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Abstract. In 2001, El-Monsef and Nasef have introduced γ-continuous multi-
functions and in 2004, Park, Lee and Son have studied δ-precontinuous multi-

functions. The purpose of this paper is to generalize some types of continuous

multifunctions. In this paper, the notion of almost δ-precontinuous multifunc-
tions is studied. Basic properties, characterizations and relationships of almost

δ-precontinuous multifunctions are obtained.
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1. Introduction

Continuity and multifunctions are basic topics in several branches of mathematics
such as in general topology, set valued analysis. Several different forms of continuous
multifunctions have been introduced and studied over the years. Many authors have
researched and studied several stronger and weaker forms of continuous functions
and multifunctions. Some of them are semi-continuity [20], α-continuity [16, 25],
precontinuity [23], quasi-continuity [22], γ-continuity [2], δ-precontinuity [19] and
β-continuity [24].

The aim of this paper is to give a new weaker form of some types of continuity
including semi-continuity, α-continuity, precontinuity and δ-precontinuity. In this
paper, almost δ-precontinuity is introduced and studied. Moreover, basic properties
and preservation theorems of almost δ-precontinuous multifunctions are investigated
and relationships between almost δ-precontinuous multifunctions and the other types
of continuity are investigated.

In Section 3, the notion of almost δ-precontinuous multifunctions is introduced
and characterizations and some relationships of almost δ-precontinuous multifunc-
tions and basic properties of almost δ-precontinuous multifunctions are investigated
and obtained. Furthermore, the relationships almost δ-precontinuity and the other
types of continuity are investigated. In Section 4, the relationships between almost
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δ-precontinuity and graphs are obtained. In Section 5, the other several properties
of almost δ-precontinuity are investigated.

2. Preliminaries

In this paper, spaces (X, τ) and (Y, υ) (or simply X and Y ) always mean topological
spaces on which no separation axioms are assumed unless explicitly stated. Let A
be a subset of a space X. For a subset A of (X, τ), cl(A) and int(A) represent the
closure of A with respect to τ and the interior of A with respect to τ , respectively.

A subset A of a space X is said to be regular open (respectively regular closed)
if A = int(cl(A)) (respectively A = cl(int(A))) [28].

The δ-interior [29] of a subset A of X is the union of all regular open sets of
X contained in A is denoted by δ-int(A). A subset A is called δ-open [29] if A =
δ-int(A), i. e., a set is δ-open if it is the union of regular open sets. The complement
of δ-open set is called δ-closed. Alternatively, a set A of (X, τ) is called δ-closed [29]
if A = δ-cl(A), where δ-cl(A) = {x ∈ X : A ∩ int(cl(U)) 6= ∅, U ∈ τ and x ∈ U}.

A subset A of a space X is said to be α-open [17] (resp. semi-open [13], preopen
[14], b-open [4] or γ-open [11] or sp-open [9], δ-preopen [26], β-open [1] or semi-
preopen [3]) if A ⊂ int(cl(int(A))) (resp. A ⊂ cl(int(A)), A ⊂ int(cl(A)), A ⊂
cl(int(A)) ∪ int(cl(A)), A ⊂ int(δ-cl(A)), A ⊂ cl(int(cl(A)))). The family of all α-
open (resp. semi-open, preopen, γ-open, δ-preopen, β-open) sets of X containing
a point x ∈ X is denoted by αO(X, x) (resp. SO(X, x), PO(X, x), γO(X, x),
δPO(X, x), βO(X, x)).

The complement of a semi-open (resp. α-open, preopen, β-open, γ-open) set is
said to be semi-closed [8] (resp. α-closed [15], preclosed [12]), β-closed [1], γ-closed
[11].

The complement of a δ-preopen set is said to be δ-preclosed. The intersection
of all δ-preclosed sets of X containing A is called the δ-preclosure [26] of A and is
denoted by δ-pcl(A). The union of all δ-preopen sets of X contained A is called
δ-preinterior of A and is denoted by δ-pint(A) [26]. A subset U of X is called a
δ-preneighborhood [26] of a point x ∈ X if there exists a δ-preopen set V such that
x ∈ V ⊂ U . Note that δ-pcl(A) = A∪ cl(δ-int(A)) and δ-pint(A) = A∩ int(δ-cl(A)).

The family of all δ-open (resp. δ-preopen, δ-preclosed, regular open, regular
closed) sets of X is denoted by δO(X) (resp. δPO(X), δPC(X), RO(X), RC(X)).

By a multifunction F : X → Y , we mean a point-to-set correspondence from
X into Y , and always assume that F (x) 6= ∅ for all x ∈ X. For a multifunction
F : X → Y , following [5, 7] we shall denote the upper and lower inverse of a set B
of Y by F+(B) and F−(B), respectively, that is, F+(B) = {x ∈ X : F (x) ⊂ B}
and F−(B) = {x ∈ X : F (x) ∩ B 6= ∅}. In particular, F−(y) = {x ∈ X : y ∈ F (x)}
for each point y ∈ Y . For each A ⊂ X, F (A) =

⋃
x∈A

F (x). Then F is said to be a

surjection if F (X) = Y , or equivalently if for each y ∈ Y there exists an x ∈ X such
that y ∈ F (x).

Moreover, F : X → Y is called upper semi continuous (resp. lower semi continu-
ous) if F+(V ) (resp. F−(V )) is open in X for every open set V of Y [20].
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For a multifunction F : X → Y , the graph multifunction GF : X → X × Y is
defined as follows: GF (x) = {x}×F (x) for every x ∈ X and the subset {{x}×F (x) :
x ∈ X} ⊂ X × Y is called the multigraph of F and is denoted by G(F ) [27].

Definition 2.1. A multifunction F : X → Y is said to be:
(1) Upper almost continuous [21, 23, 27] or upper precontinuous [23] (resp. up-

per quasi-continuous [22], upper α-continuous [16, 25], upper β-continuous
[24], upper γ-continuous [2], upper δ-precontinuous [19]) at x ∈ X if for each
open set V of Y containing F (x), there exists U ∈ PO(X, x) (resp. U ∈
SO(X, x), U ∈ αO(X, x), U ∈ βO(X, x), U ∈ γO(X, x), U ∈ δPO(X, x))
such that F (U) ⊂ V .

