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1. Introduction

The notion of fuzzy ideals in a Γ-ring was introduced by Jun and Lee in [6]. They
studied some preliminary properties of fuzzy ideals of Γ-rings. Later in [5] Jun
and Hong defined normalized fuzzy ideals and fuzzy maximal ideals in Γ-rings and
studied them. In Section 3 of this paper we define some compositions of fuzzy ideals
of a Γ-ring and study the structures of the set of fuzzy ideals of a Γ-ring. We show
that FLI(M), the set of all fuzzy left ideals of a Γ-ring M , is a zerosumfree hemiring
having infinite element 1, under the operations of sum and composition of fuzzy left
ideals. Similar results hold for the set of fuzzy right ideals and that of fuzzy ideals
of M . In Section 4 we define a correspondence between the set of all fuzzy ideals
of a Γ-ring and the set of all fuzzy ideals of the operator rings of the Γ-ring. We
obtain that the lattice of all left (resp. right, two sided) fuzzy ideals is isomorphic
to the lattice of all left (resp. right, two sided) fuzzy ideals of the operator ring of
the Γ-ring. Using these results we characterize Γ-field, Noetherian Γ-ring etc.

2. Preliminaries

Definition 2.1. [1] Let M and Γ be two additive abelian groups. M is called a Γ-ring
if the following conditions are satisfied for all a, b, c ∈ M and for all α, β, γ ∈ Γ:

(i) aαb ∈ M ,
(ii) (a + b)αc = aαc + bαc, a(α + β)b = aαb + aβb, aα(b + c) = aαb + aαc and
(iii) aα(bβc) = (aαb)βc.
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Definition 2.2. [9] A subset A of M is called a left (resp. right) ideal of M if A is
an additive subgroup of M and mαa ∈ A ( resp. aαm ∈ A) for all m ∈ M , α ∈ Γ
and a ∈ A. If A is both a left and a right ideal of M , then A is called a two sided
ideal of M or simply an ideal of M .

Definition 2.3. [9] Let M be a Γ-ring and F the free abelian group generated by
Γ×M . Then A = {

∑
i ni(γi, xi) ∈ F : a ∈ M ⇒

∑
niaγixi = 0} is a subgroup of F .

Let R = F/A, the factor group of F by A. Let us denote the coset (γ, x)+A by [γ, x].
It can be verified that [α, x]+ [β, x] = [α+β, x], and [α, x]+ [α, y] = [α, x+ y] for all
α, β ∈ Γ and x, y ∈ M . We define a multiplication in R by

∑
i[αi, xi]

∑
j [βj , yj ] =∑

i,j [αi, xiβjyj ]. Then R forms a ring. If we define composition on M ×R into M

by a
∑

i[αi, xi] =
∑

i aαixi for a ∈ M ,
∑

i[αi, xi] ∈ R, then M is a right R-module,
and we call R the right operator ring of the Γ-ring M . Similarly, we can construct
a left operator ring L of M so that M is a left L-module. For subsets N ⊆ M ,
φ ⊆ Γ, we denote by [φ,N ] the set of all finite sums

∑
i[γi, xi] in R, where γi ∈ φ,

xi ∈ N and we denote by [(Φ, N)] the set of all elements [φ, x] in R where φ ∈ Φ,
x ∈ N . Thus in particular, R = [Γ,M ] and L = [M,Γ]. If there exists an element∑

i[δi, ei] ∈ R such that
∑

i xδiei = x for every element x of M , then it is called
right unity of M . It can be verified that

∑
i[δi, ei] is the unity of R. Similarly we

can define the left unity
∑

j [fj , γj ] which is the unity of the left operator ring L.

Definition 2.4. [6] A nonempty fuzzy subset µ ( i.e., µ(x) 6= 0 for some x ∈ M) of
a Γ-ring M is called a fuzzy left(resp. right) ideal of M if, (i) µ(x−y) ≥ µ(x)∧µ(y),
(ii) µ(xαy) ≥ µ(y) (resp. µ(xαy) ≥ µ(x)) for all x, y ∈ M , and all α ∈ Γ.

