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Abstract. The study of group code as an ideal in a group algebra has been developed long
time ago. If char(F) @G|, then FG is semisimple, and therefore, decomposes into a direct

sum FG = @ FGe; where FGe; are minimal ideals generated by the idempotent e;.
i

The idempotent e; provides useful information about the minimum distance of group codes.

In this paper, we consider group code generated by extra-special p-group of order p3, and

construct two families of group codes, one defined using linear idempotents, and the other defined
using nonlinear idempotents. Our primary task is to determine the parameters of these two
families of group codes.
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1. Introduction

Throughout this paper, p is a prime number, G denotes a finite group, F denotes a finite
field whose characteristic is a primitive root modulo p and char (F) }\ |G |. A group code

is defined as an ideal | in a group algebra FG and we often say | is defined by G.
If char (F) Y\ |G|, then FG is semisimple and is a direct sum of some minimal ideals,

S
say FG = @llj. Each 1; is generated by an idempotent e;, i.e., I; = FGe;. Let
J:

M ={e;}5_;- Any ideal I of FG is a direct sum of some of the I, say

t
| = keglljk, t<s. We say that | is generated by {e; },_,. Let u =M \{e; }_;.
Then | ={u e FG|ue;,=0Ve; e u}. For technical reason, we denote I by 1.
Note that x plays the role of parity check matrix defining a linear code, and so we

expect to derive some information about the minimum distance of | u from u. Letus
recall some notations and definitions. The length N of a group code l, <FG is defined
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to be |G|. The weight of any element u = X 4,9 is equal to |{/1g | A4 # 0}| and is
geG

denoted by wt(u). If 1, has dimension K (as a vector space over F) and minimum
distance d(= min{wt(u)|0#u e 1,}), then 1, is called an [N, K,d] group code. In
this paper, we consider group codes defined by extra-special p-group of order p2, and
construct two families of group codes. We determine dimension K of 1, in Section 3

and its minimum distance in Section 4 and 5. Note that the basic theories in Section 2
and 3 can be found in [3, 5, 6].

2. Extra-special p-group of order p®

In this paper, we follow the notation in [3, 5]. A finite p-group G is extra-special if
G'=72(G), |G'|=p and G/G' is elementary abelian. From now onward, G
always denotes a p-group of order p*, which is always extra-special. Let G'= { g ) and
n=p?=|G/G'|. We fixed a set of transversal T of G' in G, ie,

n-1
T={ty=11t,t, -t} and so G=U G't. We now state the following

i=0
properties of extra-special p-group. For the proof we refer to [3,5].

P1. Ghas p? + p—1 conjugacy classes; p of these has size 1 and the other p? —1
each has size p.

P2. |lrr(G)|=p? + p-1.

P3. Ghas p -1 nonlinear irreducible characters of degree p and p? linear characters.

P4.  All nonlinear irreducible characters are faithful.

P5. Assume char(F) = p, then FG =@ FGe; -e; can be computed using the
i

formula

A8 T e where (@) = G}
From P5, we see that distinct irreducible character determines distinct idempotent and e,
are orthogonal to one another. ¢; is called linear idempotent if y; is linear and ¢; is
called nonlinear idempotent if y; is nonlinear. To distinguish linear and nonlinear
idempotent, we let e, be linear for 1 <i < p2, and e/ be nonlinear for 1<i < p-1.
Let M| ={e; | & linear idempotent} and M ={e | &/ nonlinear idempotent}.



Group Codes Defined Using Extra-Special p-Group of Order p? 187

3. Group codes defined using extra-special p-group of order p°
To study a group code, we need the following trivial result [2, Lemma 1.3].

Lemmal. Let H be a subgroup of K. If T is a set of right transversal of H in K,

then every element u e FK can be written uniquely in the form u= X a;t
teT

with a, = > byh e FH.
heH

From P5 and by taking H = G' in Lemma 1, every idempotent e, in FG can be
written as

zk(l) & 1( ( )gt ) 3.1)

j=0i=0

n-1 p-1 S
e, can also be written as X e, ey :l“p—gl)[z;(k(tflg*')g']tj is a linear
j=0 i=0

combination of elements in G't; and we simply say &y corresponds to G't; or the
“j"-component” of e . Similarly, by Lemma 1 any word u= > 1,9 € FG can be
geG

written uniquely as

-1/ p-1 .
u= (Zj’jlgljtj’/ljl e F. (32)
ji=o\i

p-1 .
u; = > 4;9't; that corresponds to G't; is called the “j"~ component” of u= Y u
i=0 .

n-1

Multiplication between u and e, is given by ue, = > ( 2 Uu; )eki , which is called the

i=0

parity check equation of e, .

