Some Remarks on Generalized Inverses of Conjugate EP Matrix

${ }^{1}$ AR. Meenakshi and ${ }^{2}$ R. Indira
${ }^{1}$ Department of Mathematics, Annamalai University, Annamalai Nagar 608 002, India arm_meenakshi@yahoo.co.in
${ }^{2}$ Department of Mathematics, Madras Institute of Technology, Anna University, Chennai 600 044, India
rindira_63@yahoo.co.in

Abstract

The existence of a group inverse and characterization of generalized inverses of a Con-EP (Conjugate EP) matrix are studied and it is shown that for a Con-EP matrix A, A^{\dagger} is not a polynomial in A and group inverse does not coincides with A^{\dagger}. Conditions are derived for A^{T} to be a polynomial in A for a Con-EP matrix A.

2000 Mathematics Subject Classification: Primary 15A57; Secondary 15A04, 15A09

Key words and phrases: Conjugate EP matrices, Generalized inverse of a matrix, polynomial of a matrix, semi-linear transformations.

1. Introduction

Any matrix $A \in M_{n}$ (the set of all $n \times n$ complex matrices) is said to be Con-EP if $R(A)=R\left(A^{T}\right)$ or equivalently $A A^{\dagger}=\overline{A^{\dagger} A}$ and is said to be $\mathrm{Con}^{-\mathrm{EP}_{r}}$ if A is Con-EP and $\operatorname{rk}(\mathrm{A})=\mathrm{r}[3]$, where A^{\dagger}, the Moore-Penrose inverse of A is the unique solution of the equations:
(1) $A X A=A$,
(2) $X A X=X$,
(3) $(A X)^{*}=A X$,
(4) $(X A)^{*}=X A$,
$R(A)$ is the range space of $A, A^{*}=\bar{A}^{T}$ and $\operatorname{rk}(\mathrm{A})$ denote the rank of A.
For real matrices, the concept of Con-EP matrix coincides with EP matrix [4]. For $A \in M_{n}, X=A^{\#}$ is the group inverse of A satisfying $A X A=A, X A X=X$ and $A X=X A[1]$.
Theorem 1.1. For a complex matrix A, if A^{T} is a polynomial in A with $\mathrm{rk}(\mathrm{A})=$ $\operatorname{rk}\left(\mathrm{AA}^{\mathrm{T}}\right)$, then A is a Con-EP.
Proof. Since A^{T} is polynomial in $A, A A^{T}=A^{T} A . N(A) \subseteq N\left(A^{T} A\right)=N\left(A A^{T}\right)$ and $\operatorname{rk}(\mathrm{A})=\operatorname{rk}\left(\mathrm{AA}^{\mathrm{T}}\right)$ implies $N(A)=N\left(A A^{T}\right)$. Also, $N\left(A^{T}\right) \subseteq N\left(A A^{T}\right)=N(A)$ and $\operatorname{rk}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{rk}(\mathrm{A})$ implies $N\left(A^{T}\right)=N(A)$. Thus A is Con-EP.

[^0]Remark 1.1. However, the converse of Theorem 1.1 is not true can be seen from

$$
A=\left(\begin{array}{ll}
i & i \\
0 & 1
\end{array}\right)
$$

For this A, A^{T} is not a polynomial in A, A is Con-EP being nonsingular and $r k(\mathrm{~A})=$ $\operatorname{rk}\left(\mathrm{AA}^{\mathrm{T}}\right)$.

Theorem 1.2. For a complex matrix A, A^{+}is a polynomial in \bar{A}, with $\operatorname{rk}(\mathrm{A})=$ $\operatorname{rk}\left(\mathrm{AA}^{\mathrm{T}}\right)$, then A is Con-EP.

