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Abstract. The existence of a group inverse and characterization of generalized

inverses of a Con-EP (Conjugate EP) matrix are studied and it is shown that

for a Con-EP matrix A, A† is not a polynomial in A and group inverse does
not coincides with A†. Conditions are derived for AT to be a polynomial in A

for a Con-EP matrix A.
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1. Introduction

Any matrix A ∈ Mn (the set of all n × n complex matrices) is said to be Con-EP
if R(A) = R(AT ) or equivalently AA† = A†A and is said to be Con-EPr if A is
Con-EP and rk(A) = r [3], where A†, the Moore-Penrose inverse of A is the unique
solution of the equations:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA,

R(A) is the range space of A, A∗ = A
T

and rk(A) denote the rank of A.
For real matrices, the concept of Con-EP matrix coincides with EP matrix [4].

For A ∈ Mn, X = A# is the group inverse of A satisfying AXA = A, XAX = X
and AX = XA [1].

Theorem 1.1. For a complex matrix A, if AT is a polynomial in A with rk(A) =
rk(AAT), then A is a Con-EP.

Proof. Since AT is polynomial in A, AAT = AT A. N(A) ⊆ N(AT A) = N(AAT )
and rk(A) = rk(AAT) implies N(A) = N(AAT ). Also, N(AT ) ⊆ N(AAT ) = N(A)
and rk(AT) = rk(A) implies N(AT ) = N(A). Thus A is Con-EP. �
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Remark 1.1. However, the converse of Theorem 1.1 is not true can be seen from

A =
(

i i
0 1

)
.

For this A, AT is not a polynomial in A, A is Con-EP being nonsingular and rk(A) =
rk(AAT).

Theorem 1.2. For a complex matrix A, A+ is a polynomial in A, with rk(A) =
rk(AAT), then A is Con-EP.

Proof. Since A+ is a polynomial in A, A†A = AA†. N(A†) ⊆ N(AA†) = N(A†A)
and rk(A) = rk(AAT) implies rk(A†) = rk(A†A), hence N(A†) = N(A†A). N(A) ⊆
N(A†A) = N(A†) and rk(A) = rk(A) = rk(A†) implies N(A) = N(AT ). Thus A is
Con-EP. �

Remark 1.2. However, the converse of Theorem 1.2 is not true can be seen from
the matrix

A =
(

i i
0 1

)
.

Remark 1.3. The condition on rank of A and AAT is essential can be seen by the
following: For

A =
(

1 i
−i 1

)
,

AT is a polynomial in A, A† is not a polynomial in A, rk(A) 6= rk(AAt). A is not
Con-EP.

2. Conjugate EP matrices and group inverses

In general for a Con-EP matrix, it’s group inverse does not exist (Refer Example 2.2).
The existence of the group inverse, the generalized inverses belonging to the sets
A{1, 2} , A{1, 2, 3} and A{1, 2, 4} of a Con-EPr matrix A are characterized. It is
clear that, A is Con-EPr if and only if A† is Con-EPr. Thus the Con-EPr property
of a complex matrix is preserved for it’s Moore-Penrose inverse. However, other
generalized inverses of a Con-EPr matrix need not be Con-EPr. For instance,

A =
(

i 0
0 0

)
is Con-EP1,

X =
(
−i 0
−1 0

)
is a 1–inverse of A, which is not Con-EP1.

The generalized inverses X ∈ A{1, 2} is shown to be Con-EPr under certain
conditions in the following way.

Theorem 2.1. Let A ∈ Mn, X ∈ A{1, 2} (set of all X’s satisfying first two equa-
tions of A†) and AX, XA are Con-EPr matrices. Then A is Con-EPr if and only
if X is Con-EPr.
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Proof. Since AX and XA are Con-EPr, X ∈ A{1, 2}, we have R(A) = R(AX) =
R((AX)T ) = R(XT ) and R(AT ) = R((XA)T ) = R(XA) = R(X). Now, A is Con-
EPr ⇔ [R(A) = R(AT ) and rk(A) = r] ⇔ [R(X) = R(XT ) and rk(A) = rk(X) = r]
⇔ X is Con-EPr. �

Remark 2.1. In Theorem 2.1, the conditions that both AX and XA to be Con-EPr

are essential. For instance,

A =
(

i 0
0 0

)
is Con-EP1,

X =
(
−i 0
−i 0

)
∈ A{1, 2}.