Definition 2.5. A Γ-ring M is said to be commutative if aγb = bγa for all a, b ∈ M
and for all γ ∈ Γ.

Definition 2.6. [3] A commutative Γ-ring M is called a Γ-field if for every non-zero
element a of M and for every pair of nonzero elements γ1, γ2 ∈ Γ, there exists an
element a′ in M such that aγ1a

′γ2b = b for all b ∈ M .

Definition 2.7. [4] A hemiring [resp. semiring] is a nonempty set R on which
operations of addition and multiplication have been defined such that the following
conditions are satisfied:

(1) (R,+) is a commutative monoid with identity element 0;
(2) (R, .) is a semigroup [resp. monoid with identity element 1R];
(3) Multiplication distributes over addition from either side;
(4) 0r = 0 = r0 for all r ∈ R;
(5) 1R 6= 0.

A hemiring R is said to be zerosumfree iff r + r′ = 0 implies that r = r′ = 0 for all
r, r′ ∈ R. An element a of a hemiring R is infinite iff a + r = a for all r ∈ R.

3. Operations on fuzzy ideals

Throughout this paper M denotes a Γ-ring with left unity and right unity and
FLI(M) (resp. FRI(M), FI(M)) denotes the set of all fuzzy left ideals (resp.
fuzzy right ideals, fuzzy ideals) of M . Also we assume that for any fuzzy left (resp.
right, two sided) ideal σ of M , σ(0M ) = 1.
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Definition 3.1. Let µ, σ be two fuzzy subsets of M . Then the sum µ ⊕ σ, product
µΓ σ and composition µ ◦ σ of µ and σ are defined as follows:

(µ⊕ σ)(x) =

{
supx=u+v[min[µ(u), σ(v)]] for u, v ∈ M

0 otherwise.

(µΓ σ)(x) =

{
supx=uγv[min[µ(u), σ(v)]] for u, v ∈ M and γ ∈ Γ
0 otherwise.

(µ ◦ σ)(x) =


sup[mini[min[µ(ui), σ(vi)]]], 1 ≤ i ≤ n, x =

n∑
i=1

uiγivi,

ui, vi ∈ M,γi ∈ Γ
0 otherwise.

Proposition 3.1. Let µ, σ be two fuzzy ideals of M . Then µΓ σ ⊆ µ ◦ σ ⊆ µ ∩ σ.

Proof. From the definitions of µΓ σ and µ◦σ, it follows that µΓ σ ⊆ µ◦σ. Let x ∈ M

and x =
n∑

i=1

uiγivi, ui, vi ∈ M , γi ∈ Γ for i = 1, 2, . . . , n. Now

µ(x) = µ(
n∑

i=1

uiγivi)

≥ min{µ(u1γ1v1), µ(u2γ2v2), . . . , µ(unγnvn)}
≥ min{µ(u1), µ(u2), . . . , µ(un)}.

Similarly
σ(x) ≥ min{σ(v1), σ(v2), . . . , σ(vn)}.

Thus
(µ ∩ σ)(x) = min{µ(x), σ(x)} ≥ min

i
[min[µ(ui), σ(vi)]].

So (µ ∩ σ)(x) ≥ sup[mini[min[µ(ui), σ(vi)]]], 1 ≤ i ≤ n, x =
n∑

i=1

uiγivi, ui, vi ∈ M ,

γi ∈ Γ = (µ ◦ σ)(x). Also if µ ◦ σ(x) = 0, then µ ◦ σ(x) ≤ µ∩ σ(x). So µ ◦ σ ⊆ µ∩ σ.
Thus µΓ σ ⊆ µ ◦ σ ⊆ µ ∩ σ. �

Proposition 3.2. Let µ1, µ2 ∈ FLI(M) [resp. FRI(M), FI(M)]. Then µ1⊕µ2 ∈
FLI(M) [resp. FRI(M), FI(M)].

