Bull. Malays. Math. Sci. Soc. (2) 28(1) (2005), 47-53

BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin

Some Results on Value Distribution of Meromorphic Functions

WEN-HUA ZHANG

Department of Mathematics, East China University of Science and Technology Shanghai 200237, P. R. China zhangwenhua1226@hotmail.com

Abstract. In this paper, we study the value distribution of meromorphic functions on plane domains.

2000 Mathematics Subject Classification: 30D35, 30D45

Key words and phrases: Meromorphic function, normal family, derivatives.

1. Introduction

Let f be a nonconstant meromorphic function. In this paper, we use the following standard notation of value distribution theory,

$$T(r, f), m(r, f), N(r, f), \overline{N}(r, f), N(r, \frac{1}{f}), \cdots$$

(see Schiff [5], Yang [7]). We denote by S(r, f) any function satisfying

$$S(r,f) = o\left\{T(r,f)\right\},\,$$

as $r \to \infty$, possibly outside of a set with finite measure.

Let D be a domain in \mathbb{C} , and let \mathcal{F} be a family of meromorphic functions defined on D. \mathcal{F} is said to be normal on D, in the sence of Montel, if for every sequence f_n there exists a subsequence f_{n_j} , such that f_{n_j} spherically converges, locally uniformly in D, to a meromorphic function or ∞ (see [5]).

A meromorphic function f on $\mathbb C$ is called a normal function if there exist a positive number M such that

$$f^{\sharp}(z) \le M.$$

Here, as usual, $f^{\sharp}(z) = \frac{|f'(z)|}{1 + |f(z)|^2}$ denotes the spherical derivative of f(z).

In the present paper, we study the value distribution of meromorphic function on plane domains. As a first result, we have

Theorem 1.1. Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ . Let a be a finite non-zero complex number and k be a positive integer. If for every function $f \in \mathcal{F}$, f has no zeros, and $ff^{(k)} \neq a$, then \mathcal{F} is normal on Δ .

Received: September 27, 2003; Revised: December 12, 2003.

W.-H. Zhang

Remark 1.1. The following example show that $a \neq 0$ is necessary in Theorem 1.1.

Example 1.1. Let $\mathcal{F} = \{f_n\}$, where $f_n(z) = e^{nz}$. Then

$$f_n(z)f_n^{(k)}(z) = n^k e^{2nz}$$

Obviously,

$$f_n(z)f_n^{(k)}(z) \neq 0, \quad f_n(z) \neq 0.$$

But \mathcal{F} is not normal on the unit disc Δ .

Moreover, we have

Theorem 1.2. Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ . Let a be a finite non-zero complex number and k be a positive integer. If for every function $f \in \mathcal{F}$, f has no zeros, and $|f^{(k)}| \leq M$ whenever $ff^{(k)} = a$, M > 0, then \mathcal{F} is normal on Δ .

In order to prove Theorem 1.1 and Theorem 1.2, we will first prove

Theorem 1.3. Let f be a meromorphic function all of whose zeros have multiplicity at least k and k be a positive integer. If $N(r, \frac{1}{f}) = S(r, f)$, then $ff^{(k)}$ takes on every nonzero finite value $a \in \mathbb{C}$ infinitely often.

Corresponding to Theorem 1.1, we also get the following results on normal function.

Theorem 1.4. Let f be a meromorphic function on \mathbb{C} , let a be a finite non-zero complex number and k be a positive integer. If f has no zeros, and $ff^{(k)} \neq a$, then f is a normal function on \mathbb{C} .

In the second part of this paper, we shall prove the following results.

Theorem 1.5. Let \mathcal{F} be a family of meromorphic functions in a domain D and h(z) be a continuous function in D such that $h(z) \neq 0$ for $z \in D$. If for each $f \in \mathcal{F}$, $f \neq 0$ and $f'(z) \neq h(z)$ for $z \in D$. Then \mathcal{F} is a normal family on D.

