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Abstract. Exact logistic regression is discussed for multiple regressors. The exact significance of
a regressor is computed which can be used in simplifying the model and/or to compute the
significance of a variable or a set of variables in the model. Bilingual education data is analyzed
using the procedure mentioned in this paper.
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1. Introduction

Following Cox ([1], Ch. 4), Tritchler [8] implemented an algorithm for the exact logistic
regression analysis of a single regressor. Tritchler [8] used Fourier transformation
algorithm given by [7] to compute the p value for testing the significance of the
regression parameter. Mehta et al. [4] gave an efficient Monte Carlo method by
networking the possible regressor values.

We assume that we have a set of independent variables (regressors) that are to be
used for prediction in each of the following situations: (1) predicting whether a
company's dealer will soon be mired in dire financial straits, (2) predicting if a person is
likely to develop heart disease, (3) predicting whether a hospital patient will survive until
being discharged, or (4) predicting whether a person has achieved a desirable competency
level of a learning. In such scenarios, the response (dependent) variable is binary. Due
to a wide range of applications, the binary response models are studied explicitly. For the
latest developments in the area, the reader is referred to [6], [2] and the references
therein.

Let Xy, Xp, -, Xy

variable. Y can only take the values of ‘1’ for ‘success’ and ‘0’ for “failure’. A random
sample of n data points is taken from a phenomenon. A general binary model is
assumed as

be p separate regressors and Y be a response (dependent)

P(Yi =1) =z = E(Y; | Xy, Xgp,, X)), 1 =12,...,n, 1)

where 0 < 7; < land P(Y; = 0) =1-7;. We define the logistic model as
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eXp(ﬂo+Z?=1ﬂiji) _ eXp(Z?=oﬂiji)
1+exp(ﬂo+Z§’:1ﬂ,-X,-i) 1+exp(Z§’:O,ﬁjxji)

7(X;) = @)

where Sy, B, -+, B, are unknown constants and X; is the row vector (1x; ---X) .
Notice that there is no error term on the right side of (2) because the left side is a function

of E(Y| Xy, Xy, «++, X,), instead of Y, which serves to remove the error term.
If yi,¥,, ==+, Y, isan observed binary sequence of size i, then
P(Yl = Y1, Yo = VYo Yo = Yol X Xao, o0y Xany Xo1, Xp2 *+* Xaon "‘vXplepzv""Xpn)

~ eXp(ﬁon?ﬂﬂjti)
i e oo @)
|:1(1+eXp(ﬂ0+ijlﬂijl))

n n
wheres = 2. y; and t; = 2 y;x; for j=1,2--,p. Following Cox (1970),
i=1 i-1

n n
inference is based on the sufficient statistics S =2Y; and T; = 2Y; X; for
i=1 i=1
j=12,---,p, whose joint distribution is obtained by summing over all binary

sequences generating each realization of s, t;,t; -+, t,. Thus

p ) p -t
P(S ST, = 4T, =ty Ty = t ): (Hj:1CJ)eXp(ﬂOS+ZJ:1ﬁJtJ), (4)

P P ir‘:l(1+ exp(ﬂo + 25 ﬂjxji))

where C;’s are the numbers of distinct binary sequences yielding the values s and t; s
for the sufficient statistics. Exact inferences containing #;’s may be based on the
conditional distribution P(T; =1, T, =1t,-, T,

properties of the exponential family of distributions, the critical region defined by
the upper tail values of t; within the conditional reference set provides a uniformly

= t,|S = s). Because of

most powerful unbiased test of Hg : B = Bjo versus H, : §; > B, (Lehman 1959,
p. 136). The conditional distribution used to test hypotheses concerning f; is

C. ex ot
P(T, = t;15=5)= =2 P Pity)

- , 5
! ;le exp (Bjotji) ©

where | is an index ranging over all the values taken by T; .
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2. Tests of significance

In one-sided tests, such as H : B; = Bjo versus H, : B; > Bj,, the p value can be
computed as