Remark.  The property G'= Z(G) provides an easy way to do calculation because we

can always concentrate in G', whose elements commute with all the other elements in G.
Because of this, in (3.1) and (3.2) we decompose the words and idempotents of FG into
distinct “component” where each “component” corresponds to a unique coset of G'.

To obtain the dimension of 1,, we need the help from the following theorem
[5, Theorem 3.2].
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Theorem 2.  Let K be a finite group of order n, and F be an algebraically closed field
with char(F) \ n. Then FK ~ Mat, (F) ® --- ® Mat, (F), where n=n? +---+nZ.

FK has exactly s nonisomorphic irreducible modules, of dimensions n;,---,n,, and s is
the number of conjugacy classes of K.

p? p-1
FG can be written as FG = (@ FGei) @(@ FGej') where ¢ e M,V i and

i=1 j=1
el € My,Vj. It follows from Theorem 2 that FGe; = Mat,(F), Ve; e M, and
FGej ~ Mat,(F),vej e My . Thus, if ¢ € M, then dim(FGe) =1, and if

e/ € My, then dim(FGe]) = p>. We can immediately construct the following 2
families of group codes:

(1) If xc M then dim(l,) = dim(FG) - | x| dim(FGe;) = p3—| x|, and so I,
isa [p3 p3—|ul,di] group code where d; = d(l,). We call I, the Type 1
Group Code.

(2) If ucMy, then dim(l,) = dim(FG) - | x| dim (FGe;) = p® - p2 ||, and
so |, isa[p® p*-|u| p?, d,] group code where d, = d(l,). Wecall 1, the
Type 2 Group Code.

In Section 4 and Section 5, we will determine d, and d, .

4. d;=d(l,), minimum distance of the type 1 group code

Assume F contains a primitive p™ root of unity such that char (F) = p and K be the base
field of F. For example, if p = 3, then we can take F to be the algebraic closure of F,

where F,; denotes the finite field of size 23 . We now determined the minimum distance

of Type 1 group codes defined by G over F. The idempotent corresponds to the
principal character is called the principal idempotent and is denoted by € pincipar - Let

o = {€principar}- 1,, has length p* and dim (I, ) = p3~|xo|= p® 1. To proceed
further, we need the following results:

(i) By (3.1) and the definition of principal character, € i, Can be written as:

eprincipal = %{ z gJ (4-1)

geG
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(i) By direct calculation, vV h e G, hepincipal = € principal (4.2)
p-1 ) p-1 ) p-1 .
(i) Yu= X 4,9 +( )y ﬂ,lig'j t + - +[ ) /I(n_l)ig'j t,_; € FG where
i=0 i=0 i=0
Aji € F, by using (4.1) and (4.2), the parity check equation of e 1S as
follows:
p-1 p-1 p-1
ueprincipal = ( z j*Oi + z ﬂii +oeet z ﬂ'(n—l)ijeprincipal (4-3)
i=0 i=0 i=0

With (4.3), we can now show d(l, ) =2. Take any word in FG of weight 1,

ie, u=4g for geG. Assume uel,, SO Ueyimcipal = 4€principas = 0 Which

implies 2 =0.  This contradicts wt(u) =1.  Therefore, u=4g¢l, . So
d(l,) > 1. We next consider u=A1g-1theFG with wt(u) = 2.

U€ principal = (4 + (=4)) €principas =0 and so uel, .  This implies d(l,)=2.

Ho
We conclude that 1, isa [p® p® —1,2] group code.

