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Abstract. In this paper we redefined the definition of a bounded linear op-

erator in probabilistic normed space by introducing the notion of strongly ψ-
bounded linear maps. We then show that this new definition of boundedness

implies all contraction functions in probabilistic normed space are bounded.

Also, we introduce the classes of linear operators in probabilistic normed space,
as the set of all certainly bounded Lc(V, V ′), D-bounded LD(V, V ′), strongly

B-bounded LB(V, V ′), and strongly ψ-bounded Lψ(V, V ′) we then prove they

are linear spaces.
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1. Introduction and preliminaries

In 1942 Menger introduced the notion of probabilistic metric space as a natural
generalization of the notion of a metric space; specifically, he looked at the distance
concept as a probabilistic rather than a deterministic notion. More precisely, instead
of associating a number − the distance d(p, q) − for every pair of elements p, q one
should associate a distribution function Fpq and, for any positive number x, interpret
Fpq(x) as the probability that the distance from p to q be less than x.

In complete analogy with the classical case, we then have the notion of a prob-
abilistic normed space. This was introduced by A. N. Serstnev in 1963 and later
improved by Alsina et al. in 1993 [2]. It is this latter definition of a probabilistic
normed space which is of interest to us. In fact, we are interested to apply the
notion of boundedness. A rather thorough study on this notion was, of course, done
by Lafuerza Guillen et al. [7] and Jebril & Ali [6].

This motivates us to look for a better definition of boundedness. In this paper,
we introduce the new notion of strongly ψ-bounded linear maps and we show that
all of the (probabilistic) contraction functions found in the literature are bounded
with respect to this definition (see section 2).
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Before we proceed we must state some definitions, known facts, and, technical
results to be used in the sequel, the concepts used are those of [6] and [13]: The
space of probability distribution functions (briefly, a d.f.) which we will consider
are

∆+ = {F : [0,∞] → [0, 1]|F is left-continuous, non-decreasing,
F (0) = 0 and F (+∞) = 1},

and the set of all F in ∆+ for which l−F (+∞) = F (+∞) = 1 by D+.
In particular for any a ≥ 0, εa is the d.f defined by

εa(x) =
{

0, if x ≤ a,
1, if x > a.

The space ∆+ is partially ordered by the usual pointwise ordering of functions, the
maximal element for ∆+ in this order is the d.f. given by

ε0(x) =
{

0, if x ≤ 0,
1, if x > 0.

A triangle function is a binary operation on ∆+, namely a function τ : ∆+×∆+ →
∆+ that is associative, commutative, nondecreasing and which has ε0 as unit, viz.
for all F,G,H ∈ ∆+, we have

τ(τ(F,G),H) = τ(F, τ(G,H)),

τ(F,G) = τ(G,F ),

τ(F,H) ≤ τ(G,H) if F ≤ G,

τ(F, ε0) = F,

continuity of a triangle function means continuity with respect to the topology of
weak convergence in ∆+.

A continuous t-norm T is, a continuous binary operation on [0,1] that is associa-
tive, commutative, nondecreasing and has 1 as identity; T ∗ will denote a continuous
t-conorm, namely a continuous binary operation on [0,1] that is related to the con-
tinuous t-norm T through

T ∗(x, y) = 1− T (1− x, 1− y).

Definition 1.1. A probabilistic normed space is a quadruple (V, v, τ, τ∗), where V
is a real vector space, τ and τ∗ are continuous triangle functions, and v is a mapping
from V into ∆+ such that, for all p, q in V , the following conditions hold:

(PN1) vp = ε0 if and only if p = θ, θ being the null vector in V ;
(PN2) ν−p = νp;
PN3) vp+q ≥ τ(νp, νq);
(PN4) νp ≤ τ∗(ναp, v(1−α)p), for all α in [0,1].

If, instead of (PN1), we only have vθ = ε0, then we shall speak of a Probabilistic
Pseudo Normed Space, briefly a PPN space. If the inequality (PN4) is replaced by
the equality νP = τM (ναp, v(1−α)p), then the PN space is called a Serstnev space.
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The pair (V, v) is said to be a Probabilistic Seminormed Space (briefly a PSN space)
if v : V → ∆+ satisfies (PN1) and (PN2).

