Some Results on Value Distribution of Meromorphic Functions

Wen-Hua Zhang
Department of Mathematics, East China University of Science and Technology
Shanghai 200237, P. R. China
zhangwenhua1226@hotmail.com

Abstract

In this paper, we study the value distribution of meromorphic functions on plane domains.

2000 Mathematics Subject Classification: 30D35, 30D45 Key words and phrases: Meromorphic function, normal family, derivatives.

1. Introduction

Let f be a nonconstant meromorphic function. In this paper, we use the following standard notation of value distribution theory,

$$
T(r, f), m(r, f), N(r, f), \bar{N}(r, f), N\left(r, \frac{1}{f}\right), \cdots
$$

(see Schiff [5], Yang [7]). We denote by $S(r, f)$ any function satisfying

$$
S(r, f)=o\{T(r, f)\}
$$

as $r \rightarrow \infty$, possibly outside of a set with finite measure.
Let D be a domain in \mathbb{C}, and let \mathcal{F} be a family of meromorphic functions defined on $D . \mathcal{F}$ is said to be normal on D, in the sence of Montel, if for every sequence f_{n} there exists a subsequence $f_{n_{j}}$, such that $f_{n_{j}}$ spherically converges, locally uniformly in D, to a meromorphic function or ∞ (see [5]).

A meromorphic function f on \mathbb{C} is called a normal function if there exist a positive number M such that

$$
f_{\sharp}^{\sharp}(z) \leq M .
$$

Here, as usual, $f^{\sharp}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}$ denotes the spherical derivative of $f(z)$.
In the present paper, we study the value distribution of meromorphic function on plane domains. As a first result, we have
Theorem 1.1. Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ. Let a be a finite non-zero complex number and k be a positive integer. If for every function $f \in \mathcal{F}$, f has no zeros, and $f f^{(k)} \neq a$, then \mathcal{F} is normal on Δ.

[^0]Remark 1.1. The following example show that $a \neq 0$ is necessary in Theorem 1.1.
Example 1.1. Let $\mathcal{F}=\left\{f_{n}\right\}$, where $f_{n}(z)=e^{n z}$. Then

$$
f_{n}(z) f_{n}^{(k)}(z)=n^{k} e^{2 n z}
$$

Obviously,

$$
f_{n}(z) f_{n}^{(k)}(z) \neq 0, \quad f_{n}(z) \neq 0
$$

But \mathcal{F} is not normal on the unit disc Δ.
Moreover, we have
Theorem 1.2. Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ. Let a be a finite non-zero complex number and k be a positive integer. If for every function $f \in \mathcal{F}$, f has no zeros, and $\left|f^{(k)}\right| \leq M$ whenever $f f^{(k)}=a, M>0$, then \mathcal{F} is normal on Δ.

In order to prove Theorem 1.1 and Theorem 1.2, we will first prove
Theorem 1.3. Let f be a meromorphic function all of whose zeros have multiplicity at least k and k be a positive integer. If $N\left(r, \frac{1}{f}\right)=S(r, f)$, then $f f^{(k)}$ takes on every nonzero finite value $a \in \mathbb{C}$ infinitely often.

Corresponding to Theorem 1.1, we also get the following results on normal function.

Theorem 1.4. Let f be a meromorphic function on \mathbb{C}, let a be a finite non-zero complex number and k be a positive integer. If f has no zeros, and $f f^{(k)} \neq a$, then f is a normal function on \mathbb{C}.

In the second part of this paper, we shall prove the following results.
Theorem 1.5. Let \mathcal{F} be a family of meromorphic functions in a domain D and $h(z)$ be a continuous function in D such that $h(z) \neq 0$ for $z \in D$. If for each $f \in \mathcal{F}$, $f \neq 0$ and $f^{\prime}(z) \neq h(z)$ for $z \in D$. Then \mathcal{F} is a normal family on D.

As an immediate consequence, we have the
Corollary 1.1. Let \mathcal{F} be a family of meromorphic functions in a domain D and $h(z)$ be a non-vanishing analytic function in D such that $h(z) \neq 0$ for $z \in D$. If for each $f \in \mathcal{F}, f \neq 0$ and $f^{\prime}(z) \neq h(z)$ for $z \in D$. Then \mathcal{F} is a normal family on D.