Proof. Let x, y ∈ M and γ ∈ Γ. Also let (µ1 ⊕ µ2)(y) > (µ1 ⊕ µ2)(x). Then there
exist p, q ∈ M such that y = p + q and for any u, v ∈ M , for which x = u + v,
min[µ1(p), µ2(q)] > min[µ1(u), µ2(v)]. Let u, v ∈ M be such that x = u + v. Now
x− y = (u− p) + (v − q). So

(µ1 ⊕ µ2)(x− y) ≥ min[µ1(u− p), µ2(v − q)]

≥ min[min[µ1(u), µ1(p)],min[µ2(v), µ2(q)]]

= min[min[µ1(u), µ2(v)],min[µ1(p), µ2(q)]]

= min[µ1(u), µ2(v)].
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So

(µ1 ⊕ µ2)(x− y) ≥ sup
x=u+v

[min[µ1(u), µ2(v)]], u, v ∈ M

= (µ1 ⊕ µ2)(x)

= min[(µ1 ⊕ µ2)(x), (µ1 ⊕ µ2)(y)].

Similarly we can show that (µ1 ⊕ µ2)(x − y) ≥ min[(µ1 ⊕ µ2)(x), (µ1 ⊕ µ2)(y)], in
all other cases. Again, let y = p + q, p, q ∈ M . Then xγy = xγp + xγq, x ∈ M
and γ ∈ Γ. Now (µ1⊕µ2)(xγy) ≥ min[µ1(xγp), µ2(xγq)] ≥ min[µ1(p), µ2(q)]. Thus
(µ1⊕µ2)(xγy) ≥ supy=p+q[min[µ1(p), µ2(q)]], p, q ∈ M = (µ1⊕µ2)(y). Lastly, since
µ1(0M ) = µ2(0M ) = 1, (µ1 ⊕ µ2)(0M ) = 1. So µ1 ⊕ µ2 ∈ FLI(M). �

Proposition 3.3. Let µ, σ, δ ∈ FLI(M) [resp. FRI(M), FI(M)]. Then
(i) µ⊕ σ = σ ⊕ µ,
(ii) (µ⊕ σ)⊕ δ = µ⊕ (σ ⊕ δ),
(iii) µ ⊆ µ⊕ σ,
(iv) if µ ⊆ σ, then µ⊕ δ ⊆ σ ⊕ δ,
(v) µ⊕ µ = µ,
(vi) θ ⊕ µ = µ = µ⊕ θ where θ(∈ FLI(M)) is defined by

θ(x) =

{
1 if x = 0M , x ∈ M

0 if x 6= 0M .

Proof. The proof is a routine matter of verification and so we omit it. �

Proposition 3.4. Let µ, σ ∈ FLI(M) [resp. FRI(M), FI(M)]. Then µ ◦ σ ∈
FLI(M) [resp. FRI(M), FI(M)].

Proof. The proof is similar to the proof of the Proposition 3.2 and so we omit it. �

Proposition 3.5. Let µ, σ, δ ∈ FLI(M) [resp. FRI(M), FI(M)]. Then µΓ σ ⊆ δ
iff µ ◦ σ ⊆ δ.

Proof. If µ ◦ σ ⊆ δ, then µΓ σ ⊆ µ ◦ σ ⊆ δ. Conversely, let µΓ σ ⊆ δ. Let x ∈ M be

such that x =
n∑

i=1

uiγivi, ui, vi ∈ M , γi ∈ Γ for 1 ≤ i ≤ n. Now

δ(x) = δ(
n∑

i=1

uiγivi)

≥ min[δ(u1γ1v1), δ(u2γ2v2), . . . , δ(unγnvn)]

≥ min[(µΓ σ)(u1γ1v1), (µΓ σ)(u2γ2v2), . . . , (µΓ σ)(unγnvn)]

≥ min[min[µ(u1), σ(v1)], . . . ,min[µ(un), σ(vn)]].

So

δ(x) ≥ sup
x=

nP
i=1

uiγivi

[min
i

[min[µ(ui), µ(vi)]]] = (µ ◦ σ)(x).