Proof. Since A^{+}is a polynomial in $\bar{A}, A^{\dagger} \bar{A}=\bar{A} A^{\dagger}$. N($\left.A^{\dagger}\right) \subseteq N\left(\bar{A} A^{\dagger}\right)=N\left(A^{\dagger} \bar{A}\right)$ and $\operatorname{rk}(\mathrm{A})=\operatorname{rk}\left(\mathrm{AA}^{\mathrm{T}}\right)$ implies $\operatorname{rk}\left(\mathrm{A}^{\dagger}\right)=\operatorname{rk}\left(\mathrm{A}^{\dagger} \overline{\mathrm{A}}\right)$, hence $N\left(A^{\dagger}\right)=N\left(A^{\dagger} \bar{A}\right) . N(\bar{A}) \subseteq$ $N\left(A^{\dagger} \bar{A}\right)=N\left(A^{\dagger}\right)$ and $\operatorname{rk}(\mathrm{A})=\operatorname{rk}(\overline{\mathrm{A}})=\operatorname{rk}\left(\mathrm{A}^{\dagger}\right)$ implies $N(A)=N\left(A^{T}\right)$. Thus A is Con-EP.

Remark 1.2. However, the converse of Theorem 1.2 is not true can be seen from the matrix

$$
A=\left(\begin{array}{ll}
i & i \\
0 & 1
\end{array}\right)
$$

Remark 1.3. The condition on rank of A and $A A^{T}$ is essential can be seen by the following: For

$$
A=\left(\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right)
$$

A^{T} is a polynomial in A, A^{\dagger} is not a polynomial in $\bar{A}, \operatorname{rk}(\mathrm{~A}) \neq \operatorname{rk}\left(\mathrm{AA}^{\mathrm{t}}\right) . A$ is not Con-EP.

2. Conjugate EP matrices and group inverses

In general for a Con-EP matrix, it's group inverse does not exist (Refer Example 2.2). The existence of the group inverse, the generalized inverses belonging to the sets $A\{1,2\}, A\{1,2,3\}$ and $A\{1,2,4\}$ of a Con- EP_{r} matrix A are characterized. It is clear that, A is Con- EP_{r} if and only if A^{\dagger} is Con- EP_{r}. Thus the Con- EP_{r} property of a complex matrix is preserved for it's Moore-Penrose inverse. However, other generalized inverses of a Con- EP_{r} matrix need not be Con-EP ${ }_{r}$. For instance,

$$
A=\left(\begin{array}{ll}
i & 0 \\
0 & 0
\end{array}\right)
$$

is Con- EP_{1},

$$
X=\left(\begin{array}{ll}
-i & 0 \\
-1 & 0
\end{array}\right)
$$

is a 1 -inverse of A, which is not Con- EP_{1}.
The generalized inverses $X \in A\{1,2\}$ is shown to be Con-EP ${ }_{r}$ under certain conditions in the following way.
Theorem 2.1. Let $A \in M_{n}, X \in A\{1,2\}$ (set of all X 's satisfying first two equations of A^{\dagger}) and $A X, X A$ are Con-EP P_{r} matrices. Then A is Con- $E P_{r}$ if and only if X is Con-EP r_{r}.

Proof. Since $A X$ and $X A$ are Con-EP ${ }_{r}, X \in A\{1,2\}$, we have $R(A)=R(A X)=$ $R\left((A X)^{T}\right)=R\left(X^{T}\right)$ and $R\left(A^{T}\right)=R\left((X A)^{T}\right)=R(X A)=R(X)$. Now, A is Con$\mathrm{EP}_{r} \Leftrightarrow\left[R(A)=R\left(A^{T}\right)\right.$ and $\left.\mathrm{rk}(\mathrm{A})=\mathrm{r}\right] \Leftrightarrow\left[R(X)=R\left(X^{T}\right)\right.$ and $\left.\operatorname{rk}(\mathrm{A})=\mathrm{rk}(\mathrm{X})=\mathrm{r}\right]$ $\Leftrightarrow X$ is Con-EP ${ }_{r}$.