(2) Lower almost continuous [21, 23, 27] or lower precontinuous [23] (resp. lower
quasi-continuous [22], lower α-continuous [16, 25], lower β-continuous [24],
lower γ-continuous [2], lower δ-precontinuous [19]) at x ∈ X if for each open
set V of Y such that F (x) ∩ V 6= ∅, there exists U ∈ PO(X, x) (resp. U ∈
SO(X, x), U ∈ αO(X, x), U ∈ βO(X, x), U ∈ γO(X, x), U ∈ δPO(X, x))
such that F (u) ∩ V 6= ∅ for every u ∈ U .

(3) Upper (lower) almost continuous or upper (lower) precontinuous (resp. upper
(lower) quasi-continuous, upper (lower) α-continuous, upper (lower) β-
continuous, upper (lower) γ-continuous, upper (lower) δ-precontinuous) if it
has this property at each point of X.

3. Almost δ-precontinuous multifunctions

In this section, the notion of almost δ-precontinuous multifunctions is introduced and
characterizations and some relationships of almost δ-precontinuous multifunctions
and basic properties of almost δ-precontinuous multifunctions are investigated and
obtained. Furthermore, the relationships almost δ-precontinuity and the other types
of continuity are investigated.

Definition 3.1. A multifunction F : X → Y is said to be:
(1) Lower almost δ-precontinuous at a point x ∈ X if for each open set V of

Y such that x ∈ F−(V ), there exists a U ∈ δPO(X, x) such that U ⊂
F−(int(cl(V ))),

(2) Upper almost δ-precontinuous at a point x ∈ X if for each open set V of
Y such that x ∈ F+(V ), there exists a U ∈ δPO(X, x) such that U ⊂
F+(int(cl(V ))).

(3) Lower (upper) almost δ-precontinuous if F has this property at each point
of X.

The following theorem give some characterizations of an upper almost δ-precon-
tinuous multifunction.

Theorem 3.1. Let F : X → Y be a multifunction from a topological space (X, τ)
to a topological space (Y, υ). Then the following statements are equivalent:

(1) F is an upper almost δ-precontinuous multifunction,
(2) for each x ∈ X and for each open set V such that F (x) ⊂ V , there exists a

U ∈ δPO(X, x) such that if y ∈ U , then F (y) ⊂ int(cl(V )),
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(3) for each x ∈ X and for each regular open set G of Y such that F (x) ⊂ G,
there exists a U ∈ δPO(X, x) such that F (U) ⊂ G,

(4) for each x ∈ X and for each closed set K such that x ∈ F+(Y \K), there
exists a δ-preclosed set H such that x ∈ X\H and F−(cl(int(K))) ⊂ H,

(5) F+(int(cl(V ))) ∈ δPO(X) for any open set V ⊂ Y ,
(6) F−(cl(int(K))) ∈ δPC(X) for any closed set K ⊂ Y ,
(7) F+(G) ∈ δPO(X) for any regular open set G of Y ,
(8) F−(K) ∈ δPC(X) for any regular closed set K of Y ,
(9) for each point x of X and each neighbourhood V of F (x), F+(int(cl(V ))) is

a δ-preneighbourhood of x,
(10) for each point x of X and each neighbourhood V of F (x), there exists a

δ-preneighbourhood U of x such that F (U) ⊂ int(cl(V )),
(11) δ-pcl(F−(cl(int(H)))) ⊂ F−(cl(int(cl(H)))) for every subset H of Y ,
(12) F+(int(cl(int(N)))) ⊂ δ-pint(F+(int(cl(N)))) for every subset N of Y .

Proof.

(1)⇔(2): Clear.

(2)⇒(3): Let x ∈ X and G be a regular open set of Y such that F (x) ⊂ G. By (2),
there exists a U ∈ δPO(X, x) such that if y ∈ U , then F (y) ⊂ int(cl(G)) = G. We
obtain F (U) ⊂ G.

(3)⇒(2): Let x ∈ X and V be an open set of Y such that F (x) ⊂ V . Then,
int(cl(V )) ∈ RO(Y ). By (3), there exists a U ∈ δPO(X, x) such that F (U) ⊂
int(cl(V )).

(2)⇒(4): Let x ∈ X and K be a closed set of Y such that x ∈ F+(Y \K). By (2),
there exists a U ∈ δPO(X, x) such that F (U) ⊂ int(cl(Y \K)). We have

int(cl(Y \K)) = Y \ cl(int(K))

and
U ⊂ F+(Y \ cl(int(K))) = X\F−(cl(int(K))).

We obtain F−(cl(int(K))) ⊂ X\U . Take H = X\U . Then, x ∈ X\H and H is a
δ-preclosed set.

(4)⇒(2): It can be obtained similarly as (2)⇒(4).

(1)⇒(5): Let V be any open set of Y and x ∈ F+(int(cl(V ))). By (1), there exists
Ux ∈ δPO(X, x) such that Ux ⊂ F+(int(cl(V ))). Therefore, we obtain

F+(int(cl(V ))) =
⋃

x∈F+(int(cl(V )))

Ux.

Hence, F+(int(cl(V ))) ∈ δPO(X).

(5)⇒(1): Let V be any open set of Y and x ∈ F+(V ). By (5), F+(int(cl(V ))) ∈
δPO(X). Take U = F+(int(cl(V ))). Then, F (U) ⊂ int(cl(V )). Hence, F is upper
almost δ-precontinuous.

(5)⇒(6): Let K be any closed set of Y . Then, Y \K is an open set of Y . By
(5), F+(int(cl(Y \K))) ∈ δPO(X). Since int(cl(Y \K)) = Y \ cl(int(K)), it follows
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that F+(int(cl(Y \K))) = F+(Y \ cl(int(K))) = X\F−(cl(int(K))). We obtain that
F−(cl(int(K))) is δ-preclosed in X.