However, requiring that $h(z)$ have no multiple poles for $z \in D$, we have
Theorem 1.6. Let \mathcal{F} be a family of meromorphic functions in a domain D, and $h(z)$ be a meromorphic function in D such that $h(z) \not \equiv 0$ and $h(z)$ have no multiple poles for $z \in D$. If for each $f \in \mathcal{F}, f \neq 0$, and $f^{\prime}(z) \neq h(z)$ for $z \in D$. Then \mathcal{F} is a normal family on D.

Remark 1.2. The hypothesis that $h(z)$ have no multiple poles for $z \in D$ in Theorem 1.6 is necessary as is shown by the following example.

Example 1.2. Let $D=\{z:|z|<1\} . k$ is a positive integer, and $\mathcal{F}=\left\{f_{n}\right\}$, where

$$
f_{n}(z)=\frac{1}{n z^{k}}, \quad h(z)=\frac{1}{z^{k+1}}, \quad n=1,2,3 \cdots
$$

Clearly, \mathcal{F} fails to be normal at $z=0$. Obviously, $f \neq 0$ and $f_{n}^{\prime}(z) \neq h(z)$, but the poles of $h(z)$ are of multiplicity ≥ 2.

2. Some lemmas

For the proof of our results, we require the following lemmas.
Lemma 2.1. [6] Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ, for every $f \in \mathcal{F}, f$ has no zeros. then if \mathcal{F} is not normal, there exist, for each $\alpha>0$,
(a) a number $r, 0<r<1$,
(b) points $z_{n},\left|z_{n}\right|<r$,
(c) functions $f_{n} \in \mathcal{F}$,
(d) positive numbers $\varrho_{n} \rightarrow 0$,
such that

$$
\frac{f_{n}\left(z_{n}+\varrho_{n} \xi\right)}{\varrho_{n}^{\alpha}} \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function on \mathbf{C} such that $g^{\sharp}(\xi) \leq g^{\sharp}(0)=1, g$ has no zeros.

Lemma 2.2. [3] Let $f(z)$ be a meromorphic function, let a be a non-zero complex number and let k be a positive integer. If $f(z) \neq 0, f^{(k)}(z) \neq a$, then $f(z)$ is a constant.

Lemma 2.3. [1] (cf. [2]) Let M be the set of all triples (ϕ, U, ω), where U is a bounded open subset of $\mathbb{C}, \phi: \bar{U} \rightarrow Z$ such that
(i) if U is a piecewise-smoothly Jordan domain and ϕ is holomorphic on \bar{U}, then $d(\phi, U, \omega)$ is the winding number of $\phi(\partial U)$ about ω (and hence, by the argument principle, the number of times ϕ takes on the value ω in U;
(ii) if $\phi: \bar{U} \rightarrow \mathbb{C}$ is a continuous function such that $|\varphi(\xi)-\phi(\xi)|<\operatorname{dist}(\omega, \phi(\partial U))$ for each $\xi \in \bar{U}$, then $d(\phi, U, \omega)$; and
(iii) if $d(\phi, U, \omega) \neq 0$, then $\bar{U} \bigcap \phi^{-1}(\omega) \neq \emptyset$.

Lemma 2.4. [4] Let f be a meromorphic function and $f^{(k)} \not \equiv 0$, then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

3. Proof of Theorem 1.3

We consider function $\varphi=f^{(k)} f$. Clearly, all poles of φ have multiplicity at least $k+2$, so

$$
\bar{N}(r, \varphi) \leq \frac{N(r, \varphi)}{k+2} .
$$

From Lemma 2 we can deduce that

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{\varphi}\right) & \leq N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}}\right) \\
& \leq 2 N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) \\
& =k \bar{N}(r, \varphi)+S(r, f)
\end{aligned}
$$

The second fundamental theorem now implies that

$$
\begin{aligned}
T(r, \varphi) & \leq \bar{N}(r, \varphi)+\bar{N}\left(r, \frac{1}{\varphi}\right)+\bar{N}\left(r, \frac{1}{\varphi-a}\right)+S(r, f) \\
& \leq(k+1) \bar{N}(r, \varphi)+\bar{N}\left(r, \frac{1}{\varphi-a}\right)+S(r, f) \\
& \leq \frac{k+1}{k+2} N(r, \varphi)+\bar{N}\left(r, \frac{1}{\varphi-a}\right)+S(r, f) \\
& \leq \frac{k+1}{k+2} T(r, \varphi)+\bar{N}\left(r, \frac{1}{\varphi-a}\right)+S(r, f)
\end{aligned}
$$

so that

$$
\bar{N}\left(r, \frac{1}{\varphi-a}\right) \geq \frac{T(r, \varphi)}{k+2}-S(r, f)
$$

Hence $\varphi-a$ have infinitely many zeros.