There is a (ε, λ)-topology in the PN space (V, v, τ, τ∗) which is generated by the
family of neighborhoods, Np of p ∈ V in the following way:

Np(ε, λ) = {Np(ε, λ)}ε>0,λ∈(0,1) , Np(ε, λ) = {q ∈ V : vq−p(ε) > 1− λ},

and the strong topology in the PN space (V, v, τ, τ∗), is defined by the neighborhoods

Up(δ) = {Up(δ)}δ>0 , Up(δ) = {q ∈ V : vq−p(δ) > 1− δ}.

The strong neighborhood system is equivalent to (ε, λ)-neighborhoods. Hence the
strong topology coincides with the (ε, λ)-topology generated by the (ε, λ)-neighbor-
hoods (see [13]).

We shall also need the following lemma which is due to Lafuerza Guillen et al.
[8].

Lemma 1.1. If f : (V, v, τ, τ∗) → (<, µ, σ, σ∗), α is not a positive integer, and A is
D-bounded, there is D-bounded, there is n ∈ Z, such that n− 1 < α < n, for every
p ∈ A one has

µαfp
≥ µnfp

.

Now we are going to review the most important contraction functions in PN space.

Definition 1.2. Let (V, v, τ, τ∗) be PN spaces. A mapping f : V → V is called a:

(i) C-contraction [4], if there exists k ∈ (0, 1) such that for all p ∈ V the follow-
ing implication holds:

x ∈ (0,∞), vp(x) > 1− x⇒ vfp(kx) > 1− kx.

(ii) weak C-contraction [9] (shortly w−C contraction), if there exists k ∈ (0, 1)
such that for all p ∈ V the following implication holds:

x ∈ (0, 1), vp(x) > 1− x⇒ vfp(kx) > 1− kx.

(iii) (ε − λ)-probabilistic contraction [5], if there exists k ∈ (0, 1) such that ε >
0, λ ∈ (0, 1) and for all p ∈ V the following implication holds:

vp(ε) > 1− λ⇒ vfp(kε) > 1− kλ.

(iv) (k1, k2)-contraction, of (ε − λ)-type (k1, k2 ∈ (0, 1))[9], if ε > 0, λ ∈ (0, 1)
and for all p ∈ V the following implication holds:

vp(ε) > 1− λ⇒ vfp(k1ε) > 1− k2λ.

(v) B-contraction [13], if there exists a k ∈ (0, 1) such that for every p ∈ V and
every x > 0:

vfp(kx) ≥ vp(x).
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(vi) strict B-contraction [12], if, for some k ∈ (0, 1),

vfp(kx) ≥
vp(x)

vp(x) + k(1− vp(x))
, ∀p ∈ V,∀x > 0.

(vii) probabilistic contraction of type r ∈ (0, 1) [11], if there exists k ∈ (0, 1) such
that:

vfp(krx) ≥
vp(x)

vp(x) + k1−r(1− vp(x))
,∀p ∈ V,∀x > 0.

2. Bounded contraction functions

The definition of bounded sets in a probabilistic normed space was defined in [7].

Definition 2.1. Let (V, v, τ, τ∗) be a PN space and A be the nonempty subset of V .
The probabilistic radius of A is the function RA defined on <+ by

RA(x) =

{
l− inf

p∈A
vp(x), x ∈ [0, +∞);

1, x ∈ +∞.

where l−f(x) denotes the left limit of the function f at the point x.

Definition 2.2. A nonempty set A in a PN space (V, v, τ, τ∗) is said to be:

(a) Certainly bounded, if RA(x0) = 1 for some x0 ∈ (0, +∞);
(b) Perhaps bounded, if one has RA(x) < 1 for every x ∈ (0, +∞) and

l−RA(+∞) = 1;
(c) Perhaps unbounded, if RA(x0) > 0 for some x0 ∈ (0, +∞) and l−RA(+∞) ∈

(0, 1);
(d) Certainly unbounded, if l−RA(+∞) = 0, i.e., if RA = ε∞.

Moreover, A will be said to be distributionally bounded, or simply D-bounded if
either (a) or (b) holds, i.e., if RA ∈ D+; otherwise, i.e., if RA ∈ ∆+\D+, A is said
to be D-unbounded. Note that in the previous definition we have used inf

p∈A
vp(x0)

instead of RA (see Lafuerza-Guillen et al. [7]).
The definition of a bounded linear operator in PN space was previously studied

by Lafuerza Guillen et al. [7].

Definition 2.3. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map f :
V → V ′ is said to be bounded if it satisfies either one of the following conditions.