(6)⇒(5): It can be obtained similarly as (5)⇒(6).

(5)⇒(7): Let G be any regular open set of Y . By (5), F+(int(cl(G))) = F+(G) ∈
δPO(X).

(7)⇒(5): Let V be any open set of Y . Then, int(cl(V )) ∈ RO(Y ). By (7),
F+(int(cl(V ))) ∈ δPO(X).

(6)⇒(8): It can be obtained similarly as (5)⇒(7).

(8)⇒(6): It can be obtained similarly as (7)⇒(5).

(5)⇒(9): Let x ∈ X and V be a neighbourhood of F (x). Then there exists an open
set G of Y such that F (x) ⊂ G ⊂ V . therefore, we obtain x ∈ F+(G) ⊂ F+(V ).
Since F+(int(cl(G))) ∈ δPO(X), F+(int(cl(V ))) is a δ-preneighbourhood of x.

(9)⇒(10): Let x ∈ X and V be a neighbourhood of F (x). By (9), F+(int(cl(V )))
is a δ-preneighbourhood of x. Take U = F+(int(cl(V ))). Then F (U) ⊂ int(cl(V )).

(10)⇒(1): Let x ∈ X and V be any open set of Y such that F (x) ⊂ V . Then
V is a neighbourhood of F (x). By (10), there exists a δ-preneighbourhood U of
x such that F (U) ⊂ int(cl(V )). Therefore, there exists G ∈ δPO(X) such that
x ∈ G ⊂ U and hence F (G) ⊂ F (U) ⊂ int(cl(V )). We obtain that F is upper
almost δ-precontinuous.

(6)⇒(11): For any subset H of Y , cl(H) is closed in Y . By (6),

F−(cl(int(cl(H))))

is δ-preclosed in X. Therefore, we obtain

δ-pcl(F−(cl(int(H)))) ⊂ F−(cl(int(cl(H)))).

(11)⇒(6): Let K be any closed set of Y . Then we have

δ-pcl(F−(cl(int(K)))) ⊂ F−(cl(int(cl(K)))) = F−(cl(int(K))).

Thus, F−(cl(int(K))) is δ-preclosed in X.

(5)⇒(12): For any subset N of Y , int(N) is open in Y . By (5),

F+(int(cl(int(N))))

is δ-preopen in X. Therefore, we obtain

F+(int(cl(int(N)))) ⊂ δ-pint(F+(int(cl(N)))).

(12)⇒(5): Let V be any open set of Y . Then we have

F+(int(cl(V ))) ⊂ δ-pint(F+(int(cl(V )))).

Hence, F+(int(cl(V ))) is δ-preopen in X. �
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Remark 3.1. For a multifunction F : X → Y from a topological space (X, τ) to a
topological space (Y, υ), the following implications hold:

upper almost
upper semi-continuity δ -precontinuity

⇓ ⇑
upper α-continuity ⇒ upper precontinuity ⇒ upper δ-precontinuity

⇓ ⇓
upper quasi-continuity ⇒ upper γ-continuity

⇓
upper β-continuity

Note that none of these implications is reversible. We give an example for the
last implication as follows. The other examples can be obtained in [2, 19].

Example 3.1. Let X = {a, b, c}, Y = {−2,−1, 0, 1, 2}. Let τ and σ be respec-
tively topologies on X and on Y given by τ = {∅, X, {b}, {c}, {b, c}} and σ =
{∅, Y, {−2,−1, 0, 1}}. Define the multifunction F : X → Y by

F (x) =

 {0}, if x = a
{−1, 1}, if x = b
{−2, 2}, if x = c.

Then F is upper almost δ-precontinuous but not upper δ -precontinuous, since
{−2,−1, 0, 1} ∈ σ and F+({−2,−1, 0, 1}) = {a, b} is not δ-preopen in (X, τ).

The following theorem give some characterizations of a lower almost δ-preconti-
nuous multifunction.

Theorem 3.2. Let F : X → Y be a multifunction from a topological space (X, τ)
to a topological space (Y, υ). Then the following statements are equivalent:

(1) F is a lower almost δ-precontinuous multifunction,
(2) for each x ∈ X and for each open set V such that F (x)∩V 6= ∅, there exists

a U ∈ δPO(X, x) such that if y ∈ U , then F (y) ∩ int(cl(V )) 6= ∅,
(3) for each x ∈ X and for each regular open set G of Y such that F (x)∩G 6= ∅,

there exists a U ∈ δPO(X, x) such that if y ∈ U , then F (y) ∩G 6= ∅,
(4) for each x ∈ X and for each closed set K such that x ∈ F−(Y \K), there

exists a δ-preclosed set H such that x ∈ X\H and F+(cl(int(K))) ⊂ H,
(5) F−(int(cl(V ))) ∈ δPO(X) for any open set V ⊂ Y ,
(6) F+(cl(int(K))) ∈ δPC(X) for any closed set K ⊂ Y ,
(7) F−(G) ∈ δPO(X) for any regular open set G of Y ,
(8) F+(K) ∈ δPC(X) for any regular closed set K of Y ,
(9) δ-pcl(F+(cl(int(H)))) ⊂ F+(cl(int(cl(H)))) for every subset H of Y ,

(10) F−(int(cl(int(N)))) ⊂ δ-pint(F−(int(cl(N)))) for every subset N of Y .

Proof. It can be obtained similarly as the previous theorem. �

Lemma 3.1. Let A and X0 be subsets of a space (X, τ). If A ∈ δPO(X) and
X0 ∈ δO(X), then A ∩X0 ∈ δPO(X0) [26].

Lemma 3.2. Let A ⊂ X0 ⊂ X. If X0 ∈ δO(X) and A ∈ δPO(X0), then A ∈
δPO(X) [26].
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Theorem 3.3. Let F : X → Y be a multifunction and let U be a δ-open set in X.
If F is a lower (upper) almost δ-precontinuous, then the restriction multifunction
F |U : U → Y is a lower (resp. upper) almost δ-precontinuous.