Remark 2.1. In Theorem 2.1, the conditions that both $A X$ and $X A$ to be Con-EP ${ }_{r}$ are essential. For instance,

$$
A=\left(\begin{array}{ll}
i & 0 \\
0 & 0
\end{array}\right)
$$

is Con- EP_{1},

$$
X=\left(\begin{array}{ll}
-i & 0 \\
-i & 0
\end{array}\right) \in A\{1,2\}
$$

$A X$ is Con-EP ${ }_{1}$ and $X A$ is not Con- EP_{1}. Similarly,

$$
Y=\left(\begin{array}{cc}
-i & -1 \\
0 & 0
\end{array}\right) \in A\{1,2\}
$$

$Y A$ is not Con-EP ${ }_{1}$ and $A Y$ is not Con-EP ${ }_{1}, X$ is not Con- EP_{1}, Y is not Con- EP_{1}.
Remark 2.2. For $A \in M_{n}, X \in A\{1,2\}$, if $A X$ and $X A$ are real symmetric matrices, then A is Con- EP_{r} if and only if X is Con-EP r_{r}. In particular, for $X=A^{\dagger}$ with $A A^{\dagger}$ and $A^{\dagger} A$ are real matrices it reduces to that, A is EP_{r} if and only if A is Con- EP_{r} if and only if A^{\dagger} is Con- EP_{r} if and only if A^{\dagger} is EP_{r}.

Now we shall derive certain condition for inverses belonging to the sets $A\{1,2,3\}$ and $A\{1,2,4\}$ of a con-EPr matrix A to be Con-EP ${ }_{r}$.
Theorem 2.2. Let $A \in M_{n}, X \in A\{1,2,3\}$ (set of all X 's satisfying first three equations of A^{\dagger}) and $X A$ is $E P_{r}$. Then A is Con- $E P_{r}$ if and only if X is Con- $E P_{r}$.

Proof. Since $X \in A\{1,2,3\}$ and $X A$ is $\mathrm{EP}_{r}, R(A)=R(A X)=R\left((A X)^{*}\right)=R\left(X^{*}\right)$ and $R\left(A^{*}\right)=R\left((X A)^{*}\right)=R(X A)=R(X) \Leftrightarrow R\left(A^{T}\right)=R(\bar{X})$. Now, A is Con-EP ${ }_{r}$ $\Leftrightarrow\left[R(A)=R\left(A^{T}\right)\right.$ and $\left.\operatorname{rk}(\mathrm{A})=\mathrm{r}\right] \Leftrightarrow\left[R\left(X^{*}\right)=R(\bar{X})\right.$ and $\left.\operatorname{rk}(\mathrm{A})=\operatorname{rk}(\mathrm{X})=\mathrm{r}\right] \Leftrightarrow$ $\left[R\left(X^{T}\right)=R(X)\right.$ and $\left.\operatorname{rk}(\mathrm{X})=\mathrm{r}\right] \Leftrightarrow X$ is Con- EP_{r}.

Remark 2.3. In Theorem 2.2, the condition that $X A$ is EP_{r} cannot be relaxed. For instance,

$$
A=\left(\begin{array}{ll}
i & 0 \\
0 & 0
\end{array}\right)
$$

is Con- EP_{1} matrix,

$$
X=\left(\begin{array}{ll}
-i & 0 \\
-i & 0
\end{array}\right) \in A\{1,2,3\}
$$

and $X A$ is not EP and X is not Con-EP ${ }_{1}$.
Theorem 2.3. Let $A \in M_{n}, X \in A\{1,2,4\}$ (set of X 's satisfying 1,2 and 4th equations of A^{\dagger}) and $A X$ is $E P_{r}$. Then, A is Con- $E P_{r}$ if and only if X is Con- $E P_{r}$.
Proof. This can be proved along same lines as that of Theorem 2.2 and hence the proof is omitted.

Remark 2.4. The condition that $A X$ is $E P_{r}$ can not be weakened in the Theorem 2.3. This is illustrated in the following example.

Example 2.1.

$$
A=\left(\begin{array}{ll}
i & 0 \\
0 & 0
\end{array}\right)
$$

is Con- EP_{1},

$$
X=\left(\begin{array}{cc}
-i & -i \\
0 & 0
\end{array}\right) \in\{1,2,4\}
$$

is not Con- EP_{1} and $A X$ is not EP .
Remark 2.5. In particular for $X=A^{\dagger}$, since $A^{\dagger} \in A\{1,2,4\}$ and $A A^{\dagger}$ is EP_{r} being Hermitian, then Theorem 2.3 reduces to that, A is Con-EP ${ }_{r}$ if and only if A^{\dagger} is Con- EP_{r}.

