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Abstract. In this paper we define some compositions of fuzzy ideals in a I'-
ring and study the structures of the set of fuzzy ideals of a I'-ring. Also we
characterize I'-field, Noetherian I'-ring, etc. with the help of fuzzy ideals via
operator rings of I'-rings.
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1. Introduction

The notion of fuzzy ideals in a I'-ring was introduced by Jun and Lee in [6]. They
studied some preliminary properties of fuzzy ideals of I'-rings. Later in [5] Jun
and Hong defined normalized fuzzy ideals and fuzzy maximal ideals in I'-rings and
studied them. In Section 3 of this paper we define some compositions of fuzzy ideals
of a I'-ring and study the structures of the set of fuzzy ideals of a I'-ring. We show
that FLI(M), the set of all fuzzy left ideals of a I'-ring M, is a zerosumfree hemiring
having infinite element 1, under the operations of sum and composition of fuzzy left
ideals. Similar results hold for the set of fuzzy right ideals and that of fuzzy ideals
of M. In Section 4 we define a correspondence between the set of all fuzzy ideals
of a I'-ring and the set of all fuzzy ideals of the operator rings of the I'-ring. We
obtain that the lattice of all left (resp. right, two sided) fuzzy ideals is isomorphic
to the lattice of all left (resp. right, two sided) fuzzy ideals of the operator ring of
the I'-ring. Using these results we characterize I'-field, Noetherian I'-ring etc.

2. Preliminaries

Definition 2.1. [1] Let M and I’ be two additive abelian groups. M is called a T'-ring
if the following conditions are satisfied for all a,b,c € M and for all o, 3,y € T':
(i) aab € M,
(ii) (a + b)ac = aac + bac, a(a+ B)b = aab + afb, aa(b+ ¢) = aab + aac and
(iii) aa(bBc) = (aab)fe.
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Definition 2.2. [9] A subset A of M is called a left (resp. right) ideal of M if A is
an additive subgroup of M and maa € A (resp. aam € A) for allm € M, a €T
and a € A. If A is both a left and a right ideal of M, then A is called a two sided
ideal of M or simply an ideal of M.

Definition 2.3. [9] Let M be a T'-ring and F' the free abelian group generated by
I'xM. Then A= {>",ni(vi,z;) € F:a€ M = nay,x; =0} is a subgroup of F.
Let R = F/A, the factor group of F by A. Let us denote the coset (v,x)+ A by [, z].
It can be verified that (o, x] + [6, x] = [a+ B, ], and [a, z] + [a, y] = [ov, z + y] for all
a,B el and x,y € M. We define a multiplication in R by ), [a;, ;) Zj[ﬁj,yj] =
> jlais xiBiyjl. Then R forms a ring. If we define composition on M x R into M
by a o,z =, aqsxy fora e M, Y o, x;] € R, then M is a right R-module,
and we call R the right operator ring of the I'-ring M. Similarly, we can construct
a left operator ring L of M so that M 1is a left L-module. For subsets N C M,
¢ C T, we denote by (¢, N] the set of all finite sums > ,[v;,x;] in R, where v; € ¢,
x; € N and we denote by [(P, N)] the set of all elements [¢,x] in R where ¢ € P,
x € N. Thus in particular, R = [I', M| and L = [M,T]. If there exists an element
> .;[0i,e;] € R such that ), x6,e; = x for every element x of M, then it is called
right unity of M. It can be verified that »_,[0;,e;] is the unity of R. Similarly we
can define the left unity 3 [ f;,7;] which is the unity of the left operator ring L.

Definition 2.4. [6] A nonempty fuzzy subset p (i.e., u(x) # 0 for some x € M) of
aT-ring M is called a fuzzy left(resp. right) ideal of M if, (i) u(x—y) > p(z) Auly),
(ii) w(xay) > u(y) (resp. uw(xay) > w(x)) for all z,y € M, and all €T

Definition 2.5. A T'-ring M is said to be commutative if ayb = bya for all a,b € M
and for all v € T.

Definition 2.6. [3] A commutative T'-ring M is called a T-field if for every non-zero
element a of M and for every pair of nonzero elements 1,72 € I, there exists an
element a' in M such that ay1a’v2b = b for allb e M.