As an immediate consequence, we have the

Corollary 1.1. Let \mathcal{F} be a family of meromorphic functions in a domain D and h(z) be a non-vanishing analytic function in D such that $h(z) \neq 0$ for $z \in D$. If for each $f \in \mathcal{F}$, $f \neq 0$ and $f'(z) \neq h(z)$ for $z \in D$. Then \mathcal{F} is a normal family on D.

However, requiring that h(z) have no multiple poles for $z \in D$, we have

Theorem 1.6. Let \mathcal{F} be a family of meromorphic functions in a domain D, and h(z) be a meromorphic function in D such that $h(z) \neq 0$ and h(z) have no multiple poles for $z \in D$. If for each $f \in \mathcal{F}$, $f \neq 0$, and $f'(z) \neq h(z)$ for $z \in D$. Then \mathcal{F} is a normal family on D.

Remark 1.2. The hypothesis that h(z) have no multiple poles for $z \in D$ in Theorem 1.6 is necessary as is shown by the following example.

Example 1.2. Let $D = \{z : |z| < 1\}$. k is a positive integer, and $\mathcal{F} = \{f_n\}$, where

$$f_n(z) = \frac{1}{nz^k}, \quad h(z) = \frac{1}{z^{k+1}}, \quad n = 1, 2, 3 \cdots.$$

Clearly, \mathcal{F} fails to be normal at z = 0. Obviously, $f \neq 0$ and $f'_n(z) \neq h(z)$, but the poles of h(z) are of multiplicity ≥ 2 .

2. Some lemmas

For the proof of our results, we require the following lemmas.

Lemma 2.1. [6] Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ , for every $f \in \mathcal{F}$, f has no zeros. then if \mathcal{F} is not normal, there exist, for each $\alpha > 0$,

- (a) a number r, 0 < r < 1,
- (b) points z_n , $|z_n| < r$,
- (c) functions $f_n \in \mathcal{F}$,
- (d) positive numbers $\rho_n \to 0$,

such that

$$\frac{f_n(z_n+\varrho_n\xi)}{\varrho_n^\alpha}\to g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function on \mathbf{C} such that $g^{\sharp}(\xi) \leq g^{\sharp}(0) = 1$, g has no zeros.

Lemma 2.2. [3] Let f(z) be a meromorphic function, let a be a non-zero complex number and let k be a positive integer. If $f(z) \neq 0$, $f^{(k)}(z) \neq a$, then f(z) is a constant.

Lemma 2.3. [1] (cf. [2]) Let M be the set of all triples (ϕ, U, ω) , where U is a bounded open subset of \mathbb{C} , $\phi: \overline{U} \to Z$ such that

- (i) if U is a piecewise-smoothly Jordan domain and φ is holomorphic on U
 then d(φ, U, ω) is the winding number of φ(∂U) about ω(and hence, by the argument principle, the number of times φ takes on the value ω in U;
- (ii) if $\phi : \overline{U} \to \mathbb{C}$ is a continuous function such that $|\varphi(\xi) \phi(\xi)| < dist(\omega, \phi(\partial U))$ for each $\xi \in \overline{U}$, then $d(\phi, U, \omega)$; and
- (iii) if $d(\phi, U, \omega) \neq 0$, then $\overline{U} \cap \phi^{-1}(\omega) \neq \emptyset$.

Lemma 2.4. [4] Let f be a meromorphic function and $f^{(k)} \neq 0$, then

$$N\left(r,\frac{1}{f^{(k)}}\right) \le N\left(r,\frac{1}{f}\right) + k\bar{N}\left(r,f\right) + S(r,f).$$

