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Abstract. It is well known that, given a triangle inscribed in another triangle,
the perimeters of the three external triangles can never all be simultaneously
greater than the perimeter of the inscribed triangle and that furthermore they
are all equal to it if and only if we put the vertices of the inscribed triangle at
the midpoints of sides of the circumscribed triangle. The same result is true for
the areas. The present paper shows how such a results extends to the case of
two convex polygons inscribed one in other, connecting it to the classic works
about inscribed and circumscribed polygons respectively with minimum and
maximum perimeter.
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1. Introduction

The following neat inequality between two triangles one inscribed in the other was
proposed by Debrunner [1] in 1956 and proved first by Dresel [2] in 1961 and later
on, with different methods, by other mathematicians:

Theorem 1.1. Given a triangle ABC and any other triangle A′B′C′ circumscribing
it, it is not possible that we have simultaneously:

P (ABC) < P (A′CB), P (ABC) < P (CB′A) and P (ABC) < P (AC′B)

where P (ABC) indicates the perimeter of triangle ABC.

Another result of the same kind, also proposed by Debrunner [3] in 1956 and
proved by Bager [4] in 1957 and later on by other mathematicians, is the following:

Theorem 1.2. Given a triangle ABC and any other triangle A′B′C′ circumscribing
it, it is not possible that we have simultaneously:

S(ABC) < S(A′CB), S(ABC) < S(CB′A) and S(ABC) < S(AC′B)

where S(ABC) indicates the area of triangle ABC.
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In this paper we want to show how the inequalities can be extended to the case
of two convex polygons inscribed one in the other, thus achieving a result that
generalizes Theorems 1.1 and 1.2.

2. The general case of convex polygons

In the case of convex polygons the following is in fact true:

Theorem 2.1. Given a convex polygon of n sides with vertices Ai (i = 1, . . . , n)
numbered cyclically so that A0 = An, and any other polygon of n sides circumscribing
it with vertices A′

i (with Ai lying on the side A′

i−1 A′

i), if we call Bi the intersection
of the diagonals Ai−1Ai+1 and Ai Ai+2 (see Fig. 1), it is not possible that we have
simultaneously:

(2.1) P (AiBiAi+1) < P (AiAi+1A
′

i) for i = 1, . . . , n

or

(2.2) S(AiBiAi+1) < S(AiAi+1A
′

i) for i = 1, . . . , n .

Furthermore one and only one circumscribed n–gon exists such that P (AiBiAi+1) =
P (AiAi+1A

′

i) and S(AiBiAi+1) = S(AiAi+1A
′

i) for i = 1, . . . , n, and that is achieved
by putting the side A′

iA
′

i+1 parallel to the diagonal AiAi+2.

We define the angular coordinate αi (for i = 1, . . . , n) as the angle which the side
A′

i−1A
′

i makes with the line parallel to diagonal Ai−1Ai+1 passing for vertex Ai (see
Fig. 1) and fixing that the parallel line has to be rotated counterclockwise through
a positive angle αi in order to become coincident with A′

i−1A
′

i.
For the law of sines we will have that:

(2.3)

AiBi + BiAi+1

AiAi+1

=
sin λi + sinµi+1

sin(λi + µi+1)
=

2 sin λi+µi+1

2 cos λi−µi+1

2

2 sin λi+µi+1

2 cos λi+µi+1

2

=
cos λi−µi+1

2

cos λi+µi+1

2

for i = 1, . . . , n with λi = ̂Ai+2AiAi+1 and µi = ̂Ai−2AiAi−1 (for i = 1, . . . , n). Now

it is evident that ̂AiAi+1A
′

i = λi + αi+1 and ̂Ai+1AiA
′

i = µi+1 −αi (see Fig. 1) and
so that:

(2.4)
AiA

′

i + A′

iAi+1

AiAi+1

=
sin(µi+1 − αi) + sin(λi + αi+1)

sin(λi + µi+1 + αi+1 − αi)
=

cos λi−µi+1+αi+1+αi

2

cos λi+µi+1+αi+1−αi

2

for i = 1, . . . , n. Now, with αi as defined above, it is evident that:

(2.5) −λi−1 < αi < µi+1 for i = 1, . . . , n

and the denominators of last term of (2.3) and (2.4) are both positive.
Hence ∆i = P (AiBiAi+1) − P (AiAi+1A

′

i) will have the same sign as:

cos
λi − µi+1

2
cos

λi + µi+1 + αi+1 − αi

2

− cos
λi + µi+1

2
cos

λi − µi+1 + αi+1 + αi

2

= sin
(

λi +
αi+1

2

)

sin
αi

2
− sin

(

µi+1 −
αi

2

)

sin
αi+1

2
.(2.6)
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Figure 1. General case of convex polygons

There are now three possibilities:

Case (1): The αi are all zero. Then, for the (2.6), ∆i = 0 for i = 1, . . . , n and the
side A′

iA
′

i+1 is always parallel to the diagonal AiAi+2.

