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1. Introduction

Let f be a nonconstant meromorphic function. In this paper, we use the following
standard notation of value distribution theory,

T (r, f),m(r, f), N(r, f), N(r, f), N(r,
1
f

), · · ·

(see Schiff [5], Yang [7]). We denote by S(r, f) any function satisfying

S(r, f) = o {T (r, f)} ,

as r →∞, possibly outside of a set with finite measure.
Let D be a domain in C, and let F be a family of meromorphic functions defined

on D. F is said to be normal on D, in the sence of Montel, if for every sequence fn

there exists a subsequence fnj , such that fnj spherically converges, locally uniformly
in D, to a meromorphic function or ∞ (see [5]).

A meromorphic function f on C is called a normal function if there exist a positive
number M such that

f ](z) ≤ M.

Here, as usual, f ](z) =
|f ′(z)|

1 + |f(z)|2
denotes the spherical derivative of f(z).

In the present paper, we study the value distribution of meromorphic function on
plane domains. As a first result, we have

Theorem 1.1. Let F be a family of meromorphic functions on the unit disc ∆.
Let a be a finite non-zero complex number and k be a positive integer. If for every
function f ∈ F , f has no zeros, and ff (k) 6= a, then F is normal on ∆.
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Remark 1.1. The following example show that a 6= 0 is necessary in Theorem 1.1.

Example 1.1. Let F={fn}, where fn(z) = enz. Then

fn(z)f (k)
n (z) = nke2nz.

Obviously,
fn(z)f (k)

n (z) 6= 0, fn(z) 6= 0.

But F is not normal on the unit disc ∆.

Moreover, we have

Theorem 1.2. Let F be a family of meromorphic functions on the unit disc ∆.
Let a be a finite non-zero complex number and k be a positive integer. If for every
function f ∈ F , f has no zeros, and |f (k)| ≤ M whenever ff (k) = a, M > 0, then
F is normal on ∆.

In order to prove Theorem 1.1 and Theorem 1.2, we will first prove

Theorem 1.3. Let f be a meromorphic function all of whose zeros have multiplicity
at least k and k be a positive integer. If N(r, 1

f ) = S(r, f), then ff (k) takes on every
nonzero finite value a ∈ C infinitely often.

Corresponding to Theorem 1.1, we also get the following results on normal func-
tion.

Theorem 1.4. Let f be a meromorphic function on C, let a be a finite non-zero
complex number and k be a positive integer. If f has no zeros, and ff (k) 6= a, then
f is a normal function on C.

In the second part of this paper, we shall prove the following results.

Theorem 1.5. Let F be a family of meromorphic functions in a domain D and
h(z) be a continuous function in D such that h(z) 6= 0 for z ∈ D. If for each f ∈ F ,
f 6= 0 and f ′(z) 6= h(z) for z ∈ D. Then F is a normal family on D.

As an immediate consequence, we have the

Corollary 1.1. Let F be a family of meromorphic functions in a domain D and
h(z) be a non-vanishing analytic function in D such that h(z) 6= 0 for z ∈D. If for
each f ∈ F , f 6= 0 and f ′(z) 6= h(z) for z ∈ D. Then F is a normal family on D.

However, requiring that h(z) have no multiple poles for z ∈ D, we have

Theorem 1.6. Let F be a family of meromorphic functions in a domain D, and
h(z) be a meromorphic function in D such that h(z) 6≡ 0 and h(z) have no multiple
poles for z ∈ D. If for each f ∈ F , f 6= 0, and f ′(z) 6= h(z) for z ∈ D. Then F is a
normal family on D.

Remark 1.2. The hypothesis that h(z) have no multiple poles for z ∈ D in Theorem
1.6 is necessary as is shown by the following example.
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Example 1.2. Let D = {z : |z| < 1}. k is a positive integer, and F={fn}, where

fn(z) =
1

nzk
, h(z) =

1
zk+1

, n = 1, 2, 3 · · · .

Clearly, F fails to be normal at z = 0. Obviously, f 6= 0 and f ′n(z) 6= h(z), but the
poles of h(z) are of multiplicity ≥ 2.

2. Some lemmas

For the proof of our results, we require the following lemmas.

Lemma 2.1. [6] Let F be a family of meromorphic functions on the unit disc ∆, for
every f ∈ F , f has no zeros. then if F is not normal, there exist, for each α > 0,

(a) a number r, 0 < r < 1,
(b) points zn, |zn| < r,
(c) functions fn ∈ F ,
(d) positive numbers %n → 0,

such that
fn(zn + %nξ)

%α
n

→ g(ξ)

locally uniformly with respect to the spherical metric, where g is a non-constant
meromorphic function on C such that g](ξ) ≤ g](0) = 1, g has no zeros.

Lemma 2.2. [3] Let f(z) be a meromorphic function, let a be a non-zero complex
number and let k be a positive integer. If f(z) 6= 0, f (k)(z) 6= a, then f(z) is a
constant.

