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Abstract. In this paper the population mean of the study variable y is esti-

mated in a two phase sampling setup using three auxiliary variables with chain

regression concept when the population mean of one of the auxiliary variables
is unknown and other auxiliary population mean are known.
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1. Introduction

Information on variables correlated with the main variable under study is popularly
known as auxiliary information which may be fruitfully utilised either at planning
stage or at design stage or at the information stage to arrive at improved estimator
compared to those, not utilising auxiliary information. Use of auxiliary information
for forming ratio and regression method of estimation were introduced during the
1930’s with a comprehensive theory provided by Cochran [1]. Assuming knowledge
of multi-auxiliary variables, multivariate ratio estimator was suggested by Olkin
[5], multivariate difference estimator by Raj [7], multiple regression estimator by
Shukla [11], weighted regression estimator by Srivastava [13, 14, 15] and Ratio-cum-
product estimator by Singh [12]. Extension of these estimators to different sampling
designs were taken up by Tripathy [17, 18]. Further contribution are due to Rao and
Mudholkar [8], Wright [19] and many others.

When information on any auxiliary variable x highly correlated with y is readily
available on all units of the population, it is well known that ratio and regression esti-
mators provide more efficient estimates of population mean of y, envisaging advance
information on population mean X of x. However, in certain practical situation when
X is unknown, information on auxiliary variables Z and W are readily available on
all the units of the population, which may also be incorporated in the method of
estimation.
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2. Two phase sampling set up

Consider a finite population U of size N indexed by quadruplet characters (y, x, z, w).
Our purpose is to estimate the population mean Y of a study variable y in the
presence of three auxiliary variables x, z and w, when the population mean X of
x is unknown but information on z and w are available on all the units of the
population.

Let us now consider a two phase sampling where in the first phase a large sample
S′(S′ ⊂ U) of fixed size n′ is drawn following SRSWOR and observe three auxiliary
variables x, z and w to estimate X, while in the second phase a sub-sample S ⊂ S′

of fixed size n is drawn by SRSWOR to observe the characteristic y under study.

3. Use of one auxiliary variable

The two phase regression estimators in this case will be

(3.1) t1(Re g) = yn + byx(xn′ − xn)

where byx is the sample regression coefficient of y on x calculated from data based
on S and

xn′ =
1
n′

∑
i∈S′

xi xn =
1
n

∑
i∈S

xi and yn =
1
n

∑
i∈S

yi.

The mean square error (MSE) of t1(Re g) by first order approximation is

(3.2) MSE(t1(Re g)) =
(

1
n
− 1

N

)
(1− ρ2

yx)S2
y +

(
1
n′ −

1
N

)
ρ2

yxS2
y

where

S2
y =

1
N − 1

N∑
i=1

(yi − Y )2

and ρyx is the correlation coefficient between y and x.

4. Use of second auxiliary variable

Swain [16], Kiregyera [2], Mukherjee et al. [4], Sahoo et al. [9] and Mishra et al. [3]
used a second auxiliary variable z closely related to x to suggest different improved
estimators assuming that the information on z is available on all the units of the
population.

Kiregyera [2] has suggested a regression type estimator

(4.1) t2(Re g)) = yn + byx[xn′ + bxz(Z − zn′)− xn]

a technique earlier suggested by Swain [16] which yields

(4.2) MSE(t2(Re g)) =
(

1
n
− 1

N

)
(1− ρ2

yx)S2
y + (ρ2

yx + ρ2
yxρ2

xz − 2ρyxρyzρxz)S2
y .

Sahoo et al. [9] considered a chain regression type estimator

(4.3) t3(Re g) = yn + byx(xn′ − xn) + byz(Z − zn′).
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The MSE of t3(Re g) to the first order of approximation is

(4.4) MSE(t3(Re g)) =
(

1
n
− 1

N

)
(1− ρ2

yx)S2
y +

(
1
n′ −

1
N

)
(ρ2

yx − ρ2
yz).

Another regression type estimator suggested by Mukherjee et al. [4] is

(4.5) t4(Re g) = yn + byx.z

[
xn′ + bxz(Z − zn′)− xn

]
+ byz.x(Z − zn).

Using a generalized method, a regression type estimator suggested by Mishra and
Rout [3] is

(4.6) t5(Re g) = yn + byx.z(xn′ − xn) + byz.x(Z − zn) + (byz − byz.x)(Z − zn′).

In fact, on simplification t4(Re g) = t5(Re g). It may be seen that
(4.7)

MSE(t4(Re g)) = MSE(t5(Re g)) =
(

1
n
− 1

N

)
(1−ρ2

y.xz)S
2
y +

(
1
n′ −

1
N

)
(1−ρ2

yz)S
2
y .

5. Suggested estimators

Since X̂ based on n′ unit is an unbiased estimator of X, a regression type estimator

(5.1) X̂ = xn′ + βxz.w(Z − zn′) + βxw.z(W − wn′)

is found by considering the estimator

(5.2) X̂ = λ1xn′ + λ2z1 + λ3Z + λ4wn′ + λ5W

which is unbiased for X by considering λ1 = 1, λ2 = −λ3 and λ4 = −λ5 and then

by minimizing the variance X̂ given by

(5.3) X̂ = xn′ + λ2(zn′ − Z) + λ4(wn′ −W ).