Now, we consider any x < M, 1< |u| < p?. Itis clear that I, have length pd

and dim(l,) = p3—|u|. Before pressing on, we list a few useful results:

i By (3.1) and y,(9) =1V g € G" where y, is linear, every linear idempotent
can be written as:

1 p-1 n-1
& =—3[29'J(sz(tfl)nj (4.4)

P” izo j=0

p-1 n-1
ii. Let A=)g'and e = > z(tj")t;, then
i=0 i=o

e = % Ae} (4.5)

iii. A is the sum of distinct element in G'. Thus, Vg € G',

gA = A (4.6)
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p-1 )
iv. By (4.6),for > 4g' e FG', we see that

i=0
T p-1
(_ Aig'JA:(_ Ai]A 4.7)

0
p-1 . p-1 . p-1 )
For any u =( 2 A g'J+(Z A g'jt1 + ---+(Z An-1)i g'jtnl e FG we
i=0 i=0 i=0

=l
|

p-1 .
denote uj =( 2 Aji g'jtj for j=0,1,2,---,n—1. The parity check equation is as
i=0
follows:
ue, = Upe + U8 + Up€ + -+ + U,_1€ . (4.8)

Consider the j"-component u; e of ue,.

p-1 . 1
Ujek = - ﬂjigl tJ—SAe"(

i=0 p
1 (&,
:F( /Ij,g'JAtje;(
i=0
1
g Oﬂji At ey (By (4.7))
1=

(4.9)

Il
7\
TN T
IS1 QAN

‘_R)
Ne——
~—

D

F

By substituting (4.9) into (4.8) for j =0,1,2,---,n —1, we obtain

p-1 p-1 p-1 p-1
uey = Hz%ij + [zﬂiijtl + (Z ﬁ*ZthZ Tt [zﬂ“(n—l)i]tnl:lek (4.10)
i=0 i=0 i=0 i=0

We now show that the products of any element in the set of right transversal T of G'
in G with any linear idempotent e, are nonzero.

1, 1 ( ) N =
VtieT,ekeML,tiek =ti FAek :F A,tiek =FA Zlk(tj )tltj .
j=0
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for j=0,1---,n-1 and so te, :#A( Ti;;gk (tjl)sj]. Since
{sg,---»S,_1} is also a set of right transversal of G' in G, then
te, = #( TZ:) FAUR) Asj] is a sum of linear combination of distinct elements in G.
Therefore,

tie, =0. (4.11)
n-1
Lemma3. Let u= X u;. Ifoneofthe u; hasweightl,thenu g, .
i=0

Proof. Suppose u =u; +U, +---+U,_; and wt(ug) =1 for some s. Thus,

us = A.0't;. By (4.10), ue, = KZ ;LOij + o+ Aty + -~~+(;/1(n_1)ijtn_l}ek. By
|

using (4.11), ue, = 0 implies 4, = 0 and this contradicts wt(u;) =1. Sou ¢ I, .

An immediate consequence of Lemma 3 is that any nonzero u in 1, has weight at
least 2, i.e., d(I,) > 2. The next theorem shows d(l,) = 2.

Theorem4. Vuc M ,d(l,)=2.

Proof. Lemma 3 shows d(1,) > 2. So we try to find a codeword of weight 2in 1, .
Choose u=1-geFG for geG'. By (4.10), uge, =1+ (-1)e, =0Ve, € u
which implies u =1-g e 1, andso d(l,) = 2.

We next show a general result for the group codes 1, in FG where G is the extra-
special 2-group.

Theorem 5. For the extra-special 2-group G, V u < M,I, <FG is an even

weight group code.

Proof. Let G be an extra-special 2-group. By definition of G, we know that |G'| = 2.
And so G'=(g)={1,g} where g2 =1. Let uel, be written as

U=Uy+U +U, +--+U,_4. Since each cosets of G' has size 2, each component u;
has either weight 0 or weight 2. Evidently, the element u; = o;(1 - g)t; where ; = 0
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n-1
or1,isin I,. Thus u= X u; isin I, and so I, contains elements of weight
i=0

2,4,6,---,2n. This clearly shows that u has even weight. Therefore, 1, is an even

weight group code.

Theorem 6. Let G be an extra-special p-group G of order p® where p is an odd

prime. V x = M, 1, contains codeword of weight h for 2<h <|G|, heN.

7

Proof. By definition of G, |G'|=p. And so G'=(g) where gP =1
For any integer k, 2<k <p. Let u=u +U,+--4+uU,, and

u; = Mkizgj]—(k —1)gk‘1} t; with wt(u;) =k, then ue =[(k -1) — (k -1 ]t;e
j=0

=0V eeu. Thisimplies u; €1,. Consequently ue =ue+uze+--+u, ;=0
and so uel,.  We see that they may happen that u=u; for u; =0, then
2 <wt(u) < p. If u=u;+u; where u;,u; are distinct and nonzero, then
4 < wt(u) = wt(u;) + wt(u;) < 2p. Thus, if u = ir:i;ui where all u; are nonzero and
distinct, then 2r < wt(u) < rp. Since G has n = p? right cosets of G', so u has at most

n-1
n components. Thus, for u= X u; where some u; may be zeros, we have
i=0

2 <wt(u) <np=|G]|. That is, I, contains elements of weight

2,3,-,p,p+1--,2p-12p,-, p3_

Example 1. Consider FG where G = Z4 x, Z is the extra-special 3-group of order 27.