Also if (µ◦σ)(x) = 0, then µ ◦ σ(x) ≤ δ(x). Thus µ ◦ σ ⊆ δ.
�
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Proposition 3.6. Let µ, σ, δ ∈ FLI(M) [resp. FRI(M), FI(M)]. Then
(i) if µ ⊆ σ, then µ ◦ δ ⊆ σ ◦ δ,
(ii) (µ ◦ σ) ◦ δ = µ ◦ (σ ◦ δ),
(iii) µ ◦ σ = σ ◦ µ if M is commutative,
(iv) 1 ◦ µ = µ where 1 ∈ FLI(M) is defined by 1(x) = 1 for all x ∈ M [resp.

µ ◦ 1 = µ, 1 ◦ µ = µ ◦ 1 = µ].

Proof. The proof of (i) to (iii) follows from the definitions of compositions of fuzzy
ideals and so we omit it. (iv) As M is with left unity

∑
j

[fj , γj ] ∈ L which is defined

by
∑
j

fjγjx = x for every element x in M , it follows form definition that 1◦µ = µ. �

Similarly we can prove the following proposition.

Proposition 3.7. Let µ, σ, δ ∈ FLI(M) [resp. FRI(M), FI(M)]. Then
(i) µ ◦ (σ ⊕ δ) = µ ◦ σ ⊕ µ ◦ δ,
(ii) (σ ⊕ δ) ◦ µ = σ ◦ µ⊕ δ ◦ µ.

Theorem 3.1. Let M be a Γ-ring. Then FLI(M) [resp. FRI(M), FI(M)] is a
zerosumfree hemiring(resp. hemiring, semiring) having infinite element 1 under the
operations of sum and composition of fuzzy left ideals.

Proof. From the Propositions 3.2, 3.3, 3.4, 3.6 and 3.7, it follows that FLI(M) is
a hemiring under the operations of sum and composition of fuzzy left ideals. Now
(1⊕µ)(x) = supx=u+v[min[1(u), µ(v)]] ≥ min[1(x), µ(0M )] = 1(x) ≥ (1⊕µ)(x) for all
x ∈ M . So 1⊕µ = 1 for all µ ∈ FLI(M). Thus 1 is an infinite element of FLI(M).
Lastly we assume that µ⊕ σ = θ for µ, σ ∈ FLI(M). Then µ ⊆ µ⊕ σ = θ ⊆ µ. So
µ = θ. So FLI(M) is zerosumfree. Hence the theorem. �

Lemma 3.1. [6] Intersection of a nonempty collection of fuzzy left ideals (resp.
fuzzy right ideals, fuzzy ideals) is a fuzzy left ideal (resp. fuzzy right ideal, fuzzy
ideal) of M .

Theorem 3.2. FLI(M) [resp. FRI(M), FI(M)] is a complete lattice.

Proof. We define a relation ‘≤’ on FLI(M) as follows µ1 ≤ µ2 iff µ1(x) ≤ µ2(x)
for all x ∈ M . Then FLI(M) is a poset w.r.t. ‘ ≤’. Now 1 ∈ FLI(M) and µ ≤ 1
for all µ ∈ FLI(M). So 1 is the greatest element of FLI(M). Let {µi, i ∈ I} be
a nonempty family of fuzzy left ideals of M . Then by Lemma 3.1, it follows that
∩i∈Iµi ∈ FLI(M). Also it is the glb of {µi|i ∈ I}. Consequently FLI(M) is a
complete lattice. �

4. Corresponding fuzzy ideals

Throughout this paper R denotes the right operator ring and L denotes the left
operator ring of M.

Definition 4.1. For a fuzzy subset µ of R, we define a fuzzy subset µ∗ of M by
µ∗(a) = infγ∈Γ µ([γ, a]) where a ∈ M . For a fuzzy subset σ of M , we define a fuzzy
subset σ∗′

of R by σ∗′
(
∑
i

[αi, ai]) = infm∈M σ(
∑
i

mαiai) where
∑
i

[αi, ai] ∈ R.
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Definition 4.2. For a fuzzy subset δ of L, we define a fuzzy subset δ+ of M by
δ+(a) = infγ∈Γ δ([a, γ]), where a ∈ M . For a fuzzy subset η of M , we define a fuzzy
subset η+′

of L by η+′
(
∑
i

[ai, αi]) = infm∈M η(
∑
i

aiαim) where
∑
i

[ai, αi] ∈ L.