Here

xn′ =
1
n′

∑
i∈S′

xi, zn′ =
1
n′

∑
i∈S′

zi, wn′ =
1
n′

∑
i∈S′

wi

and βxz.w and βxw.z are usual partial regression coefficients.
Let us consider a chain regression type estimator of Y given by

(5.4) t
∗ = yn + λ∗

1(X̂ − xn) + λ∗
2(Z − zn) + λ∗

3(W − wn).

where yn, xn, zn and wn are the sample mean based on n observations of the second
phase and λ∗

1, λ∗
2 and λ∗

3 are suitable constants.
The optimum values of λ∗

1, λ∗
2 and λ∗

3 are obtained by minimising V (t∗) and we
find

(5.5) λ∗
1 = βyx.zw, λ∗

2 = βyz.xw and λ∗
3 = βyw.xz

where βyx.zw, βyz.xw and βyw.xz are usual partial regression coefficients. When the
partial regression coefficients are known, t

∗ is an unbiased estimator of Y with

(5.6) V (t∗) =
(

1
n
− 1

N

)
(1− ρ2

y.xzw)S2
y +

(
1
n′ −

1
N

)
(1− ρ2

y.zw)ρ2
yx.zwS2

y



84 B.K. Pradhan

where ρy.xzw and ρy.zw are usual multiple correlation coefficients and ρyx.zw is the
usual partial correlation coefficient.

The estimators under consideration require advance knowledge of the population
regression coefficients and partial regression coefficients, which are usually unknown.
However, in practice the consistent estimators byx.zw, byz.xw and byw.xz of the pop-
ulation parameters βyx.zw, βyz.xw and βyw.xz may be substituted for the purpose.
Although the estimators will turn out to be biased, this bias would be negligible in
large samples and the approximate mean square errors to O(1/n) will be equivalent
to those derived and for large sample, the difference would be minimal.

6. Comparison of efficiency

Sahoo et al. [9] has established that t1(Re g) and t2(Re g) are less efficient than t3(Re g).
Mishra and Rout [3] has proved that

(6.1) MSE(t5(Re g)) < MSE(t3(Re g)).

Now, from (4.7) and (5.6), we find

(6.2) MSE(t5(Re g))− V (t∗) =
[(

1
n
− 1

N

)
A +

(
1
n′ −

1
N

)
B

]
S2

y

where A = ρ2
y.xzw−ρ2

y.xz and B = (1−ρ2
yz)ρ

2
yx.z−(1−ρ2

y.zw)ρ2
yx.zw. On simplification,

we find

(6.3) A + B = (1− ρ2
yz)ρ

2
yw.z ≥ 0.

Since (
1
n
− 1

N

)
>

(
1
n′ −

1
N

)
,

we have from (6.3)

(6.4)
(

1
n
− 1

N

)
A +

(
1
n′ −

1
N

)
B ≥

(
1
n′ −

1
N

)
(A + B) ≥ 0.

Hence

(6.5) MSE(t5(Re g)) ≥ V (t∗).

The inequality (6.5) shows that t
∗ is an improved regression estimator compared to

t1(Re g), t2(Re g), t3(Re g) and t5(Re g).

7. Numerical illustration

Percent relative efficiency of different estimators compared to mean per unit estima-
tor are presented in Table 2.
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Table 1. Description of Population

Population I Population II
Source “Spray congealing: Particle size

relationships using a centrifugal
wheel automizer” by Scott,
Robinson, Pauls and Lantz
(1964)

“Measurement of four characters
of: Flucus Religiousament” by
Pradhan, B.K. (2000)

y Mean surface-volume particle size
of product

Length of petiole

x Feed rate per unit whetted wheel
periphery (gm/sec/cm)

Length of pamina(blade) of the
leaf

z Peripheral wheel veloc-
ity(cm/sec)

Width of the leaf at its widest
paint

w Feed Viscosity (poise) Width of leaf half way along the
blade

size N=35 N=160
ρyx 0.712296 0.5423
ρyz -0.8070192 0.6166
ρyw -0.1623959 0.2704
ρxz -0.2633457 0.8568
ρxw -0.0781118 0.7424
ρzw 0.1335984 0.8027

Table 2. Relative efficiency of different estimators of population variance with
respect to S2

y under comparison

Estimator Auxiliary vari-
ables used

Percent Relative
Efficiency of Pop-
ulation I: N = 35,
n′ = 12, n = 8

Percent Relative
Efficiency of Pop-
ulation II: N =
160, n′ = 50, n =
20

yn None 100 100
t1(Re g) X 128.08 125.26
t2(Re g) X, Z 159.03 145.75
t3(Re g) X, Z 243.36 147.31
t4(Re g) = t5(Re g) X, Z 378.98 161.47
t
∗
(Re g) X, Z, W 436.27 204.28

Remark 7.1. t
∗
(Re g) has substantial gain in efficiency compared to t5(Re g), t4(Re g),

t3(Re g), t2(Re g), t1(Re g) and yn for the population under consideration.
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