Definition 2.7. [4] A hemiring [resp. semiring] is a nonempty set R on which
operations of addition and multiplication have been defined such that the following
conditions are satisfied:

(1) (R,+) is a commutative monoid with identity element 0;

(2) (R,.) is a semigroup [resp. monoid with identity element 1g];

(3) Multiplication distributes over addition from either side;

(4) 0r =0=7r0 for allT € R;

(5) 1g #0.
A hemiring R is said to be zerosumfree iff v + 1’ = 0 implies that r =1’ = 0 for all
r,v" € R. An element a of a hemiring R is infinite iff a +r = a for all v € R.

3. Operations on fuzzy ideals

Throughout this paper M denotes a I'-ring with left unity and right unity and
FLI(M) (resp. FRI(M), FI(M)) denotes the set of all fuzzy left ideals (resp.
fuzzy right ideals, fuzzy ideals) of M. Also we assume that for any fuzzy left (resp.
right, two sided) ideal o of M, o(05r) = 1.
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Definition 3.1. Let p, o be two fuzzy subsets of M. Then the sum u ® o, product
ul o and composition po o of u and o are defined as follows:

Supx:quv[min[:u’(u)v 0’(1})]] fOT’ u,v € M
@ =
(1@ o)) {0 otherwise.
(UTo)(z) = SUD, g0 [min[p(u),o(v)]]  for u,v € M andy €T
0 otherwise.
sup[min; [minfp(u;), o(vy)]]], 1<i<n,z= ) wy,
i=1
(woo)(z) = u;,v; € M,y €T
0 otherwise.

Proposition 3.1. Let p, o be two fuzzy ideals of M. Then uT'oc C poo C uNo.

Proof. From the definitions of uI' o and po0o, it follows that uI'o C uoo. Let x € M
n
and x = Y wiyv5, ug, v; € M, y; €T for i =1,2,...,n. Now

i=1
wx) = N(Zui%w)
i=1
> min{p(u1y1v1), p(u2y2v2), - . -, 1(Unynvn)}
> min{u(ul),,u(ug), aM(Un)}
Similarly

o(x) > min{o(v1),0(v2),...,0(v,)}.
Thus
(uNo)(z) = min{u(z),o()} > minfmin[u(u;), o (v)]].

So (uNo)(x) > sup[min;minfu(u;),o(v)]]], 1 < i < n, x = > wyvi, ui,v; € M,
i=1

vi €' = (poo)(x). Also if poo(z) =0, then poo(x) < pNo(x). Sopoo C uNo.

Thus uI'c Cpooc Cuno. g

Proposition 3.2. Let py, po € FLI(M) [resp. FRI(M), FI(M)]. Then uy @ us €
FLI(M) [resp. FRI(M), FI(M))].

Proof. Let z,y € M and v € T'. Also let (1 @ pi2)(y) > (1 ® p2)(z). Then there
exist p,q € M such that y = p + ¢ and for any u,v € M, for which x = u + v,
min[uq (p), u2(q)] > min[u (u), pe(v)]. Let u,v € M be such that z = u +v. Now
z—y=(u—-p)+@-—g). So

(1 ® po)(x — y) = minfp (u = p), p2(v — g)]
(min[ps (), pa (p)], min[p2(v), p2(q)]]
= min[min[; (), p2(v)], minfu1 (p), p2(q)]]
— min[pn (u), 2 (o).

> min|min
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So
(11 @ p2)(z —y) = sup [minfuy(u), po(v)]}, u,v € M

r=u+v
= (1 ® p2)(x)
= min{( & p2)(2), (11 @ p2)(y)]-

Similarly we can show that (u1 @ uo)(z — y) > min[(p1 ® p2)(x), (k1 ® p2)(y)], in
all other cases. Again, let y = p+ ¢, p,q € M. Then zvy = zyp + xvq, x € M
and v € . Now (p1 @ piz)(zyy) = minfps (zyp), pz(2vq)] = minu (p), p2(q)]. Thus
(1 ® p2) (z7y) = supy—ppy g [minfp (p), p2(q)]l, p.g € M = (1 & p2)(y). Lastly, since
MI(OM) = MQ(OM) =1, (11 EB,UQ)(OM) =1.So pu s € FLI(M). O

Proposition 3.3. Let p,0,6 € FLI(M) [resp. FRI(M), FI(M)]. Then

(i) pdo=0c@p,

(i) (p@o)®o=pd (0c®9I),

(i) pCp®o,

(iv) if uCo, then u®d6 Co®I,

V) p&p=np,

(Vi) 0@ p=p=p®0 where 0(€ FLI(M)) is defined by
1 ifx= M

0(x) = zfx O, €

0 ifx#0p.

