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Abstract. In this paper the concept of preclosed graphs for functions between
topological spaces is introduced with the aid of preopen sets. Some basic prop-

erties of functions with a preclosed graph have been obtained.
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1. Introduction

In General Topology basic setting is a mapping from a topological space to another
topological space. In this setting determination of continuity condition plays the
most important role. Initially functions with closed graph come into existence in
the literature of General Topology to ascertain the situation when a function with
closed graph is continuous. Quite recently this topic has been extensively studied
from different stand points with generalised version of functions with closed graph.
In 1969, Long [8] studied the properties of functions with closed graph in great
detail. During the last four decades a good deal of effort has been expended in
General Topology to extend the notion of continuity with the help of weakened
form of open sets or otherwise. Concommitant with the variant forms of continuity,
various generalised notions of closed graph have appeared in the literature. Of late,
closed graph notion or generalised closed graph notion is no longer used as a tool to
ascertain continuity (or generalised continuity) conditions. On the other hand, it is
now an active area of research and a large number of topologists have established its
far-reaching effect on different concepts of point set topology. In 1983, Dube et al.
[3] introduced the notion of semi-closed graph utilising semi-open sets introduced by
Levine [7]. The purpose of this note is to define preclosed graph by using preopen
sets given in 1982, by Mashhour et al. [9]. In Section 2 of this note some known
definitions and results necessary for the presentation of the subject have been listed.
Section 3 deals with the definition and basic properties of a preclosed graph.
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2. Preliminaries

Throughout the note (X, τ), (Y, σ) etc. (or simply X, Y etc.) will always denote
topological spaces. If A is a subset of the space (X, τ) then the closure (resp.
interior) of A in (X, τ) is denoted by ClX(A) (resp. IntX(A)) or simply by Cl(A)
(resp. Int(A)) if there is no possibility of confusion. For a set A ⊂ X, the family
{U ∈ τ : A ⊂ U} is denoted by Σ(A) and for a point x ∈ X, Σ(x) = {U ∈ τ : x ∈ U}.

We shall require the following known definitions and results.

Definition 2.1. [9] A subset A of (X, τ) is called preopen (briefly p.o.) if A ⊂
Int(Cl(A)). The family of all preopen sets is denoted by PO(X) while PO(X, x)
denotes the family of p.o. sets containing x.

Definition 2.2. [9] A ⊂ X is called preclosed (briefly pc) if X −A ∈ PO(X). The
family of all preclosed sets is denoted by PC(X).

Definition 2.3. [2] For A ⊂ X, the preclosure of A, denoted by pcl(A) is defined
by pcl(A) = ∩{B : B is preclosed and B ⊃ A}.

Definition 2.4. [4] Let f : (X, τ) → (Y, σ) be any function. Then the subset
G(f) = {(x, f(x)) : x ∈ X} of the product space (X ×Y, τ ×σ) is called the graph of
f .

Definition 2.5. [4] Let X, Y be topological spaces. A mapping f : X → Y is said
to have a closed graph if its graph G(f) is closed in the product space X × Y .

Lemma 2.1. [4] Let f : X → Y be given. Then G(f) is closed if and only if for
each (x, y) ∈ (X × Y ) − G(f) there exist U ∈ Σ(x) in X and V ∈ Σ(y) in Y such
that f [U ] ∩ V = ∅.

Definition 2.6. [6] A subset A ⊂ X is said to be preclopen if A is both p.o. and pc.

Definition 2.7. A function f : (X, τ) → (Y, σ) is called
(i) precontinuous [9] (resp. quasi-precontinuous [14]) briefly pc (resp. qpc) if

and only if for each x ∈ X and each V ∈ Σ(f(x)) there exists a U ∈
PO(X, x) such that f [U ] ⊂ V (respectively f [U ] ⊂ ClY(V));

(ii) preirresolute [16] briefly pi if and only if f−1[V ] ∈ PO(X) for each V ∈
PO(Y ). (Mashhour et al. [10] termed preirresoluteness as M - precontinu-
ity);

(iii) p-open [5] if and only if f [A] ∈ PO(Y ) for all A ∈ PO(X).