(1) Certainly bounded: if every certainly bounded set A of the space (V, v, τ, τ∗)
has, as image by f a certainly bounded set fA of the space (V ′, µ, σ, σ∗), i.e.,
if there exists x0 ∈ (0,+∞) such that vP (x0) = 1 for all p ∈ A, then there
exists x1 ∈ (0,+∞) such that µfp(x1) = 1 for all p ∈ A.

(2) D-Bounded: if it maps every D-bounded set of V into a D-bounded set of V ′,
i.e., if, and only if, it satisfies the implication, where ϕA(x) = inf

p∈A
vp(x0),

lim
x→+∞

ϕA(x) = 1 ⇒ lim
x→+∞

ϕfA(x) = 1,

for every nonempty subset A of V .
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(3) Strongly B-bounded: if there exists a constant k > 0 such that, for every
p ∈ V and for every x > 0, µfp(x) ≥ vp(x/k), or equivalently if there exists
a constant h > 0 such that, for every p ∈ V and for every x > 0,

µfp(hx) ≥ vp(x).

We remark this definition enables to conclude the boundedness of one kind
of contraction functions in PN space (Definition 1.3(v)). Also I. Jebril and
R. Ali [6] used notions (a), (b), (c) together with the following condition:

(4) Strongly C-bounded: if there exists a constant h ∈ (0, 1) such that, for every
p ∈ V and for every x > 0,

vp(x) > 1− x⇒ µfp(hx) > 1− hx.

Also, this definition enables to conclude the boundedness of three kinds of contrac-
tion functions in PN space (see Definition 1.3 (i), (ii) and (iii)). Nevertheless, it fails
to include most of the (probabilistic) contraction functions.

Now we are going to introduce a definition that enables us to conclude the bound-
edness of all kinds of contraction function in PN space.

Definition 2.4. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map f :
V → V ′ is said to be bounded if it satisfies either one of (a), (b), (c) or the following
condition.

(d) Strongly ψ−bounded: if there exists a ψ : [0,∞) → [0,∞) such that
ψ(x) < x, for all x > 0 so that the following implication holds for every
p ∈ V for every x > 0:

vp(x) > 1− x⇒ µfp(ψ(x)) > 1− ψ(x).

The main idea of a new definition it is used the notions of strongly ψ−bounded, this
notions is generalize the condition (f) where, ψ(x) = hx,∀h ∈ (0, 1) &x > 0.

In [6] and [7] the authors show that the notions of strongly C-bounded, strongly
B-bounded, D-bounded and certainly bounded do not imply each other. Then in
order to show the relation between (a), (b), (c), and (f) it is enough to introduce an
example about a mapping which is strongly B-bounded operator but which is not
strongly ψ−bounded also the converse need not be true.

Example 2.1. Let V = V ′ = R and v0 = µ0 = ε0, while, if p 6= 0, then, for x > 0,
let vp(x) = G( x|p| ) , µp(x) = U( x|p| ) , where

G(x) =
{

9
10 , 0 < x ≤ 1,
1, 1 < x ≤ ∞,

,

U(x) =
{

1
10 , 0 < x ≤ 1,
1, 1 < x ≤ ∞,

Consider now the identity map I : (R, | . | , G, v) → (R, | . | , U, µ).

i. I is strongly B-bounded operator, such that for every p ∈ R and every x > 0,
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let k > max{ |p|x , 1} then

µIp(kx) = µp(kx) = U(
kx

|p|
) = 1 = G(

kx

|p|
) = vp(kx) > vp(x).

ii. I is not strongly ψ-bounded, such that for every mapping ψ(x) < x ∀ x > 0.

Let p ∈ (x, 9/10), x ∈ (1/10, 8/10), the condition vp(x) > 1 − x is satisfied, but we
note that

µIp(ψ(x)) = U(ψ(x)
|p| ) ≤ U( x|p| ) = 1

10 < 1− x < 1− ψ(x).

Now we are going to show that boundedness as defined in 2.5 will include all the
probabilistic contraction functions available in the literature.

All mappings from the previous Definition 1.3 are bounded linear operators as
the following argument show:

(1) If ψ(x) = kx, k ∈ (0, 1) then (i), (ii) and (iii) are strongly ψ-bounded.
(2) If f is a (k1, k2) contraction of (ε, λ)-type for k = max{k1, k2} we obtain

that

vfp(k1ε) > 1− k2λ⇒ vfp(kε) > 1− k2λ⇒ vfp(kε) > 1− kλ ,

thus the class of (k1, k2) contractions of (ε, λ)-type coincides with that of
(ε, λ)-probabilistic contractions.