3. Proof of Theorem 1.3

We consider function $\varphi = f^{(k)}f$. Clearly, all poles of φ have multiplicity at least k+2, so

$$\bar{N}(r,\varphi) \leq \frac{N(r,\varphi)}{k+2}.$$

From Lemma 2 we can deduce that

$$\begin{split} \bar{N}\left(r,\frac{1}{\varphi}\right) &\leq N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{f^{(k)}}\right) \\ &\leq 2N\left(r,\frac{1}{f}\right) + k\bar{N}\left(r,f\right) + S(r,f) \\ &= k\bar{N}(r,\varphi) + S(r,f). \end{split}$$

The second fundamental theorem now implies that

$$\begin{split} T(r,\varphi) &\leq \bar{N}(r,\varphi) + \bar{N}\left(r,\frac{1}{\varphi}\right) + \bar{N}\left(r,\frac{1}{\varphi-a}\right) + S(r,f) \\ &\leq (k+1)\bar{N}(r,\varphi) + \bar{N}\left(r,\frac{1}{\varphi-a}\right) + S(r,f) \\ &\leq \frac{k+1}{k+2}N(r,\varphi) + \bar{N}\left(r,\frac{1}{\varphi-a}\right) + S(r,f) \\ &\leq \frac{k+1}{k+2}T(r,\varphi) + \bar{N}\left(r,\frac{1}{\varphi-a}\right) + S(r,f) \end{split}$$

so that

$$\bar{N}\left(r, \frac{1}{\varphi - a}\right) \ge \frac{T\left(r, \varphi\right)}{k + 2} - S(r, f)$$

Hence $\varphi - a$ have infinitely many zeros.

4. Proof of Theorem 1.1

Suppose not. Then by Lemma 2.1, there exists $f_n \in \mathcal{F}$, $z_n \in \Delta$ and $\rho_n \to 0^+$ such that

$$\varrho_n^{-\frac{\kappa}{2}} f_n(z_n + \varrho_n \xi) = g_n(\xi) \to g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function and g has no zeros. Then

$$f_n^{(k)}(z_n + \varrho_n \xi) f_n(z_n + \varrho_n \xi) = g_n^{(k)}(\xi) g_n(\xi) \to g^{(k)}(\xi) g(\xi).$$

Since

$$f_n^{(k)}(z_n + \varrho_n \xi) f_n(z_n + \varrho_n \xi) \neq a_k$$

by Hurwitz's theorem we can derive that

(i)
$$g^{(k)}g \equiv a_{j}$$

(ii) $g^{(k)}g \neq a_{j}$

If $g^{(k)}g \equiv a$, since $g \neq 0$, so g is an entire function and hence of exponential type. Hence $g(\xi) = Ae^{c\xi}$, where $A \neq 0, c \neq 0$. But then $g(\xi)g^{(k)}(\xi) = c^k A^2 e^{2c\xi}$, which contradicts $g^{(k)}g \equiv a$, Thus (i) is impossible. So $g^{(k)}g \neq a$, but it reduces a contradiction from Theorem 1.3. The contradiction establishes the Theorem.

50

5. Proof of Theorem 1.2

Suppose not. Then by Lemma 2.1, there exist $f_n \in \mathcal{F}, z_n \in \Delta$ and $\rho_n \to 0^+$ such that

$$\varrho_n^{-\frac{\kappa}{2}} f_n(z_n + \varrho_n \xi) = g_n(\xi) \to g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function and g has no zeros. Then

$$f_n^{(k)}(z_n + \varrho_n \xi) f_n(z_n + \varrho_n \xi) = g_n^{(k)}(\xi) g_n(\xi) \to g^{(k)}(\xi) g(\xi).$$

From Theorem 1.3, there exists ξ_0 such that $g^{(k)}(\xi_0)g(\xi_0) = a$. Clearly $g^{(k)}g \not\equiv a$, then by Hurwitz's theorem, there exist $\xi_n, \xi_n \to \xi_0$, such that (for *n* large enough)

$$g_n^{(k)}(\xi_n)g_n(\xi_n) = f_n^{(k)}(z_n + \varrho_n\xi_n)f_n(z_n + \varrho_n\xi_n) = a.$$

By assumption, we have

$$|g_n^{(k)}(\xi_n)| = \varrho_n^{\frac{k}{2}} |f_n^{(k)}(z_n + \varrho_n \xi_n)| \le \varrho_n^{\frac{k}{2}} M.$$

Hence

$$|g^{(k)}(\xi_0)| = \lim_{n \to \infty} |g_n^{(k)}(\xi_n)| \le 0,$$

Thus $g^{(k)}(\xi_0) = 0$, which contradicts $g^{(k)}(\xi_0)g(\xi_0) = a \neq 0$. This proved Theorem 1.2.