Proof. Suppose that V is an open set in Y . Let x ∈ U and let x ∈ (F |U )−(V ).
Since F is a lower almost δ-precontinuous multifunction, it follows that there exists
a δ-preopen set G such that x ∈ G ⊂ F−(int(cl(V ))). By Lemma 3.1, we obtain
that x ∈ G ∩ U ∈ δPO(U) and G ∩ U ⊂ (F |U )−(int(cl(V ))). Thus, we show that
the restriction multifunction F |U is a lower almost δ-precontinuous.

The proof of the upper almost δ-precontinuity of F |U is similar to the above. �

Theorem 3.4. Let {Uλ : λ ∈ Λ} be a δ-open cover of a space X. Then a mul-
tifunction F : X → Y is upper almost δ-precontinuous (resp. lower almost δ-
precontinuous) if and only if the restriction F |Uλ

: Uλ → Y is upper almost δ-
precontinuous (resp. lower almost δ-precontinuous) for each λ ∈ Λ.

Proof. We prove only the case for F upper almost δ-precontinuous, the proof for F
lower almost δ-precontinuous being analogous.

(⇒) Let λ ∈ Λ and V be any open set of Y . Since F is upper almost δ-
precontinuous, F+(int(cl(V ))) is δ-preopen in X. By Lemma 3.1,

(F |Uλ
)+(int(cl(V ))) = F+(int(cl(V ))) ∩ Uλ

is δ-preopen in Uλ and hence F |Uλ
is upper almost δ-precontinuous.

(⇐) Let V be any open set of Y . Since F |Uλ
is upper almost δ-precontinuous

for each λ ∈ Λ, (F |Uλ
)+(int(cl(V ))) = F+(int(cl(V ))) ∩ Uλ is δ-preopen in Uλ.

By Lemma 3.2, (F |Uλ
)+(int(cl(V ))) is δ-preopen in X for each λ ∈ Λ. We obtain

that F+(int(cl(V ))) =
⋃

λ∈Λ

(F |Uλ
)+(int(cl(V ))) is δ-preopen in X. Hence F is upper

almost δ-precontinuous. �

Suppose that (X, τ), (Y, υ) and (Z, ω) are topological spaces. It is known that if
F1 : X → Y and F2 : Y → Z are multifunctions, then the composite multifunction
F2 ◦ F1 : X → Z is defined by (F2 ◦ F1)(x) = F2(F1(x)) for each x ∈ X.

Theorem 3.5. Let F : X → Y and G : Y → Z be multifunctions. The following
statements hold:

(1) If F is upper (lower) δ-precontinuous and G is upper (lower) semi-continuous,
then G ◦ F : X → Z is an upper (lower) almost δ-precontinuous multifunc-
tion.

(2) If F is upper (lower) precontinuous and G is upper (lower) semi-continuous,
then G ◦ F : X → Z is an upper (lower) almost δ-precontinuous multifunc-
tion.

(3) If F is upper (lower) α-continuous and G is upper (lower) semi-continuous,
then G ◦ F : X → Z is an upper (lower) almost δ-precontinuous multifunc-
tion.

(4) If F is upper (lower) semi-continuous and G is upper (lower) semi-conti-
nuous, then G ◦ F : X → Z is an upper (lower) almost δ-precontinuous
multifunction.
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Proof. (1) Let V ⊂ Z be any regular open set. From the definition of G ◦ F , we
have (G ◦F )+(V ) = F+(G+(V )) (resp. (G ◦F )−(V ) = F−(G−(V ))). Since G is an
upper (lower) semi continuous multifunction, it follows that G+(V ) (resp. G−(V ))
is an open set. Since F is an upper (lower) δ-precontinuous multifunction, it follows
that F+(G+(V )) (resp. F−(G−(V ))) is a δ-preopen set. It shows that G ◦ F is an
upper (resp. lower) almost δ-precontinuous multifunction.

The other proofs can be obtained similarly. �

We know that a net (xα) in a topological space (X, τ) is called eventually in the
set U ⊂ X if there exists an index α0 ∈ J such that xα ∈ U for all α ≥ α0.

Definition 3.2. Let (X, τ) be a topological space and let (xα) be a net in X. It is
said that the net (xα) δ-preconverges to x if for each δ-preopen set G containing x
in X, there exists an index α0 ∈ I such that xα ∈ G for each α ≥ α0.

Theorem 3.6. Let F : X → Y be a multifunction. If F is a lower (upper) almost
δ-precontinuous multifunction, then for each x ∈ X and for each net (xα) which
δ-preconverges to x in X and for each open set V ⊂ Y such that x ∈ F−(V ) (resp.
x ∈ F+(V )), the net (xα) is eventually in F−(int(cl(V ))) (resp. F+(int(cl(V )))).

Proof. Let (xα) be a net which δ-preconverges to x in X and let V be any open set
in Y such that x ∈ F−(V ). Since F is a lower almost δ-precontinuous multifuction,
it follows that there exists a δ-preopen set U in X containing x such that U ⊂
F−(int(cl(V ))). Since (xα) δ-preconverges to x, it follows that there exists an index
α0 ∈ J such that xα ∈ U for all α ≥ α0. So we obtain that xα ∈ U ⊂ F−(int(cl(V )))
for all α ≥ α0. Thus, the net (xα) is eventually in F−(int(cl(V ))).

The proof of the upper almost δ-precontinuity of F is similar to the above. �

Definition 3.3. Let (X, τ) be a topological space. The collection of all regular open
sets forms a base for a topology τ∗. It is called the semi-regularization. In case when
τ = τ∗, the space (X, τ) is called semi-regular [28].

Theorem 3.7. Let F : X → Y be a multifunction from a topological space (X, τ)
to a semi-regular topological space (Y, υ). F is a lower almost δ-precontinuous mul-
tifunction if and only if F is lower δ-precontinuous.

Proof. Let x ∈ X and let V be an open set such that x ∈ F−(V ). Since (Y, υ) is a
semi-regular space, there exist regular open sets Ui for i ∈ I such that V =

⋃
i∈I

Ui.