> Ci exp (Bjoti)

iiT;>t;
ZtJ|S:S)—I J>J

P(T. =
( ch exp (Bjot))
vl

]

(6)

which tests for significance of the particular variate in the model. Due to the pattern of
products of frequencies and exponentiation of a linear function, the p values are easy to
compute for the significance of a set of variates. For example, for testing,
Ho 1 B = Bjo and By = By, VersusH,: at least one of the #’s not equal to the

specified value can be tested by computing the p value as

P(T,eRjor TceR|S=s) =1-P(T; g Rjand T, € Ry |S =)
=1-P(T; ¢ R JP(Ty 2 Ry)=1-(1-2P(T; > t;|S =5)) @)
(1-2P(T, > t,|S =5s))

whereR; and R, are the respective critical regions. The computations of such p values

are demonstrated using a data set in Section 5. In equation (7) '>" will be replaced in
one or both places by '<' depending on whether observed t; and/or t, lie in which tail

of the distributions of T; and T, . Similar processes can be applied for testing a set of
more than two parameters.

3. Inferences based on maximum likelihood
Maximum likelihood parameter estimation is studied extensively. Here we review the

method as given in [5]. The log-likelihood function for the logit model (2) can be
written as

logL(B) = 3 {y; log(X;) + (- y;) log[L - 7 (X1}
i=1

where g is vector valued. For methods with more than one parameter, the first-order
conditions require that we simultaneously solve the p + 1 equations

L TE0) B
5ﬂj



210 M. Rahman and S. Chakrobartty

: 62 log L(p) .
for which hy =————><0,(j=01--,p)(k=012--,p).
T opioB

For the first-order conditions for the logit model (2), the likelihood expressions are
written as

ologL(p) e o _ _
—3;——wm—éh.nwﬂx

and the negative of the second derivatives are

__S2100L(B) N VT - (XX
B === —Enmm1nmmxx

where U(B) isa (p +1) x1 vectorand 1(f5) isa (p +1) x (p +1) matrix. The matrix
I(B) plays a key role in the estimation procedure and yields the estimated variances and

covariances of the estimates as by-product. The asymptotic variances and covariances of
the logit estimates are obtained by inverting the Hessian (or expected Hessian) matrix or
information matrix 1(£). Then the Newton-Raphson iterative solution of a system of

equations can be used to obtain the solutions of £’s. At the t" iteration, estimates are
obtained as

BO = pen [| (/}(t—l))]‘lu (,5’(“1))-

The least square estimates of £ ’s are often used as the initial estimates. The quantity
ﬁk /,/Dkk has asymptotic normal distribution where D, is the k™ diagonal element of
[l (,3)]‘1 and can be used in testing and in forming confidence intervals for a particular

parameter 5. Also, any subset of parameters can be tested using the following
asymptotic y? statistic.

7% =—[logL; —log Ly], €))

has approximate y2 distribution with (n—q-1) — (n—p—-1) = p—q degrees of
freedom, where q + 1 is the number of unknown parameters in the model under the null
hypothesis, log L; is the maximized log likelihood under the full model, and log L, is
the maximized log likelihood under the null hypothesis.



Significance Testing in Exact Logistic Multiple Regression 211

4. Motivation

Exact logistic regression is not a new phenomenon but in the wake of computational
convenience is attracting more attention than before. Specialized software are not
popular as they do not communicate effectively with the users. The algorithms are used
in the software and are suggested by different authors are approximations, often through
fourier transformations. Here we give algorithms to compute exact p values without any
approximation. A data set is used to apply the exact logistic regression procedures. The
exact p values will help to determine whether the particular factor is significant or not
more accurately that using approximate t statistic for the maximum likelihood estimate.
When particular factors are found to be significant then maximum likelihood method
should be used in estimating or predicting the success probabilities. Often, the method of
discriminant analysis (see [2], Section 1.5) gives higher rate of successful predictions but
lacks properties like unbiasedness, consistency, and efficiency.

