. 
 
First, we assume u has the form juu =  where ju  is the jth-component of weight t.  
 
Let  j

i
t

ii tgggu t )( 21 21 λλλ +++=   where  .1 21 piii t ≤<<<≤  
 
By (4.14),             ( ) 1

)1()1(
2

)1(
11 21

+
+++

+ +++= kj
ik

t
ikik

k etue tελελελ  

 ( ) 2
)2()2(

2
)2(

12 21
+

+++
+ +++= kj

ik
t

ikik
k etue tελελελ  

 

  

 ( ) tkj
itk

t
itkitk

tk etue t
+

+++
+ +++= )()(

2
)(

1 21 ελελελ  
  

μIu ∈  if and only if .021 ==== +++ tkkk ueueue   Therefore, we obtain a 
homogenous system of linear equations that can be written in the form 0=λH  as 
follows: 
 
 
 



GA How and CK Wong 198

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++++

++++

++++

0
.
0
0
0

.
.... 3

2

1

)()()()(

)2()2()2()2(

)1()1()1()1(

321

321

321

t

itkitkitkitk

ikikikik

ikikikik

t

t

t

λ

λ
λ
λ

εεεε

εεεε
εεεε

 

where 
 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

++++

++++

++++

t

t

t

itkitkitkitk

ikikikik

ikikikik

H

)()()()(

)2()2()2()2(

)1()1()1()1(

321

321

321

....
εεεε

εεεε
εεεε

  is the tt ×  coefficient matrix,   (4.15) 

 

and   

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

tλ

λ
λ
λ

λ
.
3

2

1

. 

 
Let j

i j αε =   for  tj ≤≤1   then  
 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

++++

++++

++++

tk
t

tktktk

k
t

kkk

k
t

kkk

H

αααα

αααα
αααα

321

22
3

2
2

2
1

11
3

1
2

1
1

....
. 

 

Divide each entry in the mth column of H by 1+k
mα   for  tm ,,2,1=  and obtain  

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

−−−− 11
3

1
2

1
1

321

....

1111

t
t

ttt

tA

αααα

αααα
 

 

which is a Vandermonde matrix with .0)det( ≠A   Hence 0)(det ≠H  and so 1−H  
exists.  Therefore,  00 == −1Hλ  and this contradicts the assumption that .)(wt tu =  

Thus, we conclude that  .)( 21 21 μλλλ Itgggu j
i

t
ii t ∉+++=  
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In general, we assume tu =)(wt  and u has the form FGuuuu r ∈+++= 21  
where iu  are the nonzero ith-component.  Let stu −=)(wt 1  where 

.)(wt)(wt)(wt 32 ruuus +++=   Write vtgu n
i

j

st

j
j +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑=
−

=
λ

1
 where 2uv =  

.3 ruu +++  
 
By (4.14),             ( )[ ] 1

)1()1(
11 1

+
+

−
+

+ +++= − kn
ik

st
ik

k etue stελελ  

 ( )[ ] 2
)2()2(

12 1
+

+
−

+
+ +++= − kn

ik
st

ik
k etue stελελ  

 

  

 ( )[ ] tkn
itk

st
itk

tk etue st
+

+
−

+
+ +++= −)()(

1 1 ελελ  
 

μIu ∈  if and only if 021 ==== +++ tkkk ueueue and so we obtain r homogenous 
systems of linear equations.  The homogenous system corresponds to the nth-component 
is 0=λ1H  where  
 

     

)(
)()()(

)2()2()2(

)1()1()1(

1

..
.....

..

..

21

21

21

stt
itkitkitk

ikikik

ikikik

st

st

st

H

−×
+++

+++

+++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−

−

−

εεε

εεε
εεε

     and     

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

− stλ

λ
λ
λ

λ
.
3

2

1

.                                                                                    

                               
Let ji

j εα =  for ,1 stj −≤≤  then by applying suitable column operation to ,1H  we 
obtain the following matrix: 
 

)(
11

3
1

2
1

1

22
3

3
2

2

2
2

1

1

....