We have F−(V ) = F−(
⋃
i∈I

Ui) =
⋃
i∈I

F−(Ui). By Theorem 3.2, F−(Ui) ∈ δPO(X)

for i ∈ I. We obtain F−(V ) ∈ δPO(X). Hence, by Theorem 3.6 in [19], F is lower
δ-precontinuous.

The converse is obvious. �

Corollary 3.1. Let F : X → Y be a multifunction from a topological space (X, τ) to
a topological space (Y, υ). Then F : (X, τ) → (Y, υ) is a lower almost δ-precontinuous
multifunction if and only if F : (X, τ) → (Y, υ∗) is lower δ-precontinuous.

Theorem 3.8. Suppose that (X, τ) and (Xα, τα) are topological spaces where α ∈ J .
Let F : X →

∏
α∈J

Xα be a multifunction from X to the product space
∏

α∈J

Xα and
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let Pα :
∏

α∈J

Xα → Xα be the projection for each α ∈ J . If F is an upper (lower)

almost δ-precontinuous multifunction, then Pα ◦ F is an upper (resp. lower) almost
δ-precontinuous multifunction for each α ∈ J .

Proof. Take any α0 ∈ J . Let Vα0 be a open set in (Xα0 , τα0). Then

(Pα0 ◦ F )+(int(cl(Vα0)) = F+(P+
α0

(int(cl(Vα0))) = F+(int(cl(Vα0))×
∏

α6=α0

Xα)

and respectively

(Pα0 ◦ F )−(int(cl(Vα0)) = F−(P−
α0

(int(cl(Vα0))) = F−(int(cl(Vα0))×
∏

α6=α0

Xα).

Since F is an upper (resp. lower) almost δ-precontinuous multifunction and since
int(cl(Vα0)×

∏
α6=α0

Xα is a regular open set, it follows that F+(int(cl(Vα0))×
∏

α6=α0

Xα)

(respectively, F−(int(cl(Vα0)) ×
∏

α6=α0

Xα)) is δ-preopen in (X, τ). It shows that

Pα0 ◦ F is an upper (lower) almost δ-precontinuous multifunction.
Hence, we obtain that Pα ◦ F is an upper (lower) almost δ-precontinuous multi-

function for each α ∈ J . �

Theorem 3.9. Suppose that for each α ∈ J , (Xα, τα), (Yα, υα) are topological
spaces. Let Fα : Xα → Yα be a multifunction for each α ∈ J and let F :

∏
α∈J

Xα →∏
α∈J

Yα be defined by F ((xα)) =
∏

α∈J

Fα(xα) from the product space
∏

α∈J

Xα to the

product space
∏

α∈J

Yα. If F is an upper (lower) almost δ-precontinuous multifunction,

then each Fα is an upper (resp. lower) almost δ-precontinuous multifunction for each
α ∈ J .

Proof. Let Vα ⊆ Yα be a open set. Then int(cl(Vα)) ×
∏

α6=β

Yβ is a regular open

set. Since F is an upper (lower) almost δ-precontinuous multifunction, it follows
that F+(int(cl(Vα)) ×

∏
α6=β

Yβ) = F+
α (int(cl(Vα))) ×

∏
α6=β

Xβ (resp. F−(int(cl(Vα)) ×∏
α6=β

Yβ) = F−
α (int(cl(Vα))) ×

∏
α6=β

Xβ) is a δ-preopen set. Consequently, we obtain

that F+
α (int(cl(Vα))) (resp. F−

α (int(cl(Vα)))) is a δ-preopen set. Thus, we show that
Fα is an upper (resp. lower) almost δ-precontinuous multifunction. �

Theorem 3.10. Suppose that (X, τ), (Y, υ), (Z, ω) are topological spaces and F1 :
X → Y , F2 : X → Z are multifunctions. Let F1×F2 : X → Y ×Z be a multifunction
which is defined by (F1 × F2)(x) = F1(x) × F2(x) for each x ∈ X. If F1 × F2 is
an upper (lower) almost δ-precontinuous multifunction, then F1 and F2 are upper
(resp. lower) almost δ-precontinuous multifunctions.

Proof. Let x ∈ X and let K ⊂ Y , H ⊂ Z be open sets such that x ∈ F+
1 (K) and

x ∈ F+
2 (H). Then we obtain that F1(x) ⊂ K and F2(x) ⊂ H and so F1(x)×F2(x) =

(F1 × F2)(x) ⊂ K × H. We have x ∈ (F1 × F2)+(K × H). Since F1 × F2 is an
upper almost δ-precontinuous multifunction, it follows that there exists a δ-preopen
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set U containing x such that U ⊂ (F1 × F2)+(int(cl(K × H))). We obtain that
U ⊂ F+

1 (int(cl(K))) and U ⊂ F+
2 (int(cl(H))). Thus, we obtain that F1 and F2 are

upper almost δ-precontinuous multifunctions.
The proof of the lower almost δ-precontinuity of F1 and F2 is similar to the

above. �

4. Graphs

In this section, the relationships between almost δ-precontinuity and graphs are
investigated.

Lemma 4.1. Let A be a subset of a space (X, τ). Then A ∈ δPO(X) if and only if
A ∩ U ∈ δPO(X) for each regular open (δ-open) set U of X [26].

Lemma 4.2. For a multifunction F : X → Y , the following hold:
(1) G+

F (A×B) = A ∩ F+(B),
(2) G−

F (A×B) = A ∩ F−(B)
for any subsets A ⊂ X and B ⊂ Y [18].

Theorem 4.1. Let F : X → Y be a multifunction such that F (x) is compact for
each x ∈ X and X be a semi-regular space. Then the graph multifunction of F is
upper almost δ-precontinuous if and only if F is upper almost δ-precontinuous.