(3) Every B-contraction functions is strongly B-bounded.
(4) Let us consider the mapping

ψ(x) = kx
1−x+kx , k ∈ (h, 1), where h = max{0, x−1/x}.

In addition, we can easily see that ψ(x) < x,∀x ∈ (0, 1) and ψ(x) > kx,
∀x > 0 and that

vp(x) > 1− x⇔ vp(x)
vp(x) + k(1− vp(x))

> 1−Ψ(x).

Consequently, if f is a strict B-contraction then

vp(x) > 1− x⇒ vp(x)
vp(x)+k(1−vp(x)) > 1− ψ(x)

⇒ vfp(kx) > 1− ψ(x)
⇒ vfp(ψ(x)) > 1− ψ(x).

Thus every strict B-contraction is strongly ψ-bounded.
(5) If f is a probabilistic contraction of type r ∈ (0, 1) and λ = max{kr, k1−r}

then

vfp(λx) ≥ vfp(krx) ≥ vp(x)
vp(x)+k1−r(1−vp(x)) ≥

vp(x)
vp(x)+λ(1−vp(x)) .

Thus, every probabilistic contraction of type r ∈ (0, 1) is a strictB-contraction,
so it is also strongly ψ-bounded.

We recall the following theorem from [7].

Theorem 2.1. Every strongly B-bounded linear operator f is continuous with re-
spect to the strong topologies in (V, v, τ, τ∗)and (V ′, µ, σ, σ∗), respectively.
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In the following theorem we show that every strongly ψ-bounded linear operator
f is continuous.

Theorem 2.2. Every strongly ψ-bounded linear operator f is continuous.

Proof. Due to Corollary 3.1[7], it suffices to verify that f is continuous at θ, the
null vector in V . Let Nθ′(ε), with ε > 0, be an arbitrary neighborhood of θ′ and
λ ∈ (0, 1) are given, we choose δ such that 0 < ψ(δ) < min{ε, λ}, then:

p ∈ Nθ(δ) ⇔ vp(δ) > 1− δ ⇒ µfp(ψ(δ)) > 1− ψ(δ)
⇒ µfp(ε) > 1− ψ(δ) > 1− λ,

that is fp ∈ Nθ′(ε, λ); in other words, f is continuous. �

3. Classes of linear operators in PN space

Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces, and let L(V, V ′) be the vector space
of linear operators f : V → V ′.

The following is our definition of some classes in PN space.

Definition 3.1. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. Then

(1) Lc(V, V ′) is called a certainly bounded subset, where
Lc(V, V ′) = {f : V → V ′, f is a certainly bounded linear operators }.

(2) LD(V, V ′) is called a D-bounded subset, where
LD(V, V ′) = {f : V → V ′, f is a D-bounded linear operators}.

(3) LB(V, V ′) is called a B-bounded subset, where LB(V, V ′) = {f : V → V ′, f
is a strongly B-bounded linear operators }.

(4) Lψ(V, V ′) is called a ψ-bounded subset, where Lψ(V, V ′) = {f : V → V ′, f
is a strongly ψ-bounded linear operators}.

After Definition 3.1, we are going to prove that Lc(V, V ′), LD(V, V ′), LB(V, V ′)
and Lψ(V, V ′) are linear spaces.

Theorem 3.1. Lc(V, V ′) is a linear space.

Proof. Let f and g be two certainly bounded linear operators from (V, v, τ, τ∗) into
(V, µ, σ, σ∗) and let A be certainly bounded subset of V . By Definition 2.4, we
note that if there exists x0 ∈ (0,+∞) such that vP (x0) = 1 for all p ∈ A, then
there exists x1 ∈ (0,+∞) such that µfp(x1) = 1 for all p ∈ A and if there exists
x2 ∈ (0,+∞) such that vP (x2) = 1 for all p ∈ A, then there exists x3 ∈ (0,+∞)
such that µgp(x3) = 1 for all p ∈ A. Also

µfp+gp
(x1 + x3) ≥ σ(µfp

(x1), µgp
(x3)) ≥ 1,

hence, µfp+gp
(x1 + x3) = 1 and f + g is certainly bounded.

Now let α ∈ < and f ∈ Lc(V, V ′). Because of (PN2), it suffices to consider the
case α ≥ 0. If either α = 0 or α = 1, then αf is certainly bounded.

