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Abstract. The purpose of this paper is to introduce two new classes of func-
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1. Introduction

Yüksel et al. [17] introduced the notions of α-I-irresolute, α-pre-I-continuous and al-
most α-I-irresolute functions in ideal topological spaces. The purpose of the present
paper is to introduce and investigate the notions of new classes of functions, namely
α-I-preirresolute functions and β-I-preirresolute functions, and to give several char-
acterizations and their properties. Relations between these types of functions and
other classes of functions are obtained. The new class of α-I-preirresolute functions
is stronger than pre-I-irresolute functions. The new class of β-I-preirresolute func-
tions, which is stronger than almost α-I-irresolute functions [17], is a generalization
of pre-I-irresolute functions.

2. Preliminaries

Throughout this paper Cl(A) and Int(A) denote the closure and the interior of A,
respectively. Let (X, τ) be a topological space and let I an ideal of subsets of X. An
ideal is defined as a nonempty collection I of subsets of X satisfying the following
two conditions : (1) If A ∈ I and B ⊂ A, then B ∈ I; (2) If A ∈ I and B ∈ I, then
A∪B ∈ I. An ideal topological space is a topological space (X, τ) with an ideal I on
X and is denoted by (X, τ, I). For a subset A ⊂ X, A∗(I) = {x ∈ X|U ∩ A /∈ I for
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each neighbourhood U of x} is called the local function of A with respect to I and τ
[12]. We simply write A∗ instead of A∗(I) in case there is no chance for confusion.
X∗ is often a proper subset of X. The hypothesis X = X∗ [10] is equivalent to the
hypothesis τ ∩ I = ∅ [16]. For every ideal topological space (X, τ, I), there exists
a topology τ∗(I), finer than τ , generated by β(I, τ) = {U\I : U ∈ τ and I ∈ I},
but in general β(I, τ) is not always a topology [11]. Additionally, Cl∗(A) = A ∪ A∗

defines a Kuratowski closure operator for τ∗(I).
We recall some known definitions.

Definition 2.1. A subset S of a topological space (X, τ) is said to be α-open [15]
(resp. pre-open [13], β-open [1]) if S ⊂ Int(Cl(Int(S))) (resp. S ⊂ Int(Cl(S)), S ⊂
Cl(Int(Cl(S)))).

Definition 2.2. A subset A of an ideal topological space (X, τ, I) is said to be
α-I-open [8] (resp. pre-I -open [4], β-I-open [8]) if A ⊂ Int(Cl∗(Int(A))) (resp.
A ⊂ Int(Cl∗(A)), S ⊂ Cl(Int(Cl

∗
(S)))). The family of all α-I-open (resp. pre-I-

open, β-I -open) sets in an ideal topological space (X, τ, I) is denoted by αIO(X)
(resp. PIO(X), βIO(X)). The intersection of all preclosed sets containing a subset
S is called the preclosure [7] of S and is denoted by pCl(S); the union of all preopen
sets contained in S is called the preinterior [14] of S and is denoted by pInt(S).

Definition 2.3. [17] A function f : (X, τ, I) → (Y, ϕ) is said to be α-I-irresolute
(resp. almost α-I-irresolute) if f−1(V ) is α-I-open (resp. β-I-open) in X for every
α-open set V of Y .

Definition 2.4. [17] A function f : (X, τ, I) → (Y, ϕ) is said to be α-pre-I-continuous
if f−1(V ) is pre-I-open in X for every α-open set V of Y .

Definition 2.5. A function f : (X, τ, I) → (Y, ϕ) is said to be pre-I-irresolute
(resp. α-I-preirresolute, β-I-preirresolute) if f−1(V ) is pre-I-open (resp. α-I-open,
β-I-open) in X for every preopen set V of Y .

From the definitions stated above, we obtain the following diagram:

α-I-preirresolute //

��

pre-I-irresoluteness //

��

β-I-preirresoluteness

��
α-I-irresoluteness // α-pre-I-continuity // almost α-I-irresoluteness

Remark 2.1. However, converses of the above implications are not true, in general,
by [17, Examples 1.1, 1.2 and 1.3].

3. α-I-preirresolute functions

Theorem 3.1. For a function f : (X, τ, I) → (Y, ν), the following are equivalent:
(a) f is α-I-preirresolute;
(b) For each x ∈ X and each preopen set V of Y containing f(x), there exists

an α-I-open set U of X containing x such that f(U) ⊂ V ;
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(c) f−1(V ) ⊂ Int(CI∗(Int(f−1(V )))) for every preopen set V of Y ;
(d) f−1(F ) is α-I-closed in X for every preclosed set F of Y ;
(e) Cl(Int∗(Cl(f−1(B)))) ⊂ f−1(pCl(B)) for every subset B of Y ;
(f) f(Cl(Int∗(Cl(A)))) ⊂ pCl(f(A)) for every subset A of X.