By arbitrariness in the choice of linear idempotents of FG, we obtain 9 different families
of group codes all with minimum distance 2. Theorem 6 ensures that we can find
codeword of weight h for 2 < h <27, he N. We now try to find some codeword of

weight 3in 1, for arbitrary choice of x. VvV u < M, from (4.5) we know that e; € u

has the form e, :#Ae-’. Knowing G'={1,b% b%}, then A =1+b% +b®. Thus,

I
& =5 (1+b3+Db%)e" for =229  Take F=F, and let & be a
primitive 3" root of unity in F. We see that u=b+b +b7¢2 |, because
Ve € ug =4 (b+b*+b")(1+s+5%)e =0. Similarly, u=1+b% +b%?
el

.2 U=ba? +b%?s +b’a%s? e 1, and so on.
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5. dy=d(l,), minimum distance of the type 2 group code

We shall now determine the minimum distance of the Type 2 Group Codes. The
following results are essential.

i For all y, thatare nonlinear, »,(9) =0,V g ¢ G". Thus, V g, € My,
L& i
e =—| > eMgl|,1>2k<p-1, (4.12)
Plizo
where & is a primitive p™ root of unity in F.
ii. Ve eMyandteT,

te, # 0 (4.13)

p-1 .
iii. Let U=Uy+U +-+Uy4 where uj =[ 2 /Ijig'th for
i=0

j=012,---,n-1. For e € My, the parity check equation of e, is
given by

p-1 . p-1 . p-1 .
Uek :|:( /10i gklj“r[Zﬂiiglitl‘f’(zﬂ,Zi glitz
i=0 i=0 i=0

p-1 )
+ e+ (Zﬂ(n_l)lé‘k'J tn_1:| ek (4.14)
i=0

From (4.13), we know that t;e, is a linear combination of elements in G't; and
since G', G't;,---,G{ are all disjoint cosets, we see that ue, =0 if and only if all
coefficients are zeros, that is,

-1

=l

. p-l ) p-1 ) p-1 _
Aoi gl =0, Zﬂil gk =0, Zﬂ‘Zi g4 =0, and Zﬂ’(n—l)i k= 0.
0 i=0 i=0 i=0

Let us now demonstrate the fact that the nonlinear idempotent in My is an
idempotent of FG'.
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-1
From (4.12), My :{ek :%[Eog_k'g'j|k =1,2,---,p—1} G'=(g) has p linear

characters, and each linear character y; of G' corresponds to a linear idempotent of
FG'. We denote the linear idempotent of FG' by e;_ and the set consisting of all ;  is

denoted by M .

1 &

Ve e My, €, 1§ Z, FAOFACEEE

S|+

p-1 ;
2 xi(g™)
j=0

Since gP =1, then x(g)P = y(gP) = y( =1. If y is not the principal character,
then z(g) = & where & is a primitive p" root of unity in F. So y(gi) = &l for
1< j<p-1. Ingeneral, 7;(g7}) =& for 1<i < p. Therefore,

= ) 10 .
:EZ gligi :EZ glg)) for i=12,---,p—-1.

From (4.12), we see that My = M — {principal idempotent in FG'}. We collect this
fact in the following lemma.

Lemma?7. My =M NG,—{principaI idempotent in FG'}.

Example 2. Consider G = Z; x, Z4. It can be found from the character table of G
that & =1 (1+62b3 + Ob®) and e, = 1 (1+ 62b® + 6b3) are nonlinear idempotents
of FG. Let G'= (b%)={L1b%b®} where b®=1 and 1#0<F, 0°=1.
FG' consists of 3 linear idempotents, i.e., e, %(l+ b3 + b®) the principal idempotent,
ey, =5(1+060%°% +0b°%) and e; =3(1+06b3+0%°). We see that e, = e, and

e2 = 636, .