Lemma 2.3. [1] (cf. [2]) Let M be the set of all triples (φ,U, ω), where U is a
bounded open subset of C, φ : U → Z such that

(i) if U is a piecewise-smoothly Jordan domain and φ is holomorphic on U,
then d(φ,U, ω) is the winding number of φ(∂U) about ω(and hence, by the
argument principle, the number of times φ takes on the value ω in U ;

(ii) if φ : U → C is a continuous function such that |ϕ(ξ)−φ(ξ)| < dist(ω, φ(∂U))
for each ξ ∈ U, then d(φ,U, ω); and

(iii) if d(φ,U, ω) 6= 0, then U
⋂

φ−1(ω) 6= ∅.

Lemma 2.4. [4] Let f be a meromorphic function and f (k) 6≡ 0, then

N

(
r,

1
f (k)

)
≤ N

(
r,

1
f

)
+ kN̄ (r, f) + S(r, f).

3. Proof of Theorem 1.3

We consider function ϕ = f (k)f . Clearly, all poles of ϕ have multiplicity at least
k + 2, so

N̄ (r, ϕ) ≤ N (r, ϕ)
k + 2

.
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From Lemma 2 we can deduce that

N̄

(
r,

1
ϕ

)
≤ N

(
r,

1
f

)
+ N

(
r,

1
f (k)

)
≤ 2N

(
r,

1
f

)
+ kN̄ (r, f) + S(r, f)

= kN̄(r, ϕ) + S(r, f).

The second fundamental theorem now implies that

T (r, ϕ) ≤ N̄(r, ϕ) + N̄

(
r,

1
ϕ

)
+ N̄

(
r,

1
ϕ− a

)
+ S(r, f)

≤ (k + 1)N̄(r, ϕ) + N̄

(
r,

1
ϕ− a

)
+ S(r, f)

≤ k + 1
k + 2

N(r, ϕ) + N̄

(
r,

1
ϕ− a

)
+ S(r, f)

≤ k + 1
k + 2

T (r, ϕ) + N̄

(
r,

1
ϕ− a

)
+ S(r, f)

so that

N̄

(
r,

1
ϕ− a

)
≥ T (r, ϕ)

k + 2
− S(r, f).

Hence ϕ− a have infinitely many zeros.

4. Proof of Theorem 1.1

Suppose not. Then by Lemma 2.1, there exists fn ∈ F , zn ∈ ∆ and %n → 0+ such
that

%
− k

2
n fn(zn + %nξ) = gn(ξ) → g(ξ)

locally uniformly with respect to the spherical metric, where g is a non-constant
meromorphic function and g has no zeros. Then

f (k)
n (zn + %nξ)fn(zn + %nξ) = g(k)

n (ξ)gn(ξ) → g(k)(ξ)g(ξ).

Since

f (k)
n (zn + %nξ)fn(zn + %nξ) 6= a,

by Hurwitz’s theorem we can derive that

(i) g(k)g ≡ a,
(ii) g(k)g 6= a.

If g(k)g ≡ a, since g 6= 0, so g is an entire function and hence of exponential
type. Hence g(ξ) = Aecξ, where A 6= 0, c 6= 0. But then g(ξ)g(k)(ξ) = ckA2e2cξ,
which contradicts g(k)g ≡ a, Thus (i) is impossible. So g(k)g 6= a, but it reduces a
contradiction from Theorem 1.3. The contradiction establishes the Theorem.
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5. Proof of Theorem 1.2

Suppose not. Then by Lemma 2.1, there exist fn ∈ F , zn ∈ ∆ and %n → 0+ such
that

%
− k

2
n fn(zn + %nξ) = gn(ξ) → g(ξ)

locally uniformly with respect to the spherical metric, where g is a non-constant
meromorphic function and g has no zeros. Then

f (k)
n (zn + %nξ)fn(zn + %nξ) = g(k)

n (ξ)gn(ξ) → g(k)(ξ)g(ξ).

From Theorem 1.3, there exists ξ0 such that g(k)(ξ0)g(ξ0) = a. Clearly g(k)g 6≡ a,
then by Hurwitz’s theorem, there exist ξn, ξn → ξ0, such that (for n large enough)

g(k)
n (ξn)gn(ξn) = f (k)

n (zn + %nξn)fn(zn + %nξn) = a.

By assumption, we have

|g(k)
n (ξn)| = %

k
2
n |f (k)

n (zn + %nξn)| ≤ %
k
2
n M.

Hence
|g(k)(ξ0)| = lim

n→∞
|g(k)

n (ξn)| ≤ 0,

Thus g(k)(ξ0) = 0, which contradicts g(k)(ξ0)g(ξ0) = a 6= 0. This proved Theo-
rem 1.2.

6. Proof of Theorem 1.4

Suppose f is not a normal function. Then there exist zn →∞ such that

lim
n→∞

f ](zn) = ∞.