4. Proof of Theorem 1.1

Suppose not. Then by Lemma 2.1, there exists $f_{n} \in \mathcal{F}, z_{n} \in \Delta$ and $\varrho_{n} \rightarrow 0^{+}$such that

$$
\varrho_{n}^{-\frac{k}{2}} f_{n}\left(z_{n}+\varrho_{n} \xi\right)=g_{n}(\xi) \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function and g has no zeros. Then

$$
f_{n}^{(k)}\left(z_{n}+\varrho_{n} \xi\right) f_{n}\left(z_{n}+\varrho_{n} \xi\right)=g_{n}^{(k)}(\xi) g_{n}(\xi) \rightarrow g^{(k)}(\xi) g(\xi)
$$

Since

$$
f_{n}^{(k)}\left(z_{n}+\varrho_{n} \xi\right) f_{n}\left(z_{n}+\varrho_{n} \xi\right) \neq a
$$

by Hurwitz's theorem we can derive that
(i) $g^{(k)} g \equiv a$,
(ii) $g^{(k)} g \neq a$.

If $g^{(k)} g \equiv a$, since $g \neq 0$, so g is an entire function and hence of exponential type. Hence $g(\xi)=A e^{c \xi}$, where $A \neq 0, c \neq 0$. But then $g(\xi) g^{(k)}(\xi)=c^{k} A^{2} e^{2 c \xi}$, which contradicts $g^{(k)} g \equiv a$, Thus (i) is impossible. So $g^{(k)} g \neq a$, but it reduces a contradiction from Theorem 1.3. The contradiction establishes the Theorem.

5. Proof of Theorem 1.2

Suppose not. Then by Lemma 2.1, there exist $f_{n} \in \mathcal{F}, z_{n} \in \Delta$ and $\varrho_{n} \rightarrow 0^{+}$such that

$$
\varrho_{n}^{-\frac{k}{2}} f_{n}\left(z_{n}+\varrho_{n} \xi\right)=g_{n}(\xi) \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function and g has no zeros. Then

$$
f_{n}^{(k)}\left(z_{n}+\varrho_{n} \xi\right) f_{n}\left(z_{n}+\varrho_{n} \xi\right)=g_{n}^{(k)}(\xi) g_{n}(\xi) \rightarrow g^{(k)}(\xi) g(\xi)
$$

From Theorem 1.3, there exists ξ_{0} such that $g^{(k)}\left(\xi_{0}\right) g\left(\xi_{0}\right)=a$. Clearly $g^{(k)} g \not \equiv a$, then by Hurwitz's theorem, there exist $\xi_{n}, \xi_{n} \rightarrow \xi_{0}$, such that (for n large enough)

$$
g_{n}^{(k)}\left(\xi_{n}\right) g_{n}\left(\xi_{n}\right)=f_{n}^{(k)}\left(z_{n}+\varrho_{n} \xi_{n}\right) f_{n}\left(z_{n}+\varrho_{n} \xi_{n}\right)=a
$$

By assumption, we have

$$
\left|g_{n}^{(k)}\left(\xi_{n}\right)\right|=\varrho_{n}^{\frac{k}{2}}\left|f_{n}^{(k)}\left(z_{n}+\varrho_{n} \xi_{n}\right)\right| \leq \varrho_{n}^{\frac{k}{2}} M
$$

Hence

$$
\left|g^{(k)}\left(\xi_{0}\right)\right|=\lim _{n \rightarrow \infty}\left|g_{n}^{(k)}\left(\xi_{n}\right)\right| \leq 0
$$

Thus $g^{(k)}\left(\xi_{0}\right)=0$, which contradicts $g^{(k)}\left(\xi_{0}\right) g\left(\xi_{0}\right)=a \neq 0$. This proved Theorem 1.2.