Recall that My ={e;,e,,---,e, 4} If wc My and u={ej,ej.q, - €k}
then we say u is a consecutive set. In Section 5.1, we shall show that if x is a
consecutive set then d(I,) =| x| +1. In Section 5.2, we shall show that the result still
holds if we carefully choose a suitable field.
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5.1. Group codes defined using consecutive set that consists of nonlinear
idempotents

We now find the minimum distance of 1, if . happens to be a consecutive set. We first

state some definitions and notation.  Let & be a primitive p" root of unity in F.
M(el, g2, M) isa | x p matrix that has 1, g, &% ..., e(P-Di as its k™ row for

1 b g2 ... g(p-Di

1 giZ 6‘2i2 g(p_l)iz
k=12--,1, thatis, M(gh, g, gh) =

1 gil gZiI g(p’l)il
For convenience, we writt M = M(gh,gl2,..- gh). We now let

J <{0,12,---, p -1}, then M, is the submatrix of M consists of the columns indexed
by elements of J. A p x p matrix V of the form

1 1 1
& &y £y
2 2 2
& &y £y
= 1 -1
g" 7 &P £p"

is called a Vandermonde matrix and det(V) = H (e — &)= 0 (refer [2]).

1<i<j<n

Lemma8. If ¢ is a primitive p" root of unity in F and |J|=t then
M; = M(g', &l*2, .- ") ) hasrank t.

Proof. M has the form

1 gi 52| e g(p71)|
1 g+l g2+ . g(p-Di+D)
1 gi+t-l gali+t=1) . o (p-D)(i+t-D)

txp
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Casel. If J<{0,1,2,---,p—1} is consecutive, i.e.,, J={k,k+1-- k+t-1}
with k >0 and t +k < p, then

gik gilk+1) gilk+t=1)
ik (kD) L (i D)(kt-D)
li+t-Dk  o(i+t-D(k+D) . o(i+t-D)(k+t-1)

txt

Divide each entry in the m" row of M ; with g0+m-Dk for 1< m <t, then we obtain

1 gi €2i . g(t—l)i

1 gitl g2(i+1) o gD+
R=|1 gi+2 52(i+2) . g(t—l)(i+2)

1 gi+t—1 82(i+t_1) . g(t—l)(i+t—1)

RT is a Vandermonde matrix with det (R") = det(R) = 0. Since det(M,) = hdet(R)
forsome 0 = h € F, then det(M;) = 0 and so rank(M;) = t.

Case2. If J {012, p—1} isnotconsecutive, i.e., J ={k;,ky,---,k}, then

gl cike gik
S(H'l)kl g(|+l)k2 e g(H'l)kt
Mj; =
Si+t-Dk o (i+t-Dk, S+t-Dk,

txt

Divide each entry in the m™ column of M ; with g~ for 1< m <t,1 then we obtain

1 1 1
Ekl Ekz Ek‘
S =
gDk Dl . (D

txt

S is again a Vandermonde matrix with det(S) = 0 and hence det(M;) is nonzero.
Therefore, rank(M ;) =t.
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Now, we determine d(l,). If u=Ag'tel,, for g'€G’ and teT then
ue, = (A&™)tey. By (4.13), tey # 0 and so ug, # 0. This shows that u ¢ I, and
s0 d(lgy) >1. On the other hand, we can choose u = (g' - ¢(~Pkgl)t e FG for
i # j sothat ue = (&l —gl-Dkgl)te, =0. Therefore, u e Iy . This shows that
d(lg,y) = 2.

Theorem9. If xc My and u ={e1,6 2, €} thend(l,) =t +1.

Proof. We proceed by induction on |u|. For |u|=1, we have showed

above.  Assume that the theorem is true if u' ={e 1,0, " €. i1} SO

d(l,,) =|w |+1=t. Let u = U{ey, 1} Since p’ < w thend(l,)>d(l,)=t.
We separate our proof into two parts. In Part (i), we show I, does not contains
codeword of weight t, and then in Part (ii) we show I, contains at least one codeword of
weight t + 1, then our theorem is proved.

Part (i). To proof Part (i), we assume 1, contains codeword of weight t and try to

obtain a contradiction. Note that a word u of weight t in FG may be a sum of one or
more components, that is, u = ug + Uy + --- + U,_; Where some u; may be zeros.

First, we assume u has the form u = u; where u; is the j"-component of weight t.
Let u= (49" +4,9% +---+ 4,g"%)t; where 1<i; <iy <--- <y < p.