Case (2): There is only one αi 6= 0 or there are two that don’t have the same sign.
In such cases, on the varying of i, there will be an i for which αi > 0 and αi+1 ≤ 0
(or αi ≥ 0 and αi+1 < 0). But for (2.5) µi+1 − αi

2 > 0 and λi + αi+1

2 > 0 and so,
on the basis of (2.6), ∆i ≥ 0 and the theorem is proved.

Case (3): All the αi, for i = 1, . . . , n, are different from zero and have the same
sign.

In such a case, dividing (2.6) by sin αi

2 sin αi+1

2 (> 0), ∆i has the same sign as:

sin
(

λi + αi+1

2

)

sin αi+1

2

−
sin

(

µi+1 −
αi

2

)

sin αi

2

= sin λicotg
αi+1

2
− sin µi+1cotg

αi

2
+ cosλi + cosµi+1(2.7)
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and supposing “ab absurdo” that ∆i < 0 for i = 1, . . . , n and considering that
cosλi+ cosµi+1 > 0 we have:

(2.8) sinλicotg
αi+1

2
< sinµi+1cotg

αi

2
for i = 1, . . . , n.

Now if αi > 0 for i = 1, . . . , n (similar argument also holds if αi < 0) and dividing
by sinλicotg αi

2 (> 0) we have:

(2.9) 0 <
cotg αi+1

2

cotg αi

2

<
sin µi+1

sin λi

for i = 1, . . . , n.

Multiplying (2.9) for i = 1, . . . , n and remembering that
n

∏

1

i

sin µi+1

sin λi

=

n
∏

1

i

sinµi+1

sin λi−1
,

we will have:

1 <

n
∏

1

i

sin µi+1

sin λi−1
(2.10)

=

n
∏

1

i

sin λi−1+µi+1

2 cos λi−1−µi+1

2 − cos λi−1+µi+1

2 sin λi−1−µi+1

2

sin λi−1+µi+1

2 cos λi−1−µi+1

2 + cos λi−1+µi+1

2 sin λi−1−µi+1

2

and dividing numerator and denominator by sin λi−1+µi+1

2 cos λi−1−µi+1

2 (> 0) and
utilising the theorem of tangents in the triangle Ai−1AiAi+1 we have:

1 <

n
∏

1

i

1 − cotg λi−1+µi+1

2 tgλi−1−µi+1

2

1 + cotg λi−1+µi+1

2 tgλi−1−µi+1

2

(2.11)

=

n
∏

1

i

1 − AiAi+1−Ai−1Ai

AiAi+1+Ai−1Ai

1 + AiAi+1−Ai−1Ai

AiAi+1+Ai−1Ai

=

n
∏

1

i

2Ai−1Ai

2AiAi+1

= 1

which is a contradiction.
To prove (2.2) we observe, first of all, that:

(2.12) S(AiBiAi+1) =
1

2
AiAi+1

2 sin µi+1 sin λi

sin(µi+1 + λi)
for i = 1, . . . , n

and:

(2.13) S(AiAi+1A
′

1) =
1

2
AiAi+1

2 sin(µi+1 − αi) sin(λi + αi+1)

sin(µi+1 + λi + αi+1 − αi)
for i = 1, . . . , n

and, since sin(µi+1 + λi) sin(µi+1 + λi + αi+1 − αi) > 0, then ∆i = S(AiBiAi+1)+

−S(AiAi+1A
′

i) has the same sign as:

sin µi+1 sin λi sin(µi+1 + λi + αi+1 − αi)

− sin(µi+1 − αi) sin(λi + αi+1) sin(µi+1 + λi)(2.14)

= sin µi+1 sin λi[sin(µi+1 − αi) cos(λi + αi+1)

+ cos(µi+1 − αi) sin(λi + αi+1)] − sin(µi+1 − αi) sin(λi + αi+1) ×

[sin µi+1 cosλi + cosµi+1 sin λi].
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Dividing by sinµi+1 sin λi sin(µi+1 − αi) sin(λi + αi+1) (> 0), (2.14) becomes:

(2.15) cotg (λi + αi+1) − cotg λi + cotg (µi+1 − αi) − cotg µi+1.