Proof.
(a) ⇒ (b): Let x ∈ X and V be any preopen set of Y containing f(x). By

Definition 2.5 f−1(V ) is α-I-open in X and contains x. Set U = f−1(V ), then U is
an α-I-open subset of X containing x and f(U) ⊂ V .

(b)⇒(c): Let V be any preopen set of Y and x ∈ f−1(V ). By (b), there exists an
α-I-open set U of X containing x such that f(U) ⊂ V . Thus, we have

x ∈ U ⊂ Int(Cl∗(Int(U))) ⊂ Int(Cl∗(Int(f−1(V ))))

and hence
f−1(V ) ⊂ Int(Cl∗(Int(f−1(V )))).

(c)⇒(d): Let F be any preclosed subset of Y . Set V = Y − F , then V is preopen
in Y . By (c), we obtain f−1(V ) ⊂ Int(Cl∗(Int(f−1(V )))) and hence f−1(F ) =
X − f−1(Y − F ) = X − f−1(V ) is α-I-closed in X.

(d)⇒(e): Let B be any subset of Y . Since pCl(B) is a preclosed subset of Y , then
f−1(pCl(B)) is α-I-closed in X and hence

Cl(Int∗(Cl(f−1(pCl(B))))) ⊂ f−1(pCl(B)).

Therefore, we obtain Cl(Int∗(Cl(f−1(B)))) ⊂ f−1(pCl(B)).

(e)⇒(f): Let A be any subset of X. By (e), we have

Cl(Int∗(Cl(A))) ⊂ Cl(Int∗(Cl(f−1(f(A))))) ⊂ f−1(pCl(f(A)))

and hence f(Cl(Int∗(Cl(A)))) ⊂ pCl(f(A)).

(f)⇒(a): Let V be any preopen subset of Y . Since f−1(Y − V ) = X − f−1(V ) is a
subset of X and by (f), we obtain

f(Cl(Int∗(Cl(f−1(Y − V ))))) ⊂ pCl(f(f−1(Y − V )))

⊂ pCl(Y − V )

= Y − pInt(V ) = Y − V

and hence

X − Int(Cl∗(Int(f−1(V )))) = Cl(Int∗(Cl(X − f−1(V ))))

= Cl(Int∗(Cl(f−1(Y − V ))))

⊂ f−1(f(Cl(Int∗(Cl(f−1(Y − V ))))))

⊂ f−1(Y − V )

= X − f−1(V ).

Therefore, we have f−1(V ) ⊂ Int(Cl∗(Int(f−1(V )))) and hence f−1(V ) is α-I-open
in X. Thus, f is α-I-preirresolute. �
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Lemma 3.1 (Chae et al. [3], El-Deeb et al. [7] and Abd El-Monsef et al. [1]).
Let {Xλ : λ ∈ Λ} be a family of spaces and Uλi

be a nonempty subset of Xλi
for

each i = 1, 2, . . . , n. Then U =
∏

λ6=λi Xλ ×
n∏

i=1

Uλi
is a nonempty α-open [3] (resp.

preopen [7], β-open [1]) subset of
∏

Xλ if and only if Uλi is α-open (resp. preopen,
β-open) in Xλi for each i = 1, 2, . . . , n.

Theorem 3.2. A function f : (X, τ, I) → Y is α-I-preirresolute if the graph func-
tion g : (X, τ, I) → X × Y , defined by g(x) = (x, f(x)) for each x ∈ X, is α-I-
preirresolute.

Proof. Let x ∈ X and V be any preopen set of Y containing f(x). Then X × V is a
preopen set of X × Y by Lemma 3.1 and contains g(x). Since g is α-I-preirresolute,
there exists an α-I-open set U of X containing x such that g(U) ⊂ X×V and hence
f(U) ⊂ V . Thus f is α-I-preirresolute. �

Theorem 3.3. If a function f : (X, τ, I) →
∏

Yλ is α-I-preirresolute, then pλ ◦ f :
(X, τ, I) → Yλ is α-I-preirresolute for each λ ∈ Λ, where Pλ is the projection of∏

Yλ onto Yλ.