The following Theorem gives condition for the existence of $A^{\#}$ of a Con-EP ${ }_{r}$ matrix A.

Theorem 2.4. Let $A \in M_{n}$ be Con-EPr and $\operatorname{rk}(\mathrm{A} \overline{\mathrm{A}})=\operatorname{rk}\left(\mathrm{A}^{2}\right)$. Then $A^{\#}$ exists and is Con-EPr.

Proof. Since A is Con- EP_{r} matrix, $\operatorname{rk}(\mathrm{A} \overline{\mathrm{A}})=\operatorname{rk}(\mathrm{A})$. By hypothesis, $\operatorname{rk}\left(\mathrm{A}^{2}\right)=$ $\operatorname{rk}(\mathrm{A} \overline{\mathrm{A}})=\operatorname{rk}(\mathrm{A})$. By [1, Theorem 2, p. 156], $A^{\#}$ exists for A. To show that $A^{\#}$ is Con-EP ${ }_{r}$, it is enough to prove that $R\left(A^{\#}\right)=R\left(\left(A^{\#}\right)^{T}\right)$. Since $A A^{\#}=A^{\#} A$, we have $R(A)=R\left(A A^{\#}\right)=R\left(A^{\#} A\right)=R\left(A^{\#}\right)$ and $R\left(A^{T}\right)=R\left(\left(A^{\#} A\right)^{T}\right)=$
 $\Rightarrow\left[R\left(A^{\#}\right)=R\left(\left(A^{\#}\right)^{T}\right)\right.$ and $\left.\operatorname{rk}(\mathrm{A})=\mathrm{rk}\left(\mathrm{A}^{\#}\right)=\mathrm{r}\right] \Rightarrow A^{\#}$ is $\operatorname{Con}-\mathrm{EP}_{r}$.

Remark 2.6. In Theorem 2.4 the condition that $\operatorname{rk}\left(A^{2}\right)=\operatorname{rk}(A \bar{A})$ is essential.
Example 2.2. Let

$$
A=\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right)
$$

and $\operatorname{rk}(A)=\operatorname{rk}(A \bar{A}) \neq \operatorname{rk}\left(A^{2}\right)$. Now,

$$
A=\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right)=\binom{1}{i}\left(\begin{array}{ll}
1 & i
\end{array}\right)=F G
$$

$G F=0$ and hence $(G F)^{-1}$ does not exist. Therefore, $A^{\#}=F(G F)^{-2} G[1$, p. 157] does not exist for a Con-EP matrix.

Bevis et al. [2, Theorem 5] proved that the group inverse for semi-linear transformation T on C^{n} induced by a matrix A exists if $R(A \bar{A})=R(A)$. Since for a con-EP ${ }_{r}$ matrix, $\operatorname{rk}(\mathrm{A} \overline{\mathrm{A}})=\operatorname{rk}(\mathrm{A})$, the condition $R(A \bar{A})=R(A)$ automatically holds. Hence we have following:

Theorem 2.5. Let $A \in M_{n}$ be Con-EP P_{r}. Then $T^{\#}$ exists for any semi-linear transformation T on C^{n} induced by A relative to the standard basis.

References

[1] A. Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and Applications, Second edition, MS Books in Mathematics/Ouvrages de Mathé matiques de la SMC, 15, SpringerVerlag, New York, 2003.
[2] J. H. Bevis, F. J. Hall and R. E. Hartwig, The Drazin inverse of a semilinear transformation and its matrix representation, Linear Algebra Appl. 97 (1987), 229-242.
[3] AR. Meenakshi and R. Indira, On products of conjugate $E P_{r}$ matrices, Kyungpook Math. J. 32 (1) (1992), 103-110.
[4] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, John Wiley \& Sons, Inc., New York, 1971.

[^0]: Received: March 25, 2004; Revised: July 15, 2004.