Proof. (⇒). Suppose that GF : X → X × Y is upper almost δ-precontinuous.
Let x ∈ X and V be any open set of Y containing F (x). Since X × V is open
in X × Y and GF (x) ⊂ X × V , there exists U ∈ δPO(X, x) such that GF (U) ⊂
int(cl(X × V )) = X × int(cl(V )). By the previous lemma, we have U ⊂ G+

F (X ×
int(cl(V ))) = F+(int(cl(V ))) and F (U) ⊂ int(cl(V )). This shows that F is upper
almost δ-precontinuous.

(⇐): Suppose that F : X → Y is upper almost δ-precontinuous. Let x ∈ X and
W be any open set of X × Y containing GF (x). For each y ∈ F (x), there exist
open sets U(y) ⊂ X and V (y) ⊂ Y such that (x, y) ∈ U(y) × V (y) ⊂ W . The
family of {V (y) : y ∈ F (x)} is an open cover of F (x). Since F (x) is compact, it
follows that there exists a finite number of points, says y1, y2, y3,..., yn in F (x)
such that F (x) ⊂

⋃
{V (yi) : i = 1, 2, ..., n}. Take U =

⋂
{U(yi) : i = 1, 2, ..., n} and

V =
⋃
{V (yi) : i = 1, 2, ..., n}. Then U and V are open in X and Y , respectively, and

since X is semi-regular, there exists a regular open set U0 such that {x} × F (x) ⊂
U0 × V ⊂ U × V ⊂ W . Since F is upper almost δ-precontinuous, there exists
H ∈ δPO(X, x) such that F (H) ⊂ int(cl(V )). By the previous lemma, we have
U0 ∩ H ⊂ zU0 ∩ F+(int(cl(V ))) = G+

F (U0 × int(cl(V ))) ⊂ G+
F (int(cl(U0 × V ))) ⊂

G+
F (int(cl(W ))). Therefore, we obtain U0 ∩ H ∈ δPO(X, x) and GF (U0 ∩ H) ⊂

int(cl(W )). This shows that GF is upper almost δ-precontinuous. �

Theorem 4.2. Let X be a semi-regular space. A multifunction F : X → Y is
lower almost δ-precontinuous if and only if GF : X → X × Y is lower almost δ-
precontinuous.

Proof. (⇒) Suppose that F is lower almost δ-precontinuous. Let x ∈ X and W
be any open set of X × Y such that x ∈ G−

F (W ). Since W ∩ ({x} × F (x)) 6= ∅,
there exists y ∈ F (x) such that (x, y) ∈ W and hence (x, y) ∈ U × V ⊂ W for
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some open sets U and V of X and Y , respectively. By semi-regularity of X, there
exists a regular open set H of X such that (x, y) ∈ H × V ⊂ U × V ⊂ W . Since
F (x) ∩ V 6= ∅, there exists G ∈ δPO(X, x) such that G ⊂ F−(int(cl(V ))). By
Lemma 4.2, H ∩G ⊂ U ∩ F−(int(cl(V ))) = G−

F (U × int(cl(V ))) ⊂ G−
F (int(cl(W ))).

Furthermore, x ∈ H ∩G ∈ δPO(X) and hence GF is lower almost δ-precontinuous.
(⇐) Suppose that GF is lower almost δ-precontinuous. Let x ∈ X and V be

any open set of Y such that x ∈ F−(V ). Then X × V is open in X × Y and
GF (x) ∩ (X × V ) = ({x} × F (x)) ∩ (X × V ) = {x} × (F (x) ∩ V ) 6= ∅. Since GF

is lower almost δ-precontinuous, there exists a δ-preopen set U containing x such
that U ⊂ G−

F (int(cl(X × V ))). Since G−
F (int(cl(X × V ))) = G−

F (X × int(cl(V ))),
by Lemma 4.2, we have U ⊂ F−(int(cl(V ))). This shows that F is lower almost
δ-precontinuous. �

Lemma 4.3. Let A and B be subsets of spaces (X, τ) and (Y, σ), respectively. If
A ∈ δPO(X) and B ∈ δPO(Y ), then A×B ∈ δPO(X × Y ) [26].

Theorem 4.3. If a multifunction F : X → Y is an upper almost δ-precontinuous
multifunction such that F (x) is compact for each x ∈ X and Y is Hausdorff space,
then the multigraph G(F ) of F is δ-preclosed in X × Y .

Proof. (x, y) /∈ G(F ). That is y /∈ F (x). Since Y is Hausdorff, for each z ∈ F (x),
there exist disjoint open sets V (z) and U(z) of Y such that z ∈ U(z) and y ∈ V (z).
Then {U(z) : z ∈ F (x)} is open cover of F (x) and since F (x) is compact, there
exists a finite number of points, say, z1, z2, z3,. . . , zn in F (x) such that

F (x) ⊂
⋃
{U(zi) : i = 1, 2, 3, . . . , n}.

Put

U =
⋃
{U(zi) : i = 1, 2, 3, . . . , n} and V =

⋂
{V (zi) : i = 1, 2, 3, . . . , n}.

Then U and V are open in Y such that F (x) ⊂ U , y ∈ V and U ∩ V = ∅. Since
F is an upper almost δ-precontinuous multifunction, there exists W ∈ δPO(X, x)
such that F (W ) ⊂ int(cl(U)). Since V is open, by Lemma 4.3, it follows that
W × V ∈ δPO(X × Y ) and (x, y) ∈ W × V ⊂ (X × Y )\G(F ). We obtain that

(X × Y )\G(F ) =
⋃

(x,y)∈(X×Y )\G(F )

W × V

is δ-preopen in X × Y and hence G(F ) is δ-preclosed in X × Y . �

Definition 4.1. A subset A of a topological space X is said to be α-paracompact
[30] if every cover of A by open sets of X is refined by a cover of A which consists of
open sets of X and is locally finite in X. Furthermore, a multifunction F : (X, τ) →
(Y, σ) is called punctually α-paracompact [25] if F (x) is α-paracompact for each
point x ∈ X.