1111

stt
t

st
ttt

st

st

C

−×
−

−
−−−

−

−

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

αααα

α

α

α

α

α

α

α

α

.  

 

By Lemma 8, any st −  columns of TC  is linearly independent and so any st −  rows of 
C is linearly independent.  Hence, any st −  rows of 1H  is linearly independent.  
Therefore, .)(rank 1 stH −=   Let  tst

H FFT →−:
1

 be the linear transformation 

whose matrix relative to the standard bases is ,1H  then ))(Ker(dim
1HT )(dim mtF −=  
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.0)(rank))Im((dim 11
=−−=− HstTH   Thus, 021 ==== − stλλλ  which 

implies that tsu <=)(wt  and this contradicts the assumption that .)(wt tu =   
Therefore, μIu ∉  and this proved Part (i). 
 
Part (ii).  Now, we consider ,: 1

1
tt

M FFT →+  the linear transformation whose 

matrix relative to the standard base is ,1M  where 1M  is a  )1( +× tt  matrix which 
obtain by adding one more column to the matrix H in (4.15).  We may assume 1M  has 
the following form: 
 

)1(
)()()()(

)2()2()2()2(

)1()1()1()1(

1

121

121

121

.....

+×
++++

++++

++++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

+

+

+

tt
itkitkitkitk

ikikikik

ikikikik

tt

tt

tt

M

εεεε

εεεε
εεεε

. 

 

We take any t columns of ,1M and obtain a tt ×  submatrix of .1M   By Lemma 8, this 
submatrix is a Vandermonde matrix with nonzero determinant.  Therefore, any t                       
columns of 1M  is linearly independent.  Hence, .)(rank 1 tM =   And so 

.1))Im((dim)(dim))(Ker(dim
11

1 =−= +
M

t
M TFT   This implies that there exists a set 

of nonzero solution for this homogenous system of linear equations. Thus, 

μλλλλ Itggggu j
i

t
i

t
ii tt ∈++++= +

+ )( 121 121  and .1)(wt += tu  
 
Combining Part (i) and Part (ii), we obtain .1||1)(d +=+= μμ tI   
 
 
5.2. Group codes defined using any set of nonlinear idempotents 
 
We now show that by choosing a finite field F with the following properties, we can 
proof .1||)(d NMI ⊆∀+= μμμ   
 

 G1.  K is a base field of F and .)(char qF =  
 G2.  F contains a primitive thp  root of unity,  .qp ≠  
 G3.  q is a primitive root modulo p, i.e., 11 ≡−pq  (mod p). 

 
For example, if we choose 2FK =  and ,5=p  then 42FF =  is a finite field that 
satisfies G1 to G3.  In the next paragraph, we show the existence of such a field. 
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 Knowing that }1,,2,1,0{ −= pZ p  is a finite field, so its multiplicative group 

}1,,2,1{* −= pZ p  is cyclic.  Let this multiplicative group be generated by q . Then 
1),( =qpGCD  and the order of q  is  .1)( −= ppφ   So q is a primitive root modulo p.  

Let 1−= pqFF .  The multiplicative group ∗F  of F has order )1( 1 −−pq  and is cyclic.  

Since 11 ≡−pq (mod p), p divides  || ∗F  and so ∗F  has an element a  of order p.  This 
a  is a primitive pth root of unity in F. 
 
 Next, we proof the following lemma. 
 
Lemma 10.  If qF =)(char  is a primitive root modulo p then 21 xx ++  1−++ px   
is irreducible over .qF  
 
Proof.  Denote .1)( 12 −++++= pxxxxf   Let α  be a primitive pth root of unity 
in 1−pqF .  Since 01)()1( =−=− pf ααα  and ,1≠α  so .0)( =αf   Thus, the 

minimal polynomial )(xmα  of α  divides .)(xf   If  ,1))(deg( −<= pxmk α  then  

kFF qq =:)(α  and so .)( kqq FF =α   So we have 11 =−kqα  and so  ,)1( −kqp  

that is,  .)(mod1 pqk ≡   This contradicts that q is a primitive root modulo p.  So 
1))((deg −= pxmα  and we conclude that  .)()( xfxm =α   Thus, )(xf  is irreducible.  