6. Proof of Theorem 1.4

Suppose f is not a normal function. Then there exist $z_{n} \rightarrow \infty$ such that

$$
\lim _{n \rightarrow \infty} f^{\sharp}\left(z_{n}\right)=\infty .
$$

Write $f_{n}(z)=f\left(z+z_{n}\right)$ and set $\mathcal{F}=\left\{f_{n}\right\}$. Then by Marty's criterion, \mathcal{F} is not normal on the unit disc. On the other hand, since f_{n} has no zeros, and $f_{n} f_{n}^{(k)} \neq a$, Theorem 1.1 implies that \mathcal{F} is normal. The contradiction proves the theorem.

7. Proof of Theorem 1.5

Since normality is a local property, we may assume that $D=\Delta$, the unit disc. Suppose that \mathcal{F} is normal on Δ. Then by Lemma 2.1, there exist $f_{n} \in \mathcal{F}, z_{n} \in D$, and $\varrho_{n} \rightarrow 0^{+}$such that

$$
g_{n}(\xi)=\frac{f_{n}\left(z_{n}+\varrho_{n} \xi\right)}{\varrho_{n}} \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function, g has no zeros. Taking a subsequence and renumbering, we may assume that $z_{n} \rightarrow z_{0} \in \Delta$.

We claim $g^{\prime}(\xi) \neq h\left(z_{0}\right)$.
Clearly, $g^{\prime}(\xi) \not \equiv h\left(z_{0}\right)$, since otherwise g would be linear, which contradicts that $g \neq 0$. Suppose $g^{\prime}\left(\xi_{0}\right)=h\left(z_{0}\right)$. Then $\phi=g^{\prime}-h\left(z_{0}\right)$ is a nonconstant analytic function on a neighborhood V of ξ_{0}, which vanishes at ξ_{0}. Let $\Delta_{\varepsilon}=\{\omega:|\omega|<\varepsilon\}$. For $\varepsilon>0$ sufficiently small, the component U of $\phi^{-1}\left(\Delta_{\varepsilon}\right)$ containing ξ_{0} is relatively compact in V and satisfies $\phi(\partial U)=\{\omega:|\omega|=\varepsilon\}$ and $d(\phi, U, 0)>0$, where d is the
local degree. Set $\phi_{n}(\xi)=g_{n}^{\prime}(\xi)-h\left(z_{n}+\varrho_{n} \xi\right)$; then $\phi_{n} \rightarrow \phi$ locally uniformly on V. Thus, for n large enough, we have $\left|\phi_{n}(\xi)-\phi(\xi)\right|<\varepsilon$ on \bar{U}. By (ii) of Lemma 2.3, $d\left(\phi_{n}, U, 0\right)=d(\phi, U, 0)>0$, so that by (iii) of the same result, there exists $\xi_{1} \in \bar{U}$ such that $\phi_{n}\left(\xi_{1}\right)=0$. But this contradicts $f_{n}^{\prime}(z) \neq h(z)$ on Δ. The claim is proved.

Since $g^{\prime}(\xi) \neq h\left(z_{0}\right)$, it follows from Lemma 2.2 that g must be a constant, which is a contradiction.

8. Proof of Theorem 1.6

We may assume that $D=\Delta$, the unit disc. Normality is a local property, hence it is enough to show that \mathcal{F} is normal at each $z_{0} \in D$. We distinguish two cases.

Case (1): $h\left(z_{0}\right) \neq 0, \infty$. Then by Corollary 1.1, we know that \mathcal{F} is normal at z_{0}.
Case (2): $h\left(z_{0}\right)=0$ or $h\left(z_{0}\right)=\infty$. Then there exists $\delta, 0<\delta<1$, such that $U_{z_{0}}(\delta)=\left\{z:\left|z-z_{0}\right|<\delta\right\} \subset D$. Clearly, $h(z) \neq 0, \infty$ for all $z \in U_{z_{0}}(\delta) \backslash\left\{z_{0}\right\}$. By case (1), \mathcal{F} is normal there.