Definition 2.8. X is called
(i) pre-T1 [6] if and only if for x, y ∈ X such that x 6= y there exists a p.o. set

containing x but not y and a p.o. set containing y but not x;
(ii) pre-T2 [6] if and only if for x, y ∈ X, x 6= y there exist U ∈ PO(X, x),

V ∈ PO(Y, y) such that U ∩ V = ∅;
(iii) strongly compact [11] if every preopen cover of X admits a finite subcover;
(iv) pre-regular [13] if for each F ∈ PC(X) and each x 6∈ F there exist disjoint

p.o. sets U , V such that x ∈ U and F ⊂ V .

Definition 2.9. [17] Two subsets A and B of a space X are called preseparated if
and only if A ∩ pcl(B) = pcl(A) ∩ B = ∅.
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Definition 2.10. [17] A space X is said to be preconnected if and only if X cannot
be expressed as the union of two preseparated sets.

Lemma 2.2. [11] Every pc subset of a strongly compact space is strongly compact.

3. Definition and basic properties of preclosed graphs

Definition 3.1. For a function f : X → Y , the graph G(f) is said to be preclosed
if for each (x, y) ∈ (X × Y ) − G(f) there exist U ∈ PO(X, x), V ∈ PO(Y, y) such
that [U × V ] ∩G(f) = ∅.

Though the preclosedness of G(f) has been used in literature [15], the authors in
[15] gave no formal definition of it.

A useful characterisation of functions with preclosed graph is given below.

Lemma 3.1. The function f : X → Y has a preclosed graph if and only if for
each (x, y) ∈ (X × Y ) − G(f) there exist U ∈ PO(X, x), V ∈ PO(Y, y) such that
f [U ] ∩ V = ∅.

Proof. It follows from Definition 3.1 and is omitted. �

Remark 3.1. Evidently every closed graph is preclosed. That the converse is not
true is seen from the following example.

Example 3.1. Let X = {a, b}, Y = {a, b, c, d} be two sets endowed with the discrete
topology τ and the topology σ = {∅, {c, d}, Y } respectively. Let f : X → Y be the
mapping defined by f(a) = a and f(b) = b. Then G(f) is preclosed but not closed.

Remark 3.2. Functions having a preclosed graph need not be pc as shown by

Example 3.2. Let X = {a, b, c, d} be equipped with the topology τ1 = {∅, X, {c, d}}
and the discrete topology τ2. Then the graph G(i) of the identity mapping i :
(X, τ1) → (X, τ2) is preclosed but i is not pc.

Remark 3.3. A pc function need not have a preclosed graph as shown by the
following example.

Example 3.3. Let X = {a, b, c} be endowed with the discrete topology τ1 and
τ2 = {∅, X, {c}, {a, c}{b, c}}. Then the identity mapping i : (X, τ1) → (X, τ2) is pc
but G(i) is not preclosed.

Remark 3.4. From Examples 3.2 and 3.3, it is clear that the notions of preclosed
graph and pc are independent of each other.

Theorem 3.1. Let f : X → Y be pi where X is an arbitrary topological space and
Y is pre-T2. Then G(f) is preclosed.

Proof. Let (x, y) ∈ (X × Y )−G(f). Then f(x) 6= y. Since Y is pre-T2, there exists
U ∈ PO(Y, f(x)), V ∈ PO(Y, y) such that U ∩ V = ∅. The pi-ness of f implies that
f−1[U ] = W ∈ PO(X, x). Hence f [W ] = ff−1[U ] ⊂ U . It now follows from above
that f [W ] ∩ V = ∅ which indicates by the Lemma 3.1 that G(f) is preclosed. �

Remark 3.5. The condition pi-ness of f in Theorem 3.1 cannot be replaced by pc
as shown by
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Example 3.4. Let Y of Example 3.1 be equipped with topologies τ1 = {∅, Y, {c}}
and τ2 = σ of Example 3.1 respectively. Let i : (Y, τ1) → (Y, τ2) be the identity
map. Then (Y, τ2) is pre-T2, i is pc but not pi while G(i) is not preclosed.

Remark 3.6. However, if pre-T2-ness is replaced by T2-ness, the pi-ness by qpc
then the conclusion of Theorem 3.1 remains true as has been shown by Paul et al.
[15].

Theorem 3.2. Let f : X → Y be any surjection with G(f) preclosed. Then Y is
pre-T1.