 By assuming )(char F  is a primitive root modulo p, we see that  
121)( −++++= pxxxxf  is the minimal polynomial of  α  over K.  Therefore, 
)()1( 12 xgxxx p−++++  for  ][)( xKxg ∈  with .0)( =βg  

 
Lemma 11.  Let NM⊆μ  and .1||0 −≤=< ptμ   Assume char(F) is a primitive 
root modulo p.  If  FGuu j ∈=  where ju is the jth-component of weight t then  .μIu ∉  
 
Proof.  Take .},,,{

21 tkkk eee=μ   Since juu =  of weight t then we write u as 

.)( 21 21 j
i

t
ii tgggu tλλλ +++=   By (4.14),  

 

( )[ ]
1

12111
1 21 kj

ik
t

ikik
k etue tελελελ +++=  

( )[ ]
2

22212
2 21 kj

ik
t

ikik
k etue tελελελ +++=  

… 

( )[ ]
t

ttt kj
ik

t
ikik

k etue 221
1 21 ελελελ +++=  
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Assume μIu ∈  then .0
21

====
tkkk ueueue   Therefore, we obtain the following 

homogenous system of linear equations: 
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t
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where    
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Let s
i zs =ε   for ,1 ts ≤≤  then  
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H
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...

222

111

.  If the rows of H  are 

linearly dependent over F  then there will exist  tccc ,,, 21   not all zero such that  
 

( ) ( ) ( ) ,,,,,,,,,, 21212211
222111 0=+++ ttt k

t
kk

t
k
t

kkk
t

kk zzzczzzczzzc  
 
and so  
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2
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1
1

0=⎟⎟
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⎞
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⎝

⎛
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===

iii k
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i
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k
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i
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Thus, 0
1

=∑
=

ik
si

t

i
zc  for .,,2,1 ts =   Denoted  .)(

1
ik

i

t

i
xcxf

=
∑=   We see that  

tzzz ,,, 21  are all distinct zeros of  .)(xf  

              By Lemma 10, .)()1( 12 xfxxx p−++++   Since ,1))(deg( −≤= ptxf  

then either )1mod(0)( 12 −++++≡ pxxxxf  or .1))(deg( −== ptxf   If  
0)( =xf  then all  0=ic  and this contradicts that all the rows of H are linearly 

dependent.  Thus, the rows of H are linearly independent and so .)(rank tH =   Let  
tt FFT →:  be the linear transformation whose matrix relative to the standard base is 

H.   Thus ,0))((Imdim))(Ker (dim =−=−= ttTtT  and this contradicts .)( tuwt =  
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    On the other hand, if  ,1−= pt  then the zeros of  )(xf  are .,,, 121 −pzzz  Since 

the zeros of  121 −++++ pxxx  are 12 ,,, −pεεε  and 
,)()1( 12 xfxxx p−++++  these imply  j

iz ε=  for some ., ji   There is no loss if 

we assume 1
1

2
21 ,,, −

− === p
pzzz εεε  and so convert H into 

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−− −

−

−
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)1(2
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ppp kpkk

kpkk

kpkk

εεε

εεε
εεε

 

 
which is a Vandermonde matrix with 0)(det ≠H  and so 1−H  exists.   This implies 
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⎜

⎝

⎛
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⎟⎟
⎟
⎟
⎟

⎠

⎞
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⎜
⎜
⎜

⎝

⎛

−
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0
0

0
.
0
0
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1

H

tλ

λ
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and again this contradicts .)( tuwt =   We conclude that 

.)( 21 21 μλλλ Itgggu j
i

t
ii t ∉+++=  

 
Theorem 12.  ,NM⊆∀μ  if  char(F) is a primitive root modulo p and  

,1||0 −≤=< ptμ  then μI   does not contains codeword of weight t. 
 