By (4.14), e,y = (e D + 2stDie oo g g gD ) ¢ gy )

Ue = (Aet D 4 2,6k 4 ...+,1[g(k+2)it)tj € .s

e, = (Ae® O o f,e0k 4.y M(kmit)tj €ut

uel, if and only if ue., =ue., =--=ue,, =0. Therefore, we obtain a

homogenous system of linear equations that can be written in the form HA =0 as
follows:
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g(k+1)i1 g(k+l)i2 g(k+l)i3 g(k+1)it 21 0
ek+ip  o(k42)iy  o(k42ig . o (k+2)ig & 0
(k+t)i (k+t)i, (k+t)iz ... (k+t)i; '
& & & &
A 0
where
gDy g(kaDi,  o(keDiy L, o (keD)
ek (k42 ok+2is L. (k2 | o )
H= isthe t x t coefficient matrix, (4.15)
sk oKDy kDl (kD
A4
2’2
and A =| A4
A

Let &' = o for 1< j <t then

k+1 k+1 k+1 k+1
2] a) a3 y
k+2 k+2 k+2 k+2
H=|% a; a3 Gy
k+t k+t k+t K+t
o a, az Oy

Divide each entry in the m™ column of H by ak+ for m=1,2,---,t and obtain

1 1 1 1
a a as a
A =
t-1 t-1 t-1 t-1
a ar as a

which is a Vandermonde matrix with det(A) = 0. Hence det(H) #0 and so H™
exists. Therefore, 2 =H™10 =0 and this contradicts the assumption that wt(u) =t.
Thus, we conclude that u = (449" + 2,9% + -+ 4g")t; ¢ 1,,.
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In general, we assume wt(u) =t and u has the form u=u; +u, +---+u, € FG
where u; are the nonzero i"-component. Let wt(u))=t—-s where

t-s .
s=wt(u,)+wt(us)+---+wt(u,). Write u:(z /ljg'ijtn+v where v =u,
j=1
+Ug + -+ Ug.

By (4.14), uey,; = (/ng(k*l)‘l + ot A e KDl )tn + ---]ek+1

uey,, = [(ﬂig(mz)a TR RV G e ...]em
_ (k+1)i (k+t)i,_
UGy .t _[<Aﬂ.g ! +"'+ﬂ1—sg 'S)tn+"']ek+t
uel, if and only if ue,,; = ue,,, =---=ue.,, =0 and so we obtain r homogenous

systems of linear equations. The homogenous system corresponds to the n™-component
is H;4 = 0 where

Skl gk, (ki A
g+ ok4Diy o (k+ig A2

1= a.nd ﬂ, = ﬂ-s
gk gkt (ki . 21.

—=S

Let a; = g for 1< j <t —s, then by applying suitable column operation to H,, we

obtain the following matrix:

1 1 1 1
o 2% as Qs
2 2 2 2
C=| o ar as Qs
t-1 t-1 t-1 t-1
a a; as T %tes Jika-s)

By Lemma 8, any t —s columns of CT is linearly independent and so any t — s rows of
C is linearly independent. Hence, any t—s rows of H; is linearly independent.

Therefore, rank(H;) =t-s. Let Ty :F'* — F' be the linear transformation

whose matrix relative to the standard bases is Hy, then dim (Ker (Ty )) = dim (Ft=™m)
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—dim (Im(Ty )) =t —s —rank(H;) = 0. Thus, 4 =4,=--=4_, =0 which
implies that wt(u) =s <t and this contradicts the assumption that wt(u) =t.
Therefore, u ¢ 1, and this proved Part (i).

Part (ii). Now, we consider Ty, ! Ft*1 — Ft!, the linear transformation whose

matrix relative to the standard base is M;, where M, isa tx(t+1) matrix which

obtain by adding one more column to the matrix H in (4.15). We may assume M, has
the following form:

g0 gDy L kD (kD
sy o4y L ki (ki
1:
g(k+t)i1 g(k+t)i2 g(k+t)it g(k+t)it+1

tx(t+1)

We take any t columns of My, and obtain a t xt submatrix of M,. By Lemma 8, this
submatrix is a Vandermonde matrix with nonzero determinant. Therefore, any t
columns of M, is linearly independent. Hence, rank(M;) =t. And so

dim (Ker (T, )) = dim (F*1) — dim (Im(Ty,)) =1. This implies that there exists a set
of nonzero solution for this homogenous system of linear equations. Thus,
U= (49" + 2,09% + -+ 4% + A,,0")t; e 1, and wt(u) =t +1.