Then for each sequence of functions $f_{n} \in \mathcal{F}, f_{n}$ has a subsequence (without loss of generality, we may take f_{n} itself), f_{n} converges to ϕ uniformly on any compact subsects in $U_{z_{0}}(\delta) \backslash\left\{z_{0}\right\}$ (where ϕ is meromorphic function or ∞). Since $f_{n} \neq 0$, by Hurwitz's Theorem, we derive that $\phi(z) \equiv 0$ or $\phi(z) \neq 0$.

If $\phi(z) \not \equiv 0$, then $\phi(z) \neq 0$. Otherwise $\phi(z) \equiv 0$, which is a contradiction. Thus there exists a positive number M, such that

$$
\left|f_{n}(z)\right| \geq M, \quad\left|z-z_{0}\right|=\frac{\delta}{2} \quad(n \text { large enough })
$$

Since $f_{n}(z) \neq 0$ on $U_{z_{0}}(\delta) \backslash\left\{z_{0}\right\}$ then

$$
\left|f_{n}(z)\right| \geq M,\left|z-z_{0}\right|<\frac{\delta}{2} .
$$

Thus \mathcal{F} is normal at $z=z_{0}$.
If $\phi(z) \equiv 0$, then $f_{n}(z)$ converges uniformly to 0 in $K=\left\{z: \frac{1}{4} \delta \leq\left|z-z_{0}\right| \leq \frac{3}{4} \delta\right\}$, so does f_{n}^{\prime}. Since $h(z) \not \equiv 0$ in D, we can deduce that there exists $M>0$ such that $|h(z)| \geq M$ in K. Thus $\frac{f_{n}^{\prime}}{h}$ converges uniformly to 0 in K, so is $\left(\frac{f_{n}^{\prime}}{h}\right)^{\prime}$. Since $f_{n}^{\prime}(z) \neq$ $h(z)$ and $h(z)$ has no multiple poles, we have $\frac{f_{n}^{\prime}}{h}-1 \neq 0$ (in D$)$. By $n\left(w=a, m_{0}, r\right)$ we denote the number of zeros of $w-a$ counting multiplicity in the disk $U_{r}\left(m_{0}\right)$. Thus

$$
n\left(\frac{1}{\frac{f_{n}^{\prime}}{h}-1}, z_{0}, \frac{\delta}{2}\right)=0
$$

and

$$
\begin{aligned}
& \left|n\left(\frac{f_{n}^{\prime}}{h}-1, z_{0}, \frac{\delta}{2}\right)-n\left(\frac{1}{\frac{f_{n}^{\prime}}{h}-1}, z_{0}, \frac{\delta}{2}\right)\right| \\
& \quad=\left|\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\frac{\delta}{2}} \frac{\left(\frac{f_{n}^{\prime}}{h}-1\right)^{\prime}}{\frac{f_{n}^{\prime}}{h}-1} d z\right| \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

which implies that

$$
n\left(\frac{f_{n}^{\prime}}{h}-1, z_{0}, \frac{\delta}{2}\right)=0 \quad(n \text { large enough })
$$

Thus f_{n}^{\prime} is holomorphic in $\left|z-z_{0}\right|<\frac{\delta}{2}$ for n sufficiently large, and so is f_{n}. By the maximum principle, it follows that $f_{n} \rightarrow 0$ locally uniformly on compact subsets of $U_{z_{0}}\left(\frac{\delta}{2}\right)=\left\{z:\left|z-z_{0}\right|<\frac{\delta}{2}\right\}$. Hence \mathcal{F} is normal at z_{0} and the proof is completed.

References

[1] D. Bargmann, M. Bonk, A. Hinkkanen and G. J. Martin, Families of meromorphic functions avoiding continuous functions, J. Anal. Math. 79 (1999), 379-387.
[2] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[3] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[4] X. H. Hua and C. T. Chuang, On a conjecture of Hayman, Acta Math. Sinica (N. S.) 7(2) (1991), 119-126.
[5] J. Schiff, Normal families, Springer-Verlag, Berlin, 1993.
[6] G. F. Xue and X. C. Pang, A criterion for normality of a family of meromorphic functions, J. East China Norm. Univ. Natur. Sci. Ed. 1988(2), 15-22.
[7] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.

[^0]: Received: September 27, 2003; Revised: December 12, 2003.