Proof.  We use induction on t.  If ,1=t  then μ  is a consecutive set.  And so 

2)( =μId   by Theorem 9.  Hence, the theorem is proved.  Assume the theorem is true 
for  .mt ≤  Let  FGu ∈  with .)(wt mu =   We separate the proof into 2 cases: 
 
Case 1.  If u  is a sum of one component, i.e., juu =  for some j, then Lemma 11 
proved this case. 
 

Case 2.  Let i

n

i
uu

1

0

−

=
∑= , is a sum of at least two components.  Thus, mui <)(wt  for 

each i.  Without loss of generality, we may assume ii mu =)(wt  and  ji mm ≤  if  .ji <  

Let },,,{ 10 meee ′′′=μ  and  },,,{ 10 imi eee ′′′=μ  for  .1,,2,1,0 −= ni  Since 

ji mm ≤   for ,ji <  then we see that  110 −⊆⊆⊆ nμμμ  where ∅≠0μ  and 

contains at least one idempotent, say 0e′ .  By induction, since ii mu =)(wt  and 
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ii m=|| μ  then .iIu
ii ∀∉ μ   Therefore, .00 ≠′eui   Thus, 00

1

0
0 ≠′∑=′

−

=
eueu i

n

i
 since 

0eu ′  is a linear combination of elements of .,,, 11 −′′′ ntGtGG   And so we conclude that 
.μIu ∉  

 
 Armed with the above results, we are in a position to establish our main result:  
 
Theorem 13.  NM⊆∀ μ  and .1||1 −≤=≤ ptμ   If the char(F) is a primitive root 
modulo p then .1)( += tId μ  
 
Proof.   Let FGu ∈  with .)(wt tu =   Since t=||μ   then  μIu ∉  by Theorem 12.  We 

next assume tru <=)(wt  then we may choose μμ ⊂0  with r=|| 0μ   and again 
Theorem 12 implies  .

0μIu ∉   This implies 00 μ∈∀≠ eue  and so 0≠ue  for some 

.μ∈e   Therefore, .μIu ∉   Thus, we have showed that 1)( d +≥ tIμ .  Now, Lemma 

7 states that G′= μμ  where G′μ  is the set of nonprincipal linear idempotents in              
'FG .  Since G′  is a cyclic group, then by [7, Lemma 1], 1||)( d += ′′ GG

I μμ               

.1+= t  Thus, there exist  GFggggu t
t

t
t

i
i

i
i

i
i

i
i ′∈++++= +

+
1

1
2

2
1

1
λλλλ                 

for Gggg tiii ′∈+121 ,,,  such that 
'G

Iu μ∈  and so .0 Geue ′∈∀= μ   Since ,G′= μμ   

then  .0 μ∈∀= eue   We conclude that  μIu ∈  and so 1)( d +≥ tIμ . 

 By Theorem 13, μI  is a  ]1,||,[ 233 +− μppp  group code with information rate 

.1 ||
pR μ−=   We emphasize that μI   is a nonabelian code and is not a MDS code. 

 
 
6. Conclusions 
 
We make a few remarks to conclude this paper.  The following two families of group 
codes had been constructed: 
 
(a) In Section 4, we found the Type 1 Group Codes ,μI which is a ]2,||,[ 33 μ−pp              

– single error detecting code.  We also proved that if ,2=p  then μI  is an even 

weight group code, and if ,2>p  then μI  contains codeword of weight h for 

.,||2 N∈≤≤ hGh  
 
(b) For the Type 2 Group Codes in Section 5, either by choosing NM⊆μ  to be a 

consecutive set or F with the property that char (F) is a primitive root modulo p, we 
obtained a 2

|| μ  – error correcting group code. 
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(c) Extra special p-group is a special case of a relative M-group with respect to all its 

subgroups.  Results in this paper hold if we take G to be a relative M-group with 
respect to all its subgroups. 
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