6. Proof of Theorem 1.4

Suppose f is not a normal function. Then there exist $z_n \to \infty$ such that

$$\lim_{n \to \infty} f^{\sharp}(z_n) = \infty.$$

Write $f_n(z) = f(z + z_n)$ and set $\mathcal{F} = \{f_n\}$. Then by Marty's criterion, \mathcal{F} is not normal on the unit disc. On the other hand, since f_n has no zeros, and $f_n f_n^{(k)} \neq a$, Theorem 1.1 implies that \mathcal{F} is normal. The contradiction proves the theorem.

7. Proof of Theorem 1.5

Since normality is a local property, we may assume that $D = \Delta$, the unit disc. Suppose that \mathcal{F} is normal on Δ . Then by Lemma 2.1, there exist $f_n \in \mathcal{F}, z_n \in D$, and $\rho_n \to 0^+$ such that

$$g_n(\xi) = \frac{f_n(z_n + \varrho_n \xi)}{\rho_n} \to g(\xi)$$

locally uniformly with respect to the spherical metric , where g is a nonconstant meromorphic function, g has no zeros. Taking a subsequence and renumbering, we may assume that $z_n \to z_0 \in \Delta$.

We claim $g'(\xi) \neq h(z_0)$.

Clearly, $g'(\xi) \neq h(z_0)$, since otherwise g would be linear, which contradicts that $g \neq 0$. Suppose $g'(\xi_0) = h(z_0)$. Then $\phi = g' - h(z_0)$ is a nonconstant analytic function on a neighborhood V of ξ_0 , which vanishes at ξ_0 . Let $\Delta_{\varepsilon} = \{\omega : |\omega| < \varepsilon\}$. For $\varepsilon > 0$ sufficiently small, the component U of $\phi^{-1}(\Delta_{\varepsilon})$ containing ξ_0 is relatively compact in V and satisfies $\phi(\partial U) = \{\omega : |\omega| = \varepsilon\}$ and $d(\phi, U, 0) > 0$, where d is the

W.-H. Zhang

local degree. Set $\phi_n(\xi) = g'_n(\xi) - h(z_n + \varrho_n\xi)$; then $\phi_n \to \phi$ locally uniformly on V. Thus, for n large enough, we have $|\phi_n(\xi) - \phi(\xi)| < \varepsilon$ on \overline{U} . By (ii) of Lemma 2.3, $d(\phi_n, U, 0) = d(\phi, U, 0) > 0$, so that by (iii) of the same result, there exists $\xi_1 \in \overline{U}$ such that $\phi_n(\xi_1) = 0$. But this contradicts $f'_n(z) \neq h(z)$ on Δ . The claim is proved.

Since $g'(\xi) \neq h(z_0)$, it follows from Lemma 2.2 that g must be a constant, which is a contradiction.

8. Proof of Theorem 1.6

We may assume that $D = \Delta$, the unit disc. Normality is a local property, hence it is enough to show that \mathcal{F} is normal at each $z_0 \in D$. We distinguish two cases.

Case (1): $h(z_0) \neq 0, \infty$. Then by Corollary 1.1, we know that \mathcal{F} is normal at z_0 .

Case (2): $h(z_0) = 0$ or $h(z_0) = \infty$. Then there exists δ , $0 < \delta < 1$, such that $U_{z_0}(\delta) = \{z : |z - z_0| < \delta\} \subset D$. Clearly, $h(z) \neq 0, \infty$ for all $z \in U_{z_0}(\delta) \setminus \{z_0\}$. By case (1), \mathcal{F} is normal there.