Proof. The proof is a routine matter of verification and so we omit it. O

Proposition 3.4. Let y,0 € FLI(M) [resp. FRI(M), FI(M)]. Then poo €
FLI(M) [resp. FRI(M), FI(M)].

Proof. The proof is similar to the proof of the Proposition 3.2 and so we omit it. [

Proposition 3.5. Let p,0,6 € FLI(M) [resp. FRI(M), FI(M)]. Then uT'c C 6
iff poo C 6.

Proof. If poo C §, then u'oc C poo C 4. Conversely, let uI'o C 6. Let z € M be
such that x = > uyyvs, ui,v; € M, v; € T for 1 < i <n. Now
i=1

6(z) = 5(2 Ui7iv;)

> min[0(ury1v1), 0 (uey2v2), . . ., 0 (UnYnvn)]
> min[(pI'o)(uryivr), (kT o) (u2y2v2), - . o, (0T o) (unynvn)]
> min[min[u(uq), o (v1)], ..., min[p(uy ), o(v,)]]-
So
d(z) 2 sup  [minfminfu(uz), p(vi)]]] = (ko o) ().
ﬂizi;l UiYivi

Also if (poo)(x) =0, then poo(z) <d(x). Thus poo C 4.
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Proposition 3.6. Let p,0,0 € FLI(M) [resp. FRI(M), FI(M)]. Then
(i) if u C o, then pod Cood,

(ii) (uoo)od=po(ocod),

(ili) poo =ocopu if M is commutative,

(iv) 1op = p where 1 € FLI(M) is defined by 1(x) = 1 for all x € M [resp.

pol=p, lop=pol=pl

Proof. The proof of (i) to (iii) follows from the definitions of compositions of fuzzy
ideals and so we omit it. (iv) As M is with left unity Y [f;,v;] € L which is defined

J
by >" fjvjx = x for every element x in M, it follows form definition that 1op = p. O
J

Similarly we can prove the following proposition.

Proposition 3.7. Let p,0,6 € FLI(M) [resp. FRI(M), FI(M)]. Then
(i) po(c®d) =poo®pod,
(i) (c@d6)op=0copuddopu.

Theorem 3.1. Let M be a I'-ring. Then FLI(M) [resp. FRI(M), FI(M)] is a
zerosumfree hemiring(resp. hemiring, semiring) having infinite element 1 under the
operations of sum and composition of fuzzy left ideals.

Proof. From the Propositions 3.2, 3.3, 3.4, 3.6 and 3.7, it follows that FLI(M) is
a hemiring under the operations of sum and composition of fuzzy left ideals. Now
(1&p)(x) = sup,_, 4, [min[1(w), u(v)]] = min[1(z), p(0a)] = 1(x) = (1&p)(z) for all
xe€M.Sol®pu=1forall ye FLI(M). Thus 1 is an infinite element of FLI(M).
Lastly we assume that yu ® o =6 for y,0 € FLI(M). Then p C u® o =60 C p. So
pw=0.So FLI(M) is zerosumfree. Hence the theorem. O

Lemma 3.1. [6] Intersection of a nonempty collection of fuzzy left ideals (resp.
fuzzy right ideals, fuzzy ideals) is a fuzzy left ideal (resp. fuzzy right ideal, fuzzy
ideal) of M.

Theorem 3.2. FLI(M) [resp. FRI(M), FI(M)] is a complete lattice.

Proof. We define a relation ‘<’ on FLI(M) as follows p; < po iff uy(z) < pso(x)
for all z € M. Then FLI(M) is a poset w.r.t. ¢ <. Now 1 € FLI(M) and pu <1
for all p € FLI(M). So 1 is the greatest element of FLI(M). Let {u;,i € I} be
a nonempty family of fuzzy left ideals of M. Then by Lemma 3.1, it follows that
Nierpi € FLI(M). Also it is the glb of {u;|i € I'}. Consequently FLI(M) is a
complete lattice. O

4. Corresponding fuzzy ideals

Throughout this paper R denotes the right operator ring and L denotes the left
operator ring of M.

Definition 4.1. For a fuzzy subset u of R, we define a fuzzy subset u* of M by
w*(a) = infyer p(y, a]) where a € M. For a fuzzy subset o of M, we define a fuzzy
subset o* of R by o* (Y[ay, ai]) = infpens o(3 maya;) where S[ay, ai] € R.