Proof. Let Vλ be any preopen set of Yλ. Since Pλ is continuous and open, it is
preirresolute [13, Theorem 3.4]. Therefore, P−1

λ (Vλ) is preopen in
∏

Yλ. Since f

is α-I-preirresolute, then f−1(P−1
λ (Vλ)) = (Pλ ◦ f)−1(Vλ) is α-I-open in X. Hence

Pλ ◦ f is α-I-preirresolute for each λ ∈ Λ. �

Theorem 3.4. If f : (X, τ, I) → (Y, ν) is α-I-preirresolute and A is an α-I-open
subset of X, then the restriction f/A : A → Y is α-I-preirresolute.

Proof. Let V be any preopen set of Y . Since f is α-I-preirresolute, then f−1(V ) is
α-I-open in X. Since A is α-I-open in X, (f/A)−1(V ) = A ∩ f−1(V ) is α-I-open in
A [2, Theorem 3.1]. Hence f/A is α-I-preirresolute. �

Theorem 3.5. Let f : (X, τ, I) → (Y, ν) be a function and {Aλ : λ ∈ Λ} be a
cover of X by α-I-open sets of (X, τ, I). Then f is α-I-preirresolute if and only if
f/Aλ : Aλ → Y is α-I-preirresolute for each λ ∈ Λ.

Proof. Necessity. This follows from Theorem 3.4.
Sufficiency. Let V be any preopen set of Y . Since f/Aλ is α-I-preirresolute,

(f/Aλ)−1(V ) is α-I-open in Aλ. Since Aλ is α-I-open in X, (f/Aλ)−1(V ) is α-I-
open in X for each λ ∈ Λ [2, Theorem 3.2]. Therefore,

f−1(V ) = X ∩ f−1(V ) = ∪{Aλ ∩ f−1(V ) : λ ∈ Λ} = ∪{(f/Aλ)−1(V ) : λ ∈ Λ}
is α-I-open in X because the union of α-I-open sets is an α-I-open set [2, Proposition
3.2(2)]. Hence f is α-I-preirresolute. �

Theorem 3.6. Let f : (X, τ, I) → (Y, ν) and g : (Y, ν) → Z be functions. Then
the composition g ◦ f : X → Z is α-I-preirresolute if f is α-I-preirresolute and g is
preirresolute.

Proof. Let W be any preopen subset of Z. Since g is preirresolute, g−1(W ) is
preopen in Y . Since f is α-I-preirresolute, then (g ◦ f)−1(W ) = f−1(g−1(W )) is
α-I-open in X and hence g ◦ f is α-I-preirresolute. �
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4. β-I-preirresolute functions

Lemma 4.1. Let (X, τ, I) be an ideal topological space.

(1) If A ∈ τ and B ∈ βIO(X), then A ∩B ∈ βIO(A).
(2) If A ∈ αIO(X) and B ∈ βIO(X), then A ∩B ∈ βIO(X).

Proof.

(1): This property is shown in [9, Theorem 4.3].

(2): We have

A ∩B ⊂ Int(Cl∗(Int(A))) ∩ Cl(Int(Cl∗(B)))

⊂ Cl[Int(Cl∗(Int(A))) ∩ Int(Cl∗(B))]

= Cl(Int[Cl∗(Int(A)) ∩ Int(Cl∗(B))])

⊂ Cl(Int(Cl∗[Int(A) ∩ Int(Cl∗(B))]))

= Cl(Int(Cl∗(Int[Int(A) ∩ Cl∗(B)])))

⊂ Cl(Int(Cl∗(Int(Cl∗(A ∩B)))))

⊂ Cl(Int(Cl∗(A ∩B))).

�

Lemma 4.2. If A ⊂ Xo ⊂ X, Xo ∈ τ and A ∈ βIO(Xo), then A ∈ βIO(X).

Proof.

A ⊂ ClXo
(IntXo

(Cl
∗

Xo
(A))) = Cl(IntXo

(Cl
∗

Xo
(A))) ∩Xo

⊂ Cl(IntXo(Cl
∗

Xo
(A)))

= Cl(Int(Cl
∗

Xo
(A)))

= Cl(Int(Cl∗(A) ∩Xo))

⊂ Cl(Int(Cl∗(A))).

�

Theorem 4.1. For a function f : (X, τ, I) → (Y, ν), the following are equivalent:

(a) f is β-I-preirresolute;
(b) For each x ∈ X and each preopen set V of Y containing f(x), there exists

a β-I-open set U of X containing x such that f(U) ⊂ V ;
(c) f−1(V ) ⊂ Cl(Int(Cl∗(f−1(V )))) for every preopen set V of Y ;
(d) f−1(F ) is β-I-closed in X for every preclosed of F of Y ;
(e) Int(Cl(Int∗(f−1(B)))) ⊂ f−1(pCl(B)) for every subset B of Y ;
(f) f(Int(Cl(Int∗(A)))) ⊂ pCl(f(A)) for every subset A of X.