Lemma 4.1. If {µi|i ∈ I} is a collection of fuzzy subsets of R, then

∩i∈Iµ
∗
i = (∩i∈Iµi)∗.

Proof. Let x ∈ M . Now

(∩i∈Iµi)∗(x) = inf
γ∈Γ

[(∩i∈Iµi)([γ, x])]

= inf
γ∈Γ

[inf
i∈I

(µi[γ, x])]

= inf
i∈I

[ inf
γ∈Γ

[µi([γ, x])]]

= inf
i∈I

[µ∗
i (x)]

= (∩i∈Iµ
∗
i )(x).

So ∩i∈Iµ
∗
i = (∩i∈Iµi)∗. �

Proposition 4.1. If µ ∈ FI(R) [resp. FRI(R), FLI(R)], then µ∗ ∈ FI(M) [resp.
FRI(M), FLI(M)].

Proof. Let µ be a fuzzy ideal of R. Then µ(0R) = 1. Now

µ∗(0M ) = inf
γ∈Γ

µ([γ, 0M ]) = inf
γ∈Γ

µ(0R) = 1.

So µ∗ is nonempty. Let a, b ∈ M and α ∈ Γ. Now

µ∗(a− b) = inf
γ∈Γ

µ([γ, a− b])

= inf
γ∈Γ

µ([γ, a]− [γ, b])

≥ min[ inf
γ∈Γ

µ([γ, a])], inf
γ∈Γ

µ([γ, b])]

= min[µ∗(a), µ∗(b)].

Again

µ∗(aαb) = inf
γ∈Γ

µ([γ, aαb]) = inf
γ∈Γ

µ([γ, a][α, b]) ≥ inf
γ∈Γ

µ([γ, a]) = µ∗(a).

Again

µ∗(aαb) = inf
γ∈Γ

µ([γ, aαb])

= inf
γ∈Γ

µ([γ, a][α, b])

≥ inf
γ∈Γ

µ([α, b])

= µ([α, b])

≥ inf
γ∈Γ

µ([γ, b]) = µ∗(b).

So µ∗ is a fuzzy ideal of M . �
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Proposition 4.2. If σ ∈ FI(M) [resp. FRI(M), FLI(M)], then σ∗′ ∈ FI(R)
[resp. FRI(R), FLI(R)].

Proof. Let σ be a fuzzy ideal of M . Then σ(0M ) = 1. Now σ∗′
([γ, 0M ]) =

infm∈M σ(mγ0M ) = σ(0M ) = 1. So σ∗′
is nonempty. Let

∑
i

[αi, ai],
∑
j

[βj , bj ] ∈ R.

Then

σ∗′
(
∑

i

[αi, ai]−
∑

j

[βj , bj ]) = inf
m∈M

σ(
∑

i

mαiai −
∑

j

mβjbj)

≥ inf
m∈M

[min[σ(
∑

i

mαiai), σ(
∑

j

mβjbj)]]

= min[ inf
m∈M

σ(
∑

i

mαiai), inf
m∈M

σ(
∑

j

mβjbj)]

= min[σ∗′
(
∑

i

[αi, ai]), σ∗′
(
∑

j

[βj , bj ])].

Again,

σ∗′
(
∑

i

[αi, ai]
∑

j

[βj , bj ]) = σ∗′
(
∑
i,j

[αi, aiβjbj ]

= inf
m∈M

σ(
∑
i,j

mαiaiβjbj)

≥ inf
m∈M

[min
i

[σ(mα1(
∑

j

a1βjbj)), σ(mα2(
∑

j

a2βjbj)), . . .]]

≥ inf
m∈M

[min
i

[σ(
∑

j

a1βjbj), σ(
∑

j

a2βjbj), . . .]]

= min[σ(
∑

j

a1βjbj), σ(
∑

j

a2βjbj), . . .]

≥ inf
m∈M

[σ(
∑

j

mβjbj)]

= σ∗′
(
∑

j

[βj , bj ].