Write fn(z) = f(z + zn) and set F = {fn}. Then by Marty’s criterion, F is not
normal on the unit disc. On the other hand, since fn has no zeros, and fnf

(k)
n 6= a,

Theorem 1.1 implies that F is normal. The contradiction proves the theorem.

7. Proof of Theorem 1.5

Since normality is a local property, we may assume that D = ∆, the unit disc.
Suppose that F is normal on ∆. Then by Lemma 2.1, there exist fn ∈ F , zn ∈ D,
and %n → 0+ such that

gn(ξ) =
fn(zn + %nξ)

%n
→ g(ξ)

locally uniformly with respect to the spherical metric , where g is a nonconstant
meromorphic function, g has no zeros. Taking a subsequence and renumbering, we
may assume that zn → z0 ∈ ∆.

We claim g′(ξ) 6= h(z0).
Clearly, g′(ξ) 6≡ h(z0), since otherwise g would be linear , which contradicts that

g 6= 0. Suppose g′(ξ0) = h(z0). Then φ = g′ − h(z0) is a nonconstant analytic
function on a neighborhood V of ξ0, which vanishes at ξ0. Let ∆ε = {ω : |ω| < ε}.
For ε > 0 sufficiently small, the component U of φ−1(∆ε) containing ξ0 is relatively
compact in V and satisfies φ(∂U) = {ω : |ω| = ε} and d(φ,U, 0) > 0, where d is the
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local degree. Set φn(ξ) = g′n(ξ)− h(zn + %nξ); then φn → φ locally uniformly on V .
Thus, for n large enough, we have |φn(ξ) − φ(ξ)| < ε on U. By (ii) of Lemma 2.3,
d(φn, U, 0) = d(φ,U, 0) > 0, so that by (iii) of the same result, there exists ξ1 ∈ U
such that φn(ξ1) = 0. But this contradicts f ′n(z) 6= h(z) on ∆. The claim is proved.

Since g′(ξ) 6= h(z0), it follows from Lemma 2.2 that g must be a constant, which
is a contradiction.

8. Proof of Theorem 1.6

We may assume that D = ∆, the unit disc. Normality is a local property, hence it
is enough to show that F is normal at each z0 ∈ D. We distinguish two cases.

Case (1): h(z0) 6= 0,∞. Then by Corollary 1.1, we know that F is normal at z0.

Case (2): h(z0) = 0 or h(z0) = ∞. Then there exists δ, 0 < δ < 1, such that
Uz0(δ) = {z : |z − z0| < δ} ⊂ D. Clearly, h(z) 6= 0,∞ for all z ∈ Uz0(δ) \ {z0}. By
case (1), F is normal there.

Then for each sequence of functions fn ∈ F , fn has a subsequence (without loss
of generality, we may take fn itself), fn converges to φ uniformly on any compact
subsects in Uz0(δ) \ {z0} (where φ is meromorphic function or ∞). Since fn 6= 0, by
Hurwitz’s Theorem, we derive that φ(z) ≡ 0 or φ(z) 6= 0.

If φ(z) 6≡ 0, then φ(z) 6= 0. Otherwise φ(z) ≡ 0, which is a contradiction. Thus
there exists a positive number M, such that

|fn(z)| ≥ M, |z − z0| =
δ

2
(n large enough).

Since fn(z) 6= 0 on Uz0(δ) \ {z0} then

|fn(z)| ≥ M, |z − z0| <
δ

2
.

Thus F is normal at z = z0.
If φ(z) ≡ 0, then fn(z) converges uniformly to 0 in K = {z : 1

4δ ≤ |z− z0| ≤ 3
4δ},

so does f ′n . Since h(z) 6≡ 0 in D, we can deduce that there exists M > 0 such that

|h(z)| ≥ M in K. Thus
f ′n
h

converges uniformly to 0 in K, so is (
f ′n
h

)′. Since f ′n(z) 6=

h(z) and h(z) has no multiple poles, we have
f ′n
h
− 1 6= 0(in D). By n(w = a,m0, r)

we denote the number of zeros of w − a counting multiplicity in the disk Ur(m0).
Thus

n

(
1

f ′
n

h − 1
, z0,

δ

2

)
= 0

and ∣∣∣∣∣n
(

f ′n
h
− 1, z0,

δ

2

)
− n

(
1

f ′
n

h − 1
, z0,

δ

2

)∣∣∣∣∣
=

∣∣∣∣∣ 1
2πi

∫
|z−z0|= δ

2

( f ′
n

h − 1)′
f ′

n

h − 1
dz

∣∣∣∣∣→ 0 (n →∞)
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which implies that

n

(
f ′n
h
− 1, z0,

δ

2

)
= 0 (n large enough).

Thus f ′n is holomorphic in |z − z0| <
δ

2
for n sufficiently large, and so is fn. By the

maximum principle, it follows that fn → 0 locally uniformly on compact subsets of

Uz0(
δ
2 ) =

{
z : |z − z0| <

δ

2

}
. Hence F is normal at z0 and the proof is completed.
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