Theorem 4.2. A function f : (X, τ, I) → Y is β-I-preirresolute if the graph func-
tion g : (X, τ, I) → X × Y , defined by g(x) = (x, f(x)) for each x ∈ X, is β-I-
preirresolute.
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Theorem 4.3. If a function f : (X, τ, I) →
∏

Yλ is β-I-preirresolute, then Pλ ◦ f :
(X, τ, I) → Yλ is β-I-preirresolute for each λ ∈ Λ, where Pλ is the projection of∏

Yλ onto Yλ.

Theorem 4.4. If f : (X, τ, I) → (Y, ν) is β-I-preirresolute and A is an open subset
of X, then restriction f/A : A → Y is β-I-preirresolute.

Proof. Let V be any preopen set of Y . Since f is β-I-preirresolute, then f−1(V ) is
β-I-open in X. Since A is open in X, (f/A)−1(V ) = A ∩ f−1(V ) is β-I-open in A
by Lemma 4.1(1). Hence f/A is β-I-preirresolute. �

Theorem 4.5. Let f : (X, τ, I) → (Y, ν) be a function and {Aλ : λ ∈ Λ} be
a cover of X by open sets of (X, τ, I). Then f is β-I-preirresolute if and only if
f/Aλ : Aλ → Y is β-I-preirresolute for each λ ∈ Λ.

Proof. Let V be any preopen set of Y . Since f/Aλ is β-I-preirresolute, (f/Aλ)−1(V )
is β-I-open in Aλ. Since Aλ is open in X, then (f/Aλ)−1(V ) is β-I-open in X for
each λ ∈ Λ by Lemma 4.2. Therefore,

f−1(V ) = X ∩ f−1(V ) = ∪{Aλ ∩ f−1(V ) : λ ∈ Λ} = ∪{(f/Aλ)−1(V ) : λ ∈ Λ}

is β-I-open in X because the union of β-I-open sets is a β-I-open set [9]. �

Theorem 4.6. Let f : (X, τ, I) → (Y, ν) and g : (Y, ν) → Z be functions. Then
the composition gof : X → Z is β-I-preirresolute if f is β-I-preirresolute and g is
preirresolute.

Proof. The proof is similar to that of Theorem 3.6 and is thus omitted. �

We recall that a subset A of X is said to be τ∗-dense [5] (resp. ∗-dense-in-itself
[10], ∗-perfect [10]) if Cl∗(A) = X (resp. A ⊂ A∗, A = A∗). A subset of X is said to
be I-locally closed if it is the intersection of an open subset and a ∗-perfect subset
of X [6].

We obtain the following theorem from the above definitions.

Theorem 4.7. For a space (X, τ, I), the following are equivalent:
(a) Every ∗-dense-in-itself subset is pre-I-open.
(b) Every ∗-perfect subset is open.

Proof.
(a)⇒(b): Let A ⊂ X be ∗-perfect. By hypothesis, A is pre-I-open and hence

A ⊂ Int(Cl∗(A)) = Int(A). Thus A is open.

(b)⇒(a): Let A ⊂ X be ∗-dense-in-itself. Then A ⊂ A∗ and A∗ = Cl∗(A). On
the other hand, A∗ ⊂ (A∗)∗ ⊂ A∗ and hence A∗ = (A∗)∗. Consequently, we have
(Cl∗(A))∗ = Cl∗(A). Then Cl∗(A) is ∗-perfect. By hypothesis, Cl∗(A) is open, hence
A ⊂ Cl∗(A) = Int(Cl∗(A)). Thus A is pre-I-open. �

Now, we define the following.

Definition 4.1. A subset of X is said to be co∗-locally closed if it is the union of
an open subset and a ∗-perfect subset of X.
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Definition 4.2. A space (X, τ, I) is I-submaximal if every subset of X is I-locally
closed.

Theorem 4.8. For a space (X, τ, I), the following statements are equivalent:
(a) X is an I-submaximal space,
(b) every subset of X is co∗-locally closed,
(c) every subset A of X, for which A∗ is empty, is open,
(d) Cl∗(A)\A is closed for every subset A of X,
(e) every τ∗-dense subset of X is open.

Proof. (e)⇔ (d)⇒(a)⇒(b)⇒(c)⇒(d) are immediate. �

Proposition 4.1. Every submaximal space is I-submaximal space.

Proof. Let A ⊂ X be τ∗-dense. Then X = Cl∗(A). Since τ ⊂ τ∗ and X is submax-
imal, then A is open in X. By Theorem 4.8 (e), X is I-submaximal space. �

The converse in the proposition above is not necessarily true as shown by the
following example.