Combining Part (i) and Part (ii), we obtain d (1,,) =t +1=|x| +1.

5.2. Group codes defined using any set of nonlinear idempotents

We now show that by choosing a finite field F with the following properties, we can
proof d(l,) =[u|+1V uc My.

Gl. Kisabase field of F and char (F) = q.
G2. F contains a primitive p™ root of unity, p = q.
G3. qis a primitive root modulo p, i.e., gP~* =1 (mod p).

For example, if we choose K =F, and p =5, then F =F, is a finite field that
satisfies G1 to G3. In the next paragraph, we show the existence of such a field.
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Knowing that Z, ={0,1,2,---, p -1} is a finite field, so its multiplicative group
Zy ={1,2,-,p -1} is cyclic. Let this multiplicative group be generated by q . Then
GCD(p,q) =1 and the order of @ is #(p) = p—1. So qis a primitive root modulo p.
Let F = Fq,,,l. The multiplicative group F* of F has order (qP! —1) and is cyclic.

Since P~ =1(mod p), p divides |F*| and so F* has an element @ of order p. This
a is a primitive p™ root of unity in F.

Next, we proof the following lemma.

Lemma 10. If char (F) = q is a primitive root modulo p then 1+ x + x2 + .- + xP~!
is irreducible over F.

Proof. Denote f(x) =1+ x+ X% +---+ xP~L. Let o be a primitive p" root of unity
in Fapt - Since (¢ -D)f(a)=aP -1=0 and @ #1, so f(a¢)=0. Thus, the
minimal polynomial m,(x) of « divides f(x). If k =deg(m,(x)) < p -1, then
|Fq(a) ; Fq| =k and so Fy(a) = Fy. So we have a%1 =1 and so p|(qk -1,
that is, g% =1(mod p). This contradicts that q is a primitive root modulo p. So

deg (m, (x)) = p —1 and we conclude that m,(x) = f(x). Thus, f(x) isirreducible.
By assuming char(F) is a primitive root modulo p, we see that

f(X) =1+ X+ X2 +---+ xP~1 is the minimal polynomial of « over K. Therefore,
(L+x+x2+ -+ xP )| g(x) for g(x) e K[x] with g(8) =0.

Lemmall. Let g My and O< |u|=t< p-1. Assume char(F) is a primitive
rootmodulo p. If u=u; € FG where u;is the j"-component of weight t then u ¢ I,

Proof. Take u ={ec, e, ---,e}. Since u=u; of weight t then we write u as

U= (40" + 4,07 + -+ 40")t; . By (4.14),

ve, = [ (4 &' + 2, g4 4o+ 4 M)t ] e

— Koi Koi Ky i
Uekz —[(21821+ﬂ,2822 +"'+ﬂt82[)tj:|ek2

uek1 = [(ﬂigktil +ﬂvz gktiz + +ﬂ’t ngit)tj] ek!
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Assume u € I, then ue, =ue, =---=ue, =0. Therefore, we obtain the following
homogenous system of linear equations:

el gk L. gklit ﬂ’l 0
gka  gkap Lo kol ,12 0
gktil gktiZ e gk:it ﬂ"t O
g gk o ki
Koi koi K
&2l &gh22 gh2t
where H =
gktil gktiz e gktit
Zlkl szl Ztkl
_ 7 K, 7 Ky z k
Let ¢ =z, for 1<s<t, then H=|"1 2 t . If the rows of H are
Zlkt szt Ztkt

linearly dependent over F then there will exist ¢;,c,,---,c; not all zero such that

oz, 2 2o g (2l gl (2l 2l 2l = 0,

and so

t t t
(Zcizlki’zCiZZKi’”.’ZCiZtkijzo'
i=1 i=1 i=1

t t
Thus, X ¢ zski =0 for s=12,---,t. Denoted f(x)=Xc; x4. We see that
i=1 i=1

2;,2,,--+,Z; are all distinct zeros of f(x).