A i A



14

T.K. Dutta and T. Chanda

Definition 4.2. For a fuzzy subset § of L, we define a fuzzy subset 5T of M by
0% (a) = infyer 0([a,v]), where a € M. For a fuzzy subset  of M, we define a fuzzy

subset 't of L by T]+I(Z[CL¢, a;]) = infren 13 aiaim)

3

K2

where Y [a;, ;] € L.

Lemma 4.1. If {p;|i € I} is a collection of fuzzy subsets of R, then

Proof. Let x € M. Now

(Mierpi)™ ()

So Nierp; = (Mierpi)*

Nierpt; = (Nierpi)™

YE

inf [(Nierpa) ([, 2])]

= inf [inf(u]y, 2])]

yeliel

= inf[infﬂ[/h([% ])]]

i€l ve
= inflp ()]

= (Nierp) (@

).

O

Proposition 4.1. If y € FI(R) [resp. FRI(R), FLI(R)/, then u* € FI(M) [resp.

FRI(M), FLI(M)].

Proof. Let u be a fuzzy ideal of R. Then u(0g) = 1. Now

*(0ar) = inf = inf =1.
#*(0n) = inf pu(fy, O]) = inf 1(0r)

So p* is nonempty. Let a,b € M and o € I'. Now

p*(a—b)

Again

p*(aab) = inf u([, acd))

Again

inf (b, a - b))

inf u(ly, al = . 8])

> min[ilelg w([y,al)l, Wireﬂ;u([% b))l

minfyr* (), 1" (b)).

— inf ([, allab]) > int p(ly.al) = i (@)

" (aab) = inf p(fy, aab])

So p* is a fuzzy ideal of M.

yel

- 7igfru([%a][ml)])

> ’12{“ 1([ex, B])

= ([, b])

> inf u([y,b]) =

p*(b).
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Proposition 4.2. If 0 € FI(M) [resp. FRI(M), FLI(M)], then o* € FI(R)

[resp. FRI(R), FLI(R)].

Proof. Let ¢ be a fuzzy ideal of M. Then o(0y) = 1. Now o* ([y,00]) =

inf,,enr o(my0ar) = 0(0p) = 1. So 0*' is nonempty. Let S|y, ai], Y2[6;,b;] € R.
i J

Then

o (3 e, ai] = > [85,05]) = inf J(Z ma;a; — Zmﬁjbj)

i J

> w}lelg{[min[a'(;maiai)aa(;mﬂjbj)”
= min["}relﬁla(zmaiai),mirelgja(Zmﬂjbj)}
— min[a*'(Z[ai,ai]),o*/(Z[ﬂj,bj])]-
Again,
J*/(Z[%ai]zwpba‘]) = U*/(Z[%aiﬂjba‘]

= nireljfw J(Z moa;B;b;)
i

Y

meM

inf [miin[o(mal(z alﬁjbj)), U(mag(z agﬁjbj)), .. ]]

Y

inf [mjn[a(z a10;b;), O‘(Z as0;b;), .. .]]

meM™ 1

= min[a(Zalﬁjbj),U(Zagﬁjbj),...]

meM

= O*I(Z[ﬁjvbj]'

J
Similarly we can show that o* (Y[, ai] 3[6;,0;]) > o* (X[ai, ai]). So o* is a

7 J [

fuzzy ideal of R. O

> inf [U(Z mp;b;)]

Similarly we can prove the following Proposition.

Proposition 4.3. If§ € FI(L) [resp. FRI(L), FLI(L)], then 6 € FI(M) [resp.
FRI(M), FLI(M)].

Proposition 4.4. Ifn € FI(M) [resp. FRI(M), FI(M)], then " € FI(L) [resp.
FRI(L), FLI(L)].

Theorem 4.1. The lattices of all fuzzy ideals (resp. fuzzy left ideals ) of M and

R are isomorphic via the inclusion preserving bijection o — o* where o € FI(M)
[resp. FLI(M)] and o* € FI(R) [resp. FLI(R)].
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Proof. First we shall show that (¢*')* = o, where o € FI(M). Let a € M. Then
(0)"(a) = inflo” ([,a])]

~yel

= ﬂlfglgn}reljf\d [o0(mya)]]

inf [ inf [o(a)]] = o(a).

yel' meM

IV

So o C (0*)*. Let Z[el, i] be the left unity of M. Then Zel o = forall x € M.

Now

ola) = O'(Z e;0;a)

g

> m_in[a(el(Sla), o(e2020a),...])]]

> ;gg[nig&[d(mw)]] (0™ )" (a).