Definition 4.2. Let F : X → Y be a multifunction. The multigraph G(F ) is said
to be δ-pre-graph in X×Y if for each (x, y) /∈ G(F ), there exist δ-preopen set U and
open set V containing x and y, respectively, such that (U × V ) ∩G(F ) = ∅.
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Theorem 4.4. Let F : (X, τ) → (Y, σ) be an upper almost δ-precontinuous and
punctually α-paracompact multifunction into a Hausdorff space (Y, σ). Then the
multigraph G(F ) of F is a δ-pre-graph in X × Y .

Proof. Suppose that (x0, y0) /∈ G(F ). Then y0 /∈ F (x0). Since (Y, σ) is a Hausdorff
space, then for each y ∈ F (x0) there exist open sets V (y) and W (y) containing y
and y0 respectively such that V (y) ∩W (y) = ∅. The family {V (y) : y ∈ F (x0)} is
an open cover of F (x0) which is α-paracompact. Thus, it has a locally finite open
refinement Φ = {Uβ : β ∈ I} which covers F (x0). Let W0 be an open neighborhood
of y0 such that W0 intersects only finitely many members Uβ1 , Uβ2 ,..., Uβn

of Φ.
Choose y1, y2,..., yn in F (x0) such that Uβi ⊂ V (yi) for each i = 1, 2, ..., n and set

W = W0∩(
n⋂

i=1

W (yi)). Then W is an open neighborhood of y0 with W∩(
⋃

β∈I

Uβ) = ∅,

which implies that W ∩ int(cl(
⋃

β∈I

Uβ)) = ∅. By the upper almost δ-precontinuity of

F , there exists a U ∈ δPO(X, x0) such that F (U) ⊂ int(cl(
⋃

β∈I

Uβ)). It follows that

(U ×W ) ∩G(F ) = ∅. Therefore, the graph G(F ) is a δ-pre-graph in X × Y . �

5. Some theorems

In this section, the other several properties of almost δ-precontinuity are investigated.
For two multifunctions F1 : X → Y and F2 : X → Z, the product multifunction

F1 × F2 : X → Y × Z is defined as follows: (F1 × F2)(x) = F1(x)× F2(x) for every
x ∈ X.

Theorem 5.1. If F1×F2 : X → Y ×Z is an upper (lower) almost δ-precontinuous
multifunction, then F1 : X → Y and F2 : X → Z are upper (resp. lower) almost
δ-precontinuous multifunctions.

Proof. Let x ∈ X and let K ⊂ Y , H ⊂ Z be open sets such that x ∈ F+
1 (K) and

x ∈ F+
2 (H). Then we obtain that F1(x) ⊂ K and F2(x) ⊂ H and so F1(x)×F2(x) =

(F1 × F2)(x) ⊂ K × H. We have x ∈ (F1 × F2)+(K × H). Since F1 × F2 is
upper almost δ-precontinuous multifunction, it follows that there exists a δ-preopen
set U containing x such that U ⊂ (F1 × F2)+(int(cl(K × H))). We obtain that
U ⊂ F+

1 (int(cl(K))) and U ⊂ F+
2 (int(cl(H))). Hence, we obtain that F1 and F2 are

upper almost δ-precontinuous multifunctions.
The other proof is similar to the above. �

Definition 5.1. The δ-prefrontier of a subset A of a space X, denoted by δ-pFr(A),
is defined by δ-pFr(A) = δ-pcl(A) ∩ δ-pcl(X\A) = δ-pcl(A)\ δ-pint(A) [19].

Theorem 5.2. The set all points of X at which a multifunction F : X → Y is not
upper almost δ-precontinuous (lower almost δ-precontinuous) is identical with the
union of the δ-prefrontier of the upper (lower) inverse images of regular open sets
containing (meeting) F (x).

Proof. Let x ∈ X at which F is not upper almost δ-precontinuous. Then there exists
a regular open set V of Y containing F (x) such that U ∩ (X\F+(V )) 6= ∅ for every
U ∈ δPO(X, x). Therefore, we have x ∈ δ-pcl(X\F+(V )) = X\ δ-pint(F+(V )) and
x∈ F+(V ). Thus, we obtain x ∈ δ-pFr(F+(V )).
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Conversely, suppose that V is a regular open set of Y containing F (x) such
that x ∈ δ-pFr(F+(V )). If F is upper almost δ-precontinuous at x, then there
exists U ∈ δPO(X, x) such that U ⊂ F+(V ); hence x ∈ δ-pint(F+(V )). This is a
contradiction and hence F is not upper almost δ-precontinuous at x.

The case for lower almost δ-precontinuous is similarly shown. �

In the following (D,>) is a directed set, (Fλ) is a net of multifunction Fλ : X → Y
for every λ ∈ D and F is a multifunction from X into Y .

Definition 5.2. Let (Fλ)λ∈D be a net of multifunctions from X to Y . A multifunc-
tion F ∗ : X → Y is defined as follows: for each x ∈ X, F ∗(x) = {y ∈ Y : for each
open neighborhood V of y and each µ ∈ D, there exists λ ∈ D such that λ > µ and
V ∩ Fλ(x) 6= ∅} is called the upper topological limit of the net (Fλ)λ∈D [6].

Definition 5.3. A net (Fλ)λ∈D is said to be equally upper almost δ-precontinuous
at x0 ∈ X if for every open set Vλ containing Fλ(x0), there exists a δ-preopen set U
containing x0 such that Fλ(U) ⊂ int(cl(Vλ)) for all λ ∈ D.

Theorem 5.3. Let (Fλ)λ∈D be a net of multifunctions from a space X into a com-
pact space Y . If the following are satisfied:

(1)
⋃
{Fµ(x) : µ > λ} is closed in Y for each λ ∈ D and each x ∈ X,

(2) (Fλ)λ∈D is equally upper almost δ-precontinuous on X,
then F ∗ is upper almost δ-precontinuous on X.