Let’s examine the three cases analysed before:

Case (1): If αi are all zero then, from (2.15), ∆i = 0 for i = 1, . . . , n.

Case (2): If there is an i such that αi > 0 and αi+1 ≤ 0 (or αi ≥ 0 and αi+1 < 0)
then, for (2.15), ∆i > 0 and the result is proved.

Case (3): If finally all the αi are different from zero and with the same sign,
developping (2.14), we achieve that ∆i has the same sign as:

sin2 µi+1 sin λi sinαi[sin λi cosαi+1 + cosλi sin αi+1]

+ cos2 µi+1 sinλi sin αi[sin λi cosαi+1 + cosλi sinαi+1]

− sin µi+1 sin2 λi sin αi+1[sinµi+1 cosαi − cosµi+1 sin αi]

− sin µi+1 cos2 λi sin αi+1[sin µi+1 cosαi − cosµi+1 sin αi](2.16)

that, dividing by sinαi sin αi+1(> 0), become:

(2.17) cotg αi+1 sin2 λi − cotg αi sin
2 µi+1 + sin µi+1 cosµi+1 + sin λi cosλi.

Now, supposing “ab absurdo” that ∆i < 0 for i = 1, . . . , n and considering that
sinµi+1 cosµi+1 + sin λi cosλi > 0, we will have that:

(2.18) cotg αi+1 sin2 λi < cotg αi sin
2 µi+1 for i = 1, . . . , n

and, supposing αi > 0 for i = 1, . . . , n (if αi < 0 similar argument holds but reversing
the inequality), we have:

(2.19) 0 <
cotg αi+1

cotg αi
<

sin2 µi+1

sin2 λi

for i = 1, . . . , n

and, multiplying (2.19) for i = 1, . . . , n, we will have, for the sine rule, that:

(2.20) 1 <

n
∏

1

i

sin2 µi+1

sin2 λi−1

=

n
∏

1

i

Ai−1Ai
2

AiAi+1
2 = 1

that is again a contradiction.

3. Conclusive considerations

It is clear that if n = 3 the minimum diagonals Ai−1Ai+1 coincide with the sides of
triangle A1A2A3, the points Bi with the opposite vertices and Theorem 2.1 is reduced
to Theorems 1.1 and 1.2; Theorem 2.1 being thus a generalization of Theorems 1.1
and 1.2.

Another way to express Theorem 2.1 is the following. Taking the convex polygon
with vertices Ai(i = 1, . . . , n) we consider the ellipses which have foci in two subse-
quent vertices Ai and Ai+1 and which pass through the point of intersection Bi. If
we now imagine throwing a ball from one of the vertices, towards the outside and
beyond the external angle opposite the vertex of the angle of the polygon, and we
bounce it subsequently on the n ellipses we will see that it will return to the initial
vertex and that the direction of departure and that of arrival, seen from the inside
of polygon, will always form an angle ≥ π.
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Figure 2. Internal and external polygons

It is interesting to remark too that the points Bi also form a convex n–gon which
corresponds, from a projective point of view, to the dual n–gon B′

i made by inter-
sections of sides Ai−1Ai and Ai+1Ai+2 of polygon Ai adjacent to the same side (see
Fig. 2) and that to Theorem 2.1: ∃i P (AiBiAi+1) ≥ P (AiAi+1A

′

i) corresponds to
the dual result ∀ i P (AiB

′

iAi+1) > P (AiAi+1A
′

i) and likewise for areas.
In substance the result achieved tell us that the n vertices of circumscribed poly-

gon A′

i cannot simultaneously (in a manner of speaking) “distance themselves” from
the corresponding sides of the inscribed polygon AiAi+1 further than the corre-
sponding points Bi are “distant” from that side.

The result is in fact, in a manner of speaking, connected to the classic works
about minimum and maximum perimeters of respectively inscribed and circum-
scribed polygons represented by the well known (see e.g. [5]).

Theorem 3.1. The n–gon with vertices Ai inscribed in a given n–gon with vertices
A′

i (i = 1, . . . , n) with minimum perimeter in all it is that in which µi+1 − αi =
λi−1 + αi for i = 1, . . . , n.

Using the notations introduced before we can say that the arithmetic mean of ∆i is

maximum for αi = µi+1−λi−1

2 for i = 1, . . . , n and that instead, in order to maximize
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the minimum of ∆i and of ∆i, the following will be true αi = 0 for i = 1, . . . , n and
in such a case will be min{∆i|i = 1, . . . , n} = min{∆i|i = 1, . . . , n} = 0.

Of course finally if the n–gon A′

i is regular the two inscribed n–gons will coincide.
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