Similarly we can show that σ∗′
(
∑
i

[αi, ai]
∑
j

[βj , bj ]) ≥ σ∗′
(
∑
i

[αi, ai]). So σ∗′
is a

fuzzy ideal of R. �

Similarly we can prove the following Proposition.

Proposition 4.3. If δ ∈ FI(L) [resp. FRI(L), FLI(L)], then δ+ ∈ FI(M) [resp.
FRI(M), FLI(M)].

Proposition 4.4. If η ∈ FI(M) [resp. FRI(M), FI(M)], then η+′ ∈ FI(L) [resp.
FRI(L), FLI(L)].

Theorem 4.1. The lattices of all fuzzy ideals (resp. fuzzy left ideals ) of M and
R are isomorphic via the inclusion preserving bijection σ → σ∗′

where σ ∈ FI(M)
[resp. FLI(M)] and σ∗′ ∈ FI(R) [resp. FLI(R)].
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Proof. First we shall show that (σ∗′
)∗ = σ, where σ ∈ FI(M). Let a ∈ M . Then

(σ∗′
)∗(a) = inf

γ∈Γ
[σ∗′

([γ, a])]

= inf
γ∈Γ

[ inf
m∈M

[σ(mγa)]]

≥ inf
γ∈Γ

[ inf
m∈M

[σ(a)]] = σ(a).

So σ ⊆ (σ∗′
)∗. Let

∑
i

[ei, δi] be the left unity of M . Then
∑
i

eiδix = x for all x ∈ M .

Now

σ(a) = σ(
∑

i

eiδia)

≥ min
i

[σ(e1δ1a), σ(e2δ2a), . . .])]]

≥ inf
γ∈Γ

[ inf
m∈M

[σ(mγa)]] = (σ∗′
)∗(a).

So (σ∗′
)∗ ⊆ σ. Hence σ = (σ∗′

)∗. Again, let µ ∈ FI(R). Now

(µ∗)∗
′
(
∑

k

[αk, ak]) = inf
m∈M

[µ∗(
∑

k

mαkak)]

= inf
m∈M

[ inf
γ∈Γ

[µ(γ,
∑

k

mαkak)]]

= inf
m∈M

[ inf
γ∈Γ

[µ([γ, m]
∑

k

[αk, ak])]]

≥ µ(
∑

k

[αk, ak]).

So µ ⊆ (µ∗)∗
′
. Let

∑
j

[δ′j , e
′
j ] be the right unity of M . Then

µ(
∑

k

[αk, ak]) = µ(
∑

j

[δ′j , e
′
j ]

∑
k

[αk, ak])

≥ min
j

[µ([δ′1, e
′
1]

∑
k

[αk, ak]), µ([δ′2, e
′
2]

∑
k

[αk, ak]), . . .]

≥ inf
m∈M

[ inf
γ∈Γ

[µ([γ, m]
∑

k

[αk, ak])]]

= (µ∗)∗
′
(
∑

k

[αk, ak]).

So µ ⊇ (µ∗)∗
′
. Thus µ = (µ∗)∗

′
. Thus the correspondence σ → σ∗′

is a bijection.
Now let σ1, σ2 ∈ FI(M) be such that σ1 ⊆ σ2. Then

σ∗′

1 (
∑

i

[αi, ai]) = inf
m∈M

σ1(
∑

i

mαiai)

≤ inf
m∈M

σ2(
∑

i

mαiai) = σ∗′

2 (
∑

i

[αi, ai])
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for all
∑
i

[αi, ai] ∈ R. So σ∗′

1 ⊆ σ∗′

2 . Similarly we can show that if µ1 ⊆ µ2, where

µ1, µ2 ∈ FI(R), then µ∗
1 ⊆ µ∗

2. So the mapping σ → σ∗′
is a lattice isomorphism. �

Similarly we can prove the following theorem.

Theorem 4.2. The lattices of all fuzzy ideals (resp. fuzzy right ideals) of M and
L are isomorphic via the inclusion preserving bijection η → η+′

, where η ∈ FI(M)
[resp. FRI(M)] and η+′ ∈ FI(L) [resp. FRI(L)].