By Lemma 10, (1+ X + X2 + --- + xp*1)| f(x). Since deg(f(x))=t< p-1,
then either f(x)=0(mod 1+ x + x% +---+ xP™1) or deg(f(x))=t=p-1. If
f(x) =0 then all c¢; =0 and this contradicts that all the rows of H are linearly
dependent. Thus, the rows of H are linearly independent and so rank (H) =t. Let

T:F! > F! be the linear transformation whose matrix relative to the standard base is
H. Thus dim(Ker (T)) =t —dim(Im(T)) =t —t = 0, and this contradicts wt(u) =t.
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On the other hand, if t = p —1, then the zeros of f(x) are z;,2,,---,z,_;. Since

the  zeros  of 1+ X+ X2 44 xP1L are £,82,, &P and
(14 x+ X2+ -+ xP )| f(x), these imply z; = & for some i, j. There is no loss if

we assume z; = ¢, z, = 2,--+, 2,y = &' and so convert H into
el g2k o g(p-Dk
gke g2k ... g(p-Dk
gkp—l 82kpfl g(P—l)kpA

which is a Vandermonde matrix with det (H) = 0 and so H ! exists. This implies

A 0 0
Ay _ya 0 _ 0
A 0 0
and again this contradicts wt(u) =t. We conclude that

U= (40" + 29" + -+ 40"t e 1,

Theorem 12. Vuc My, if char(F) is a primitive root modulo p and
O<|ul=t<p-1, then I, does not contains codeword of weight t.

Proof. We use induction on t. If t=1, then x is a consecutive set. And so
d(l,) =2 by Theorem 9. Hence, the theorem is proved. Assume the theorem is true
for t <m. Let u e FG with wt(u) = m. We separate the proof into 2 cases:

Casel. If u is a sum of one component, i.e.,, u =u; for some j, then Lemma 11

i
proved this case.

n-1
Case2. Let u= X u;, isasum of at least two components. Thus, wt(u;) < m for
i=0
each i. Without loss of generality, we may assume wt(u;) = m; and m; <m; if i< j.
Let u={ep. e, e} and g ={ep e, e} for 1=012--,n-1. Since
m; <m; for i< j, then we see that 4 <y < - < g1y Where py # < and

contains at least one idempotent, say e;. By induction, since wt(u;) = m; and
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n-1
| 4| =m; then u; ¢ 1, Vi. Therefore, ujeg # 0. Thus, ue; = Eloui ey # 0 since

ueg is a linear combination of elements of G',G'ty,---,G't,_;. And so we conclude that
uel,.

Armed with the above results, we are in a position to establish our main result:

Theorem13. V g My and 1<|u|=t < p-1. If the char(F) is a primitive root
modulo p then d(1,) =t +1.

Proof. Let u e FG with wt(u) =t. Since |u|=t then u ¢ I, by Theorem 12. We

next assume wt(u) =r <t then we may choose g, — ¢ with |gy| =r and again
Theorem 12 implies u ¢ Iy, - This implies ue = 0 V e € x4, and so ue = 0 for some

e € u. Therefore, u ¢ 1,. Thus, we have showed that d(1,) > t +1. Now, Lemma
7 states that u = ug where g is the set of nonprincipal linear idempotents in
FG'. Since G' is a cyclic group, then by [7, Lemma 1], d(1,,)=luc|+1
=t+1. Thus, there exist u=2 g%+ 4 g% +--+ 74 gk + 4 gt e FG'
for g%, g",---,g"1 € G’ suchthat ue 1, andso ue =0V ee ug. Since u = g,
then ue =0V ee . Weconcludethat uel, andso d(l,)>t+1.

By Theorem 13, |, isa [p2, p® — p?| |, +1] group code with information rate

H

R=1- % We emphasize that 1, is a nonabelian code and is not a MDS code.

6. Conclusions

We make a few remarks to conclude this paper. The following two families of group
codes had been constructed:

(a) In Section 4, we found the Type 1 Group Codes I, which is a [ p3, p3—|x/[,2]
— single error detecting code. We also proved that if p =2, then I, is an even
weight group code, and if p >2, then 1, contains codeword of weight h for
2<h<|G]|,heN.

(b) For the Type 2 Group Codes in Section 5, either by choosing x# < My to be a
consecutive set or F with the property that char (F) is a primitive root modulo p, we
obtained a '—‘2" — error correcting group code.
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(c) Extra special p-group is a special case of a relative M-group with respect to all its

subgroups. Results in this paper hold if we take G to be a relative M-group with

respect to all its subgroups.
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