AX is Con-EP1 and XA is not Con-EP1. Similarly,

Y =
(
−i −1
0 0

)
∈ A{1, 2},

Y A is not Con-EP1 and AY is not Con-EP1, X is not Con-EP1, Y is not Con-EP1.

Remark 2.2. For A ∈ Mn, X ∈ A{1, 2}, if AX and XA are real symmetric
matrices, then A is Con-EPr if and only if X is Con-EPr. In particular, for X = A†

with AA† and A†A are real matrices it reduces to that, A is EPr if and only if A is
Con-EPr if and only if A† is Con-EPr if and only if A† is EPr.

Now we shall derive certain condition for inverses belonging to the sets A{1, 2, 3}
and A{1, 2, 4} of a con-EPr matrix A to be Con-EPr.

Theorem 2.2. Let A ∈ Mn, X ∈ A{1, 2, 3} (set of all X’s satisfying first three
equations of A†) and XA is EPr. Then A is Con-EPr if and only if X is Con-EPr.

Proof. Since X ∈ A{1, 2, 3} and XA is EPr, R(A) = R(AX) = R((AX)∗) = R(X∗)
and R(A∗) = R((XA)∗) = R(XA) = R(X) ⇔ R(AT ) = R(X). Now, A is Con-EPr

⇔ [R(A) = R(AT ) and rk(A) = r] ⇔ [R(X∗) = R(X) and rk(A) = rk(X) = r ] ⇔
[R(XT ) = R(X) and rk(X) = r] ⇔ X is Con-EPr. �

Remark 2.3. In Theorem 2.2, the condition that XA is EPr cannot be relaxed.
For instance,

A =
(

i 0
0 0

)
,

is Con-EP1 matrix,

X =
(
−i 0
−i 0

)
∈ A{1, 2, 3}

and XA is not EP and X is not Con-EP1.

Theorem 2.3. Let A ∈ Mn, X ∈ A{1, 2, 4} (set of X’s satisfying 1,2 and 4th
equations of A†) and AX is EPr. Then, A is Con-EPr if and only if X is Con-EPr.

Proof. This can be proved along same lines as that of Theorem 2.2 and hence the
proof is omitted. �
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Remark 2.4. The condition that AX is EPr can not be weakened in the Theo-
rem 2.3. This is illustrated in the following example.

Example 2.1.

A =
(

i 0
0 0

)
is Con-EP1,

X =
(
−i −i
0 0

)
∈ {1, 2, 4}

is not Con-EP1 and AX is not EP.

Remark 2.5. In particular for X = A†, since A† ∈ A{1, 2, 4} and AA† is EPr

being Hermitian, then Theorem 2.3 reduces to that, A is Con-EPr if and only if A†

is Con-EPr.

The following Theorem gives condition for the existence of A# of a Con-EPr

matrix A.

Theorem 2.4. Let A ∈ Mn be Con-EPr and rk(AA) = rk(A2). Then A# exists
and is Con-EPr.

Proof. Since A is Con-EPr matrix, rk(AA) = rk(A). By hypothesis, rk(A2) =
rk(AA) = rk(A). By [1, Theorem 2, p. 156], A# exists for A. To show that A#

is Con-EPr, it is enough to prove that R(A#) = R((A#)T ). Since AA# = A#A,
we have R(A) = R(AA#) = R(A#A) = R(A#) and R(AT ) = R((A#A)T ) =
R((AA#)T ) = R((A#)T ). Now, A is Con-EPr ⇒ [R(A) = R(AT ) and rk(A) = r]
⇒ [R(A#) = R((A#)T ) and rk(A) = rk(A#) = r] ⇒ A# is Con–EPr. �

Remark 2.6. In Theorem 2.4 the condition that rk(A2) = rk(AA) is essential.

Example 2.2. Let

A =
(

1 i
i −1

)
and rk(A) = rk(AA) 6= rk(A2). Now,

A =
(

1 i
i −1

)
=

(
1
i

) (
1 i

)
= FG;

GF = 0 and hence (GF )−1 does not exist. Therefore, A# = F (GF )−2G [1, p. 157]
does not exist for a Con-EP matrix.

Bevis et al. [2, Theorem 5] proved that the group inverse for semi-linear transfor-
mation T on Cn induced by a matrix A exists if R(AA) = R(A). Since for a con-EPr

matrix, rk(AA) = rk(A), the condition R(AA) = R(A) automatically holds. Hence
we have following:

Theorem 2.5. Let A ∈ Mn be Con-EPr. Then T# exists for any semi-linear
transformation T on Cn induced by A relative to the standard basis.
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