Proof. We have F ∗(x) =
⋂
{(

⋃
{Fµ(x) : µ > λ}) : λ ∈ D}. Since the net (

⋃
{Fµ(x) :

µ > λ})λ∈D is a family of closed sets having the finite intersection property and Y
is compact, F ∗(x) 6= ∅ for each x ∈ X. Now, let x0 ∈ X and let V be a proper
open subset of Y such that F ∗(x0) ⊂ V . Since F ∗(x0) ∩ (Y \V ) = ∅, F ∗(x0) 6=
∅ and Y \V 6= ∅,

⋂
{(

⋃
{Fµ(x0) : µ > λ}) : λ ∈ D} ∩ (Y \V ) = ∅ and hence⋂

{(
⋃
{Fµ(x0) ∩ (Y \V ) : µ > λ}) : λ ∈ D} = ∅. Since Y is compact and the

family {(
⋃
{Fµ(x0) ∩ (Y \V ) : µ > λ}) : λ ∈ D} is a family of closed sets with

the empty intersection, there exists λ ∈ D such that Fµ(x0) ∩ (Y \V ) = ∅ for each
µ ∈ D with µ > λ. Since the net (Fλ)λ∈D is equally upper almost δ-precontinuous
on X, there exists a δ-preopen set U containing x0 such that Fµ(U) ⊂ int(cl(V ))
for each µ > λ, i.e., Fµ(x) ∩ (Y \ int(cl(V ))) = ∅ for each x ∈ U . Then we have⋃
{Fµ(x) ∩ (Y \ int(cl(V ))) : µ > λ} = ∅ and hence

⋂
{(

⋃
{Fµ(x) : µ > λ}) : λ ∈

D} ∩ (Y \ int(cl(V ))) = ∅. This implies that F ∗(U) ⊂ int(cl(V )). If V = Y , then
it is clear that for each δ-preopen set U containing x0 we have F ∗(U) ⊂ int(cl(V )).
Hence F ∗ is upper almost δ-precontinuous at x0. Since x0 is arbitrary, the proof
completes. �

Recall that a multifunction F : X → Y is said to be punctually connected if, for
each x ∈ X, F (x) is connected.

Definition 5.4. A space X is called δ-preconnected provided that X is not the union
of two disjoint nonempty δ-preopen sets [10].

Theorem 5.4. Let F be a multifunction from a δ-preconnected topological space X
onto a topological space Y such that F is punctually connected. If F is an upper
almost δ-precontinuous multifunction, then Y is a connected space.
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Proof. Let F : X → Y be an upper almost δ-precontinuous multifunction from a
δ-preconnected topological space X onto a topological space Y . Suppose that Y is
not connected and let Y = H∪K be a partition of Y . Then both H and K are open
and closed subsets of Y . Since F is an upper almost δ-precontinuous multifunction,
F+(H) and F+(K) are δ-preopen subsets of X. In view of the fact that F+(H),
F+(K) are disjoint and F is punctually connected, X = F+(H) ∪ F+(K) is a
partition of X. This is contrary to the δ-preconnectedness of X. Hence, it is obtained
that Y is a connected space. �

Recall that a multifunction F : X → Y is said to be punctually closed if, for each
x ∈ X, F (x) is closed.

Definition 5.5. A multifunction F : X → Y is said to be lower (resp. upper)
R-multifunction if F−(V ) (resp. F+(V )) is a regular open set in X for any regular
open set V ⊂ Y .

Theorem 5.5. Let F be an upper almost δ-precontinuous punctually closed multi-
function and G be a punctually closed upper R-multifunction from a topological space
X to a normal topological space Y . Then the set K = {x : F (x) ∩ G(x) 6= ∅} is
δ-preclosed in X.

Proof. Let x ∈ X\K. Then F (x) ∩G(x) = ∅. Since F and G are punctually closed
multifunctions and Y is a normal space, it follows that there exists disjoint open
sets U and V containing F (x) and G(x) respectively. Since F is upper almost δ-
precontinuous and G is an upper R-multifunction, then the sets F+(int(cl(U))) and
G+(int(cl(V ))) are δ-preopen and regular open, respectively such that contain x.
Let H = F+(int(cl(U))) ∩ G+(int(cl(V ))). By Lemma 4.1, H is a δ-preopen set
containing x and H ∩K = ∅. Hence, K is δ-preclosed in X. �

Theorem 5.6. If Y is normal space and Fi : Xi → Y is an upper almost δ-
precontinuous multifunction such that Fi is punctually closed for i = 1, 2, then a set
{(x1, x2) ∈ X1 ×X2 : F1(x1) ∩ F2(x2) 6= ∅} is δ-preclosed set in X1 ×X2.

Proof. Let A = {(x1, x2) ∈ X1 × X2 : F1(x1) ∩ F2(x2) 6= ∅} and (x1, x2) ∈ (X1 ×
X2)\A. Then F1(x1) ∩ F2(x2) = ∅. Since Y is normal and Fi is punctually closed
for i = 1, 2, there exist disjoint open sets V1, V2 such that Fi(xi) ⊂ Vi for i = 1, 2.
Since Fi is upper almost δ-precontinuous, F+

i (int(cl(Vi))) is δ-preopen for i = 1, 2.
Put U = F+

1 (int(cl(V1)))×F+
2 (int(cl(V2))), then U is δ-preopen and (x1, x2) ∈ U ⊂

(X1×X2)\A. This shows that (X1×X2)\A is δ-preopen and hence A is δ-preclosed
in X1 ×X2. �

Definition 5.6. A space X is said to be δ-pre-T2 (δ-pre-Hausdorff) if for each pair
of distinct points x and y in X, there exist disjoint δ-preopen sets U and V in X
such that x ∈ U and y ∈ V [10].

Theorem 5.7. Let F : X → Y be an upper almost δ-precontinuous multifunction
and punctually closed from a topological space X to a normal topological space Y and
let F (x) ∩ F (y) = ∅ for each distinct pair x, y ∈ X. Then X is a δ-pre-Hausdorff
space.
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Proof. Let x and y be any two distinct points in X. Then we have F (x)∩F (y) = ∅.
Since Y is a normal space, it follows that there exists disjoints open sets U and V
containing F (x) and F (y) respectively. Thus F+(int(cl(U))) and F+(int(cl(V ))) are
disjoint δ-preopen sets containing x and y respectively. Thus, it is obtained that X
is δ-pre-Hausdorff. �
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