Example 4.1. An I-submaximal space need not be submaximal. Let X = {a, b, c},
τ = {∅, X, {c}, {b, c}} and I = {∅, {c}}. Set A = {a, c}. Then Cl(A) = X and
A /∈ τ . Hence X is not submaximal but I-submaximal space.

Lemma 4.3. A ∈ PIO(X) if and only if A = U ∩D for some U ∈ τ and τ∗-dense
D ⊂ X.

Proof. If A ∈ PIO(X), then A ⊂ Int(Cl∗(A)) = U ∈ τ . Let D = X − (U − A) =
(X−U)∪A. Then D is τ∗-dense since X = Cl∗(A)∪ (X−Cl∗(A)) ⊂ Cl∗(A)∪ (X−
U) = Cl∗(D). Also, A = U ∩D. Conversely, if A = U ∩D, where U ∈ τ and D is
τ∗-dense, then A ⊂ U ,

(4.1) Int(Cl∗(A)) ⊂ Int(Cl∗(U))

and U = U ∩X = U ∩ Cl∗(D) ⊂ Cl∗(U ∩D) = Cl∗(A),

(4.2) Int(Cl∗(U)) ⊂ Int(Cl∗(A))

by (4.1) and (4.2), Int(Cl∗(U)) = Int(Cl∗(A)) so that A ∈ PIO(X). �

Lemma 4.4. If (X, τ, I) is I-submaximal then PIO(X) = τ .

Proof. Clearly τ ⊂ PIO(X). Now A ∈ PIO(X) then A = U ∩ D for some U ∈ τ
and τ∗-dense D ⊂ X. Therefore, if (X, τ, I) is I-submaximal, D ∈ τ then A ∈ τ . �

Definition 4.3. An ideal topological space (X, τ, I) is said to be P-I-disconnected
(briefly P. I .d) if the ∅ 6= A∗ ∈ τ for each A ∈ τ .

Proposition 4.2. If a space (X, τ, I) is P-I-disconnected, then SIO(X) ⊂ PIO(X).

Proof. Let A ∈ SIO(X). Then there exists a U ∈ τ such that U ⊂ A ⊂ Cl∗(U).
Since (X, τ, I) is P-I-disconnected, Cl∗(U) ∈ τ so that U ⊂ A ⊂ Int(Cl∗(U)). This
shows that A ∈ SIO(X) ⊂ PIO(X). �

I-submaximal space and P-I-disconnected space are independent concepts as the
following examples.
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Example 4.2. Let (X, τ, I) be the same ideal topological space as at Example 4.1,
that is X = {a, b, c}, τ = {∅, X, {c}, {b, c}} and I = {∅, {c}}. Set A = {b, c}.
Then A∗ = {a, b, d} /∈ τ . This shows that X is not P-I-disconnected space by using
Definition 4.3 but I-submaximal space.

Example 4.3. Let X = {a, b, c, d}, τ = {∅, X, {c}, {a, c}, {b, c}, {a, b, c}, {a, c, d}}
and I = {∅, {b}}. Set A = {b}. Then A∗ = ∅ and A /∈ τ . This shows that X is not
I-submaximal by using Theorem 4.8 (c) but P-I-disconnected space.

Theorem 4.9. Let (X, τ, I) be an I-submaximal and P-I-disconnected space. Then,
for a function f : (X, τ, I) → (Y, ν), we have

(a) α-I-preirresoluteness ⇔ pre-I-irresoluteness.
(b) α-I-irresoluteness ⇔ α-pre-I-continuity.

Proof. This follows from the fact that if (X, τ, I) is an I-submaximal and P-I-
disconnected space, then τ = αIO(X) = SIO(X) = PIO(X). �
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[2] A. Açikgöz, T. Noiri and Ş. Yüksel, On α-I-continuous and α-I-open functions, Acta Math.

Hungar. 105 (1–2) (2004), 27–37.
[3] G.-I. Chae, T. Noiri and D. W. Lee, On na-continuous functions, Kyungpook Math. J. 26(1)

(1986), 73–79.
[4] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J. 2

(1996).

[5] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology Appl. 93(1) (1999), 1–16.
[6] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, preprint.

[7] N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math.

Soc. Sci. Math. R. S. Roumanie (N.S.) 27(75)(4) (1983), 311–315.
[8] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar.

96(4) (2002), 341–349.

[9] E. Hatir and T. Noiri, On β-I-open sets and a decomposition of almost-I-continuity, preprint.
[10] E. Hayashi, Topologies defined by local properties, Math. Ann. 156 (1964), 205–215.
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