Proof. Let y1, y2(6= y1) ∈ Y . The surjectivity of f gives the existence of an element
x0 ∈ X such that f(x0) = y2. Now (x0, y1) ∈ (X ×Y )−G(f). The preclosedness of
G(f) induces, by Lemma 3.1, U1 ∈ PO(X, x0), V1 ∈ PO(Y, y1) with f [U1]∩ V1 = ∅.
Now x0 ∈ U1 ⇒ f(x0) = y2 ∈ f [U1]. This and the fact that f [U1]∩V1 = ∅ guarantee
that y2 6∈ V1. Again from the surjectivity of f it follows that there exists a point
x1 such that f(x1) = y1. Now (x1, y2) ∈ (X × Y ) − G(f) and the preclosedness
of G(f) together indicate that there are U2 ∈ PO(X, x1), V2 ∈ PO(Y, y2) with
f [U2]∩V2 = ∅. Now x1 ∈ U2 ⇒ f(x1) = y1 ∈ f [U2] so that y1 6∈ V2. Thus we obtain
sets V1, V2 ∈ PO(Y ) such that y1 ∈ V1 but y2 6∈ V1 while y2 ∈ V2 but y1 6∈ V2. Hence
Y is pre-T1. �

Theorem 3.3. Let f : X → Y be any p-open surjection with G(f) preclosed. Then
Y is pre-T2.

Proof. Let y1, y2(6= y1) ∈ Y . The surjectivity of f gives the existence of a x ∈ X
such that f(x) = y2 which, in its turn, implies that (x, y1) ∈ (X × Y )−G(f). Since
G(f) is preclosed, by the Lemma 3.1, one obtains U ∈ PO(X, x), V ∈ PO(Y, y1)
with f [U ] ∩ V = ∅. The p-openness of f implies that f [U ] is p.o. Also y2 ∈ f [U ].
Therefore, there exist V ∈ PO(Y, y1) and f [U ] ∈ PO(Y, y2) such that f [U ]∩ V = ∅.
Hence Y is pre-T2. �

Theorem 3.4. Let f : X → Y be injective with G(f) preclosed. Then X is pre-T1.

Proof. Let x1, x2(6= x1) ∈ X. The injectivity of f implies f(x1) 6= f(x2) whence one
obtains that (x1, f(x2)) ∈ (X×Y )−G(f). The preclosedness of G(f), by Lemma 3.1,
ensures the existence of U ∈ PO(X, x1), V ∈ PO(Y, f(x2)) such that f [U ] ∩ V = ∅.
Therefore, f(x2) 6∈ f [U ] and a fortiori x2 6∈ U . Again (x2, f(x1)) ∈ (X × Y )−G(f)
and preclosedness of G(f), as before gives A ∈ PO(X, x2), B ∈ PO(Y, f(x1)) with
f [A] ∩ B = ∅, which guarantees that f(x1) 6∈ f [A] and so x1 6∈ A. Therefore, we
obtain sets U and A ∈ PO(X) such that x1 ∈ U but x2 6∈ U while x2 ∈ A but
x1 6∈ A. Thus X is pre-T1. �

Corollary 3.1. Let f : X → Y be bijective and G(f) be preclosed. Then both X
and Y are pre-T1.

Proof. It readily follows from Theorems 3.2 and 3.4. �

Theorem 3.5. For the injective pi f : X → Y if G(f) is preclosed, then X is
pre-T2.
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Proof. Let x1, x2(6= x1) ∈ X. From the injectivity of f it follows that f(x1) 6= f(x2)
and hence (x1, f(x2)) ∈ (X × Y ) − G(f). The preclosedness of G(f) then assures
the existence of U ∈ PO(X, x1), V ∈ PO(Y, f(x2)) with f [U ] ∩ V = ∅, whence, one
obtains U ∩ f−1[V ] = ∅. Now the pi-ness of f indicates that f−1[V ] ∈ PO(X, x2).
The disjointness of U ∈ PO(X, x1) and f−1[V ] ∈ PO(X, x2) now yields the pre-T2-
ness of X. �

Corollary 3.2. If f : X → Y is bijective, p-open, pi and G(f) is preclosed then
both X and Y are pre-T2.

Proof. Proof is an immediate consequence of Theorems 3.3 and 3.5. �

To study further properties of preclosed graph we need the following definitions
and the lemma.

Definition 3.2. A function f : X → Y is said to be preconnected if for every
preconnected set U , f [U ] is preconnected.