Then for each sequence of functions $f_n \in \mathcal{F}$, f_n has a subsequence (without loss of generality, we may take f_n itself), f_n converges to ϕ uniformly on any compact subsects in $U_{z_0}(\delta) \setminus \{z_0\}$ (where ϕ is meromorphic function or ∞). Since $f_n \neq 0$, by Hurwitz's Theorem, we derive that $\phi(z) \equiv 0$ or $\phi(z) \neq 0$.

If $\phi(z) \neq 0$, then $\phi(z) \neq 0$. Otherwise $\phi(z) \equiv 0$, which is a contradiction. Thus there exists a positive number M, such that

$$|f_n(z)| \ge M$$
, $|z - z_0| = \frac{\delta}{2}$ (*n* large enough).

Since $f_n(z) \neq 0$ on $U_{z_0}(\delta) \setminus \{z_0\}$ then

$$|f_n(z)| \ge M, |z - z_0| < \frac{\delta}{2}.$$

Thus \mathcal{F} is normal at $z = z_0$.

If $\phi(z) \equiv 0$, then $f_n(z)$ converges uniformly to 0 in $K = \{z : \frac{1}{4}\delta \leq |z - z_0| \leq \frac{3}{4}\delta\}$, so does f'_n . Since $h(z) \neq 0$ in D, we can deduce that there exists M > 0 such that $|h(z)| \geq M$ in K. Thus $\frac{f'_n}{h}$ converges uniformly to 0 in K, so is $(\frac{f'_n}{h})'$. Since $f'_n(z) \neq$ h(z) and h(z) has no multiple poles, we have $\frac{f'_n}{h} - 1 \neq 0$ (in D). By $n(w = a, m_0, r)$ we denote the number of zeros of w - a counting multiplicity in the disk $U_r(m_0)$. Thus

$$n\left(\frac{1}{\frac{f'_n}{h}-1}, z_0, \frac{\delta}{2}\right) = 0$$

and

$$\left| n \left(\frac{f'_n}{h} - 1, z_0, \frac{\delta}{2} \right) - n \left(\frac{1}{\frac{f'_n}{h} - 1}, z_0, \frac{\delta}{2} \right) \right|$$
$$= \left| \frac{1}{2\pi i} \int_{|z - z_0| = \frac{\delta}{2}} \frac{\left(\frac{f'_n}{h} - 1 \right)'}{\frac{f'_n}{h} - 1} dz \right| \to 0 \quad (n \to \infty)$$

which implies that

$$n\left(\frac{f'_n}{h}-1, z_0, \frac{\delta}{2}\right) = 0$$
 (*n* large enough).

Thus f'_n is holomorphic in $|z - z_0| < \frac{\delta}{2}$ for n sufficiently large, and so is f_n . By the maximum principle, it follows that $f_n \to 0$ locally uniformly on compact subsets of $U_{z_0}(\frac{\delta}{2}) = \left\{z : |z - z_0| < \frac{\delta}{2}\right\}$. Hence \mathcal{F} is normal at z_0 and the proof is completed.

References

- D. Bargmann, M. Bonk, A. Hinkkanen and G. J. Martin, Families of meromorphic functions avoiding continuous functions, J. Anal. Math. 79 (1999), 379–387.
- [2] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
- [3] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [4] X. H. Hua and C. T. Chuang, On a conjecture of Hayman, Acta Math. Sinica (N. S.) 7(2) (1991), 119-126.
- [5] J. Schiff, Normal families, Springer-Verlag, Berlin, 1993.
- [6] G. F. Xue and X. C. Pang, A criterion for normality of a family of meromorphic functions, J. East China Norm. Univ. Natur. Sci. Ed. 1988(2), 15–22.
- [7] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.