Theorem 3.2 maybe obtained as a corollary of the above theorems.

Corollary 4.1. FRI(M) [resp. FI(M), FLI(M)] is a complete lattice.

Proof. The corollary follows from the above theorem and the facts that FI(M),
FRI(M) and FLI(M) are complete lattices. �

Theorem 4.3. A commutative Γ–ring M is a Γ– field if and only if for every fuzzy
ideal σ of M , σ(x) = σ(y) < σ(0M ) for all x, y ∈ M\{0M}.

Proof. Let σ be a fuzzy ideal of M and σ(x) = σ(y) < σ(0M ) for all x, y ∈
M\{0M}. Let

∑
i

[αi, ai],
∑
j

[βj , bj ] ∈ R\{0R}. Then there exist m,m′ in M such

that
∑
i

mαiai 6= 0M and
∑
j

m′βjbj 6= 0M . Now

σ∗′
(
∑

i

[αi, ai]) = inf
m∈M

σ(
∑

i

mαiai) = inf
m∈M

σ(
∑

j

mβjbj) = σ∗′
(
∑

j

[βj , bj ])

(since σ(x) = σ(y) < σ(0M ) for all x, y ∈ M\{0M}). So

σ∗′
(
∑

i

[αi, ai]) = σ∗′
(
∑

j

[βj , bj ]) < σ∗′
(0R)

for all
∑
i

[αi, ai],
∑
j

[βj , bj ] ∈ R\{0R}. Let µ be a fuzzy ideal of R and

∑
i

[αi, ai],
∑

j

[βj , bj ] ∈ R\{0R}.

Then

µ(
∑

i

[αi, ai]) = (µ∗)∗
′
(
∑

i

[αi, ai]) = (µ∗)∗
′
(
∑

j

[βj , bj ]) = µ(
∑

j

[βj , bj ]) < µ(0R).

Also it follows from Lemma 3.4 of [2] that R is commutative. Consequently by
Proposition 3.1.10 of [7] it follows that R is a field and hence M is a Γ-field ([2,
Theorem 3.5]).

Conversely, suppose that M is a Γ-field and x, y ∈ M\{0M}. Then there exist
γ1, γ2 ∈ Γ such that [γ1, x] 6= 0R and [γ2, y] 6= 0R. Let σ be fuzzy ideal of M . Then
σ∗′

is a fuzzy ideal of R. Since M is a Γ-field, R is a field. So, by the Proposition
3.1.10 of [7] it follows that

σ∗′
(
∑

i

[αi, ai]) = σ∗′
(
∑

j

[βj , bj ]) < σ∗′
(0R)
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for all
∑
i

[αi, ai],
∑
j

[βj , bj ] ∈ R\{0R}. Now

σ(x) = (σ∗′
)∗(x) = inf

γ∈Γ
σ∗′

([γ, x]) = inf
γ∈Γ

σ∗′
([γ, y]) = (σ∗′

)∗(y) = σ(y) < σ(0M ).

So σ(x)) = σ(y) < σ(0M ) for all x, y ∈ M\{0M}. �

Definition 4.3. A commutative Γ-ring M is said to be Noetherian if for every
ascending chain I1 ⊆ I2 ⊆ I3 ⊆ . . . of ideals of M there exists a positive integer n
such that Im = In for all m ≥ n.

Theorem 4.4. A commutative Γ-ring M is Noetherian if every fuzzy ideal of M
has finite values.

Proof. Let M be a commutative Γ-ring and every fuzzy ideal of M have finite values.
Let σ be a fuzzy ideal of M . Then since σ∗′

(
∑
i

[γi, ai]) = infm∈M σ(
∑
i

mγiai), σ∗′

is of finite values whenever σ is of finite values. Let µ be a fuzzy ideal of R. Since
for every fuzzy ideal µ of R, µ = (µ∗)∗

′
, it follows that µ has finite values. So By

Theorem 7 of [10] it follows that R is Noetherian and hence M is Noetherian. �
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