Definition 3.3. A mapping f : X → Y is said to be set preconnected if and only if
for every preclopen subset V of f [X], f−1[V ] is preclopen in X.

Definition 3.4. A topological space X is locally preconnected if for each x ∈ X and
each U ∈ PO(X, x) there exists a V ∈ PO(X, x) such that x ∈ V ⊂ U , where V is
preconnected.

Definition 3.5. A space X is extremally predisconnected iff the preclosure of every
p.o. set is p.o.

Lemma 3.2. In a topological space if E be a preconnected set and F be any other
set such that E ⊂ F ⊂ pcl(E), then F is preconnected.

Proof involves standard argument as applied in the classical result and is therefore
left out.

Theorem 3.6. If the injective p-open map f : X → Y is preconnected and G(f) is
preclosed then X is pre-T2 provided it is T1 and locally preconnected.

Proof. Let x1, x2(6= x1). The injectivity of f induces f(x1) 6= f(x2), whence
(x1, f(x2)) ∈ (X × Y ) − G(f). From the preclosedness of G(f) one infers that
there exist U1 ∈ PO(X, x1), V ∈ PO(Y, f(x2)) with f [U1] ∩ V = ∅. Again local
preconnectedness of X at x1, gives the existence of a p.o. preconnected set U such
that x1 ∈ U ⊂ U1. From the foregoing it then follows that f [U ] ∩ V = ∅. Since f
is p-open, f [U ] is p.o. We assert that x2 6∈ pcl(U). Deny it. Then x2 ∈ pcl(U). We
shall now show that U ∪ {x2} is preconnected. Since X is T1, {x2} is a closed set.
Thus U ⊂ U ∪ {x2} ⊂ pcl(U ∪ {x2}) = pcl(U) ∪ {x2} = pcl(U). By Lemma 3.2,
U ∪{x2} is then preconnected. Since f is preconnected f [U ∪{x2}] = f [U ]∪{f(x2)}
is preconnected which leads to an absurdity because f [U ] and V are disjoint p.o.
sets and hence they are preseparated. So, x2 6∈ pcl(U). Setting U0 = X − pcl(U) we
find U ∈ PO(X, x1) and U0 ∈ PO(X, x2) with U ∩ U0 = ∅. This then implies that
X is pre-T2. �

Theorem 3.7. Let f : X → Y be a set preconnected surjection and Y be an ex-
tremally predisconnected pre-T2 space. Then G(f) is preclosed.
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Proof. Let (x, y) ∈ (X × Y )−G(f). Now Y being pre-T2 there is a H ∈ PO(Y, y)
such that f(x) 6∈ pcl(H) = V. Since Y is extremally predisconnected, V is preclopen
in Y not containing f(x). Again since f is set preconnected surjection f−1[V ] is
preclopen in X and x 6∈ f−1[V ]. Let U = X − f−1[V ]. Then U ∈ PO(X, x) and
f [U ] ∩ V = ∅. Hence G(f) is preclosed. �

Theorem 3.8. Let X be a space such that PO(X) is a topology. If for the function
f : X → Y where Y is strongly compact, G(f) ∈ PC(X × Y ), then f is pc.

Proof. Let x ∈ X, V ∈ Σ(f(x)) and y ∈ Y − V . Then (x, y) ∈ (X × Y )−G(f). So
there exist Uy ∈ PO(X, x), Vy ∈ PO(Y, y) such that

(3.1) f [Uy] ∩ Vy = ∅.
This relation holds for every y ∈ Y − V . Clearly V = {Vy : y ∈ Y − V } is a cover
of Y − V by p.o. sets. Now Y is precompact and Y − V is preclosed. Hence, by
Lemma 2.2, Y − V is precompact. So V has a finite subfamily {V : i = 1, 2, . . . , n}
such that

Y − V ⊂ ∪n
i=1Vyi

.

Let {Uyi
: i = 1, 2, . . . , n} be the corresponding sets of PO(X, x) satisfying the

relation of type (3.1). Set U = ∩n
i=1Uyi

. Since X enjoys the property P , U ∈
PO(X, x). If α ∈ U , then f(α) 6∈ Vyi

for all i = 1, 2, . . . , n. This implies that
f(α) 6∈ Y −V , so that f(α) ∈ V . Since α is arbitrary it follows that f [U ] ⊂ V which
guarantees the pc of f . �
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