Table 1. Estimated Variance-Covariance Matrix (MLE)

Statistics ﬂo ’31 ﬂz ﬂz
2;0 0.8144 ~0.0404 ~0.1553 -0.0218
%1 -0.0404 0.0203 -0.0007 0.0025
/A;Z ~0.1553 ~0.0007 0.0395 ~0.0007
’}3 -0.0218 0.0025 -0.0007 0.0042
5. Application

The population studied is thirteen schools of the Salinas City Elementary School district
in the County of Monterey in California. Participating students were fifth and sixth
graders of limited English proficiency. This study was undertaken in 1996 to take an in
depth look at the data gathered for the population of limited English proficient students
and its role in redesignating students to fluent English proficiency status.

Information on 257 participating students were recorded and displayed in Table 3.
In Tables 3, “E” represents English score, “S” represents Spanish score, “Y” represents
the number of years in the program and “B” represents the redesignation in the bilingual
status. In the variable “B”, ‘1’ indicates success of the participant in the program and ‘0’
indicates failure. In the variables “E” and “S”, higher the score means higher the
proficiency.

Redesignation in the program is done by the evaluator after considering the three
variables “E”, “S” and “Y”, and the personal judgement of the evaluator. Here we will
model using Logistic regression models. Goal is to give a rule by which one can be
redesignated. The assumption is that the redesignation of the present data is done by an
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expert and future redesignation is possible by an auto-mated rule with the help of the
present analysis.

The Logistic model given in (2) is estimated using the maximum likelihood method
(MLE) given in Powers ([5], Section 3.3.3) as described in Section 3 as

P exp (1.0999 + 0.0127 Eng — 0.1816 Spa — 0.0474 Yrs)
1+ exp(1.0999 + 0.0127 Eng — 0.1816 Spa — 0.0474 Yrs)

The variance-covariance matrix for the estimates of the parameters is computed

using the delta method as [I(,é)]‘l in Section 3 and displayed in Table 1. The
maximum likelihood estimates and the corresponding p values are displayed in Table 2.
In Table 2, the likelihood ratio statistic as in (9) is represented as y2, Est. represents the

MLE estimates of the parameters, Z is the studentized statistic, p, is the p value for Z
statistic, P, is the p value using the y? statistic, Exact p is the p value using the exact
method as described in Section 2. Intesting H, : f; =0 and S, =0

Table 2. Estimates and p values

Est. z p, 72 P2 Exact p

By | 10999 | 12188 | 0.2229

ﬁl 0.0127 0.0891 | 0.9290 | 0.0078 | 0.9296 | 2P(T; = 210| S = 138) = 0.8204

,éz -0.1816 | —0.9137 | 0.3609 | 0.8410 | 0.3591 | 2P(T, = 553| S =138) = 0.3889

By | 00474 | 07314 | 0.4645 | 05410 | 0.4620 | 2P(T, > 673|S = 138) = 0.4177

versus H, : at least one of £, and S, non-zero. p value =1-(1- 2P(T, > 210)
|S =138)) (1-2P(T, < 553| S =138)) = 0.8902.

Similarly, the p values for testing significance of the other two subsets of parameters
(B, B3) and (B,, B5) are respectively, 0.8954 and 0.6442. Asymptotic method such as

likelihood ratio y? gives the following three p values for the respective pairs of

parameters as 0.6551, 0.7286, and 0.4789. The p value for testing significance of all
three parameters f;, f, and p; using likelihood ratio test is 0.6680, and using

the exact method is =1-(1-2P(T; > 210)|S =138)) (1- 2P(T, < 553|S =138))
(1-2P(T, < 673| S = 138)) = 0.9361.
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6. Conclusion

In Section 5, we notice that the exact p values for the individual parameters are
comparable with the asymptotic p values except for S, where the difference is

noticeable. But for a set of two or three parameters the differences in p values are high.
In asymptotic computations, the Chi-square inferences are based on independence of
parameter estimates but in reality they are not as can be seen in Table 1. The differences
in p values are clear even though the data is large and the covariances among the
estimates are very small.
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Table 3. Bilingual Data
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Table 3 (cont’d)
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