So (6*')* C 0. Hence o = (0 )*. Again, let € FI(R). Now
)" law,ar]) = inf W(Z magay)|

meM
k

= inf [inf[u E magay)]
meM —yel" 'Y,

= inf [inf[u ([’y,m]Z[(Jék,ak])H

meM ~el .

U(Z[Oﬂmak])'

k

So pu C (p*)*. Let Z[ %, €] be the right unity of M. Then

n(Y lawsarl) = w185 €5 lan, ax])

v

k 7 k
2 Injln[.u“([(sllvell] Z[akvak 52762 Z akvak
k k
> inf [inf[u (['va]zk:[ak,ak])“
= (1) law, ar)).

k

So D (p*)*. Thus = (u*)*. Thus the correspondence ¢ — o* is a bijection.
Now let 01,09 € FI(M) be such that o1 C 09. Then
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for all Y[, a;] € R. So ¢ C 0% . Similarly we can show that if 1 C pg, where
i
pi1, g2 € FI(R), then pf C p3. So the mapping ¢ — ¢* is a lattice isomorphism. [
Similarly we can prove the following theorem.

Theorem 4.2. The lattices of all fuzzy ideals (resp. fuzzy right ideals) of M and
L are isomorphic via the inclusion preserving bijection n — n*l, where n € FI(M)
[resp. FRI(M)] and nt' € FI(L) [resp. FRI(L)].

Theorem 3.2 maybe obtained as a corollary of the above theorems.
Corollary 4.1. FRI(M) [resp. FI(M), FLI(M)] is a complete lattice.

Proof. The corollary follows from the above theorem and the facts that FI(M),
FRI(M) and FLI(M) are complete lattices. O

Theorem 4.3. A commutative I'—ring M is a T'— field if and only if for every fuzzy
ideal o of M, o(x) = o(y) < o(0pr) for all z,y € M\{Ops}.

Proof. Let o be a fuzzy ideal of M and o(x) = o(y) < o(0p) for all z,y €
M\{Oa}. Let > [as,a:],> [85,b;] € R\{Or}. Then there exist m,m’ in M such

i J
that > ma;a; # 0a and Y m/B;b; # 0. Now
i J

meM

i J

o' (Y lai,a;)) = inf U(Zmaiai) = ngjfwff(z mBib;) = o™ (3185, b;])
(since o(z) = o(y) < o(0pr) for all z,y € M\{0rr}). So
o (D _low ai]) = o (3 _[8;,b;) < 0™ (0)

i J

for all [, a;], Y [B;,b;] € R\{Or}. Let u be a fuzzy ideal of R and
i J

Z[ai,ai},Z[ﬁj,bﬂ € R\{0r}.
Then

p(Q_laisai]) = ()" (O _lai,ai)) = ()" Q_18;,b5) = n(d_[85,b5)) < u(0g).
1 1 J J
Also it follows from Lemma 3.4 of [2] that R is commutative. Consequently by
Proposition 3.1.10 of [7] it follows that R is a field and hence M is a I'-field (]2,
Theorem 3.5]).

Conversely, suppose that M is a I'-field and z,y € M\{0x/}. Then there exist
71,72 € I such that [y;,z] # Og and [y2,y] # Ogr. Let o be fuzzy ideal of M. Then
o is a fuzzy ideal of R. Since M is a I'-field, R is a field. So, by the Proposition
3.1.10 of [7] it follows that

’

o' (Y lai,ai)) = o (D185, b]) < o™ (OR)

i J
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for all 3 (o, as], >2[B5,b;] € R\{Or}. Now

o) = (0" () = inf o* (1, 2) = ink 0* (1)) = (0°)* () = 0(0) < 7 (01).
So o(z)) = o(y) < o(0pr) for all z,y € M\{0ps}. O

Definition 4.3. A commutative I'-ring M is said to be Noetherian if for every
ascending chain Iy C Iy C I3 C ... of ideals of M there exists a positive integer n
such that I, = I,, for allm > n.

Theorem 4.4. A commutative T'-ring M is Noetherian if every fuzzy ideal of M
has finite values.

Proof. Let M be a commutative I'-ring and every fuzzy ideal of M have finite values.
Let o be a fuzzy ideal of M. Then since o* (3 [vi,a;]) = infpenm o3 mya;), 0

is of finite values whenever o is of finite values. Let p be a fuzzy ideal of R. Since
for every fuzzy ideal u of R, u = (u*)*, it follows that p has finite values. So By
Theorem 7 of [10] it follows that R is Noetherian and hence M is Noetherian. O
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