Proceeding by induction, assume that αf ∈ Lc(V,R) for α = 0, 1, 2, . . . , n − 1
with n ∈ N. Then for every p ∈ A,

µnfp
≥ σ(µ(n−1)fp

, µfp
) ≥ 1,
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so that µnfp = 1, i.e. αf is certainly bounded. Therefore αf is certainly bounded
for every positive integer n. If α is not a positive integer, there is n ∈ Z, such that
n− 1 < α < n; therefore by Lemma 1.1, every p ∈ A one has

µαfp ≥ µnfp ,

and whence
µαfp = 1,

so that αf is certainly bounded. �

Theorem 3.2. LD(V, V ′) is a linear space, where σ(D+, D+) ⊂ D+.

Proof. Let f and g be twoD-bounded linear operators from (V, v, τ, τ∗) into (V ′, µ, σ, σ∗).
Thus, R′fA and R′gA are in D+. Since, for every p ∈ A, one has

µfp+gp ≥ σ(µfp
, µgp

) ≥ σ(R′fA, R
′
gA),

which belong to D+, also R′(f+g)A belong to D+ and f + g is D-bounded. Now let
α ∈ < and f ∈ LD(V, V ′). Because of (PN2), it suffices to consider case α ≥ 0. If
either α = 0 or α = 1, then αf is strongly D-bounded.

Proceeding by induction, assume that αf ∈ LD(V, V ′), i.e. R′αfA ∈ D+ for
α = 0, 1, 2, . . . , n− 1 with n ∈ N. Then, for every p ∈ A,

µnfp ≥ σ(µ(n−1)fp, µfp),

and hence
R′nfp ≥ σ(R′(n−1)fA, R

′
fA),

R′nfA ∈ D+ and nf is D-bounded. Therefore nf is D-bounded for every positive
integer n. If α is not a positive integer, there is n ∈ Z, such that n − 1 < α < n;
therefore Lemma 1.1 , every p ∈ A one has µαfp

≥ µnfp
, whence RαA ≥ RnfA which

means that αf is D-bounded. �

Theorem 3.3. When σ = min, then LB(V, V ′) is a linear space.

Proof. Let f and g be two strongly B-bounded linear operators from (V, v, τ, τ∗) into
(V ′, µ, σ, σ∗). By Definition 2.4, for every p ∈ V and x > 0, there exist k1, k1 > 0
such that:

(3.1) µfp(x) ≥ vp(
x

k1
) ,

and

(3.2) µgp(x) ≥ vp(
x

k2
) .

From (3.1) and (3.2) we note that:

(3.3) µ(f+g)p(x) = µfp+gp(x) ≥ σ(µfp(x2 ), µgp(x2 )) ≥ σ((vfp( x
2k1

), vgp( x
2k2

)) .

Choose k = max{2k1, 2k2} + 1. Thus, k ≥ 2k1 and k ≥ 2k2, this implies that
x

2k1
≥ x

k and x
2k2

≥ x
k , ∀ x ≥ 0. Thus

vp( x
2k1

) ≥ vp(xk ) and vp( x
2k2

) ≥ vp(xk ), ∀x ≥ 0.
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Thus min
{
vp( x

2k1
), vp( x

2k2
)
}
≥ vp(xk ).

Now from (3.3) we get µ(f+g)p(x) ≥ vp(xk ), ∀x ≥ 0, so that f + g is strongly
B-bounded.

Now let α ∈ < and f ∈ LB(V, V ′). Because of (PN2), it suffices to consider case
α ≥ 0. If either α = 0 or α = 1, then αf is strongly B-bounded.

Proceeding by induction, assume that αf ∈ LB(V, V ′) for α = 0, 1, 2, 3, .., n − 1
with n(≥ 2) ∈ N from (3.1) and (3.2), for every p ∈ A, then

µnfp(x) ≥ σ(µ(n−1)fp(x2 ), µfp(x2 )) ≥ σ(v(n−1)p( x
2k1

), vp( x
2k2

))
≥ σ(v(n−1)p(xk ), vp(xk )) ≥ min(v(n−1)p(xk ), vp(xk )) = v(n−1)p(xk ) > vnp(xk ).

So that αf is strongly B-bounded. Therefore αf is strongly B-bounded for every
positive integer n. If α is not a positive integer, there is n ∈ Z, such that n − 1 <
α < n; therefore Lemma 1.1, every p ∈ A one has µαfp

≥ µnfp
, which means that

αf is strongly B-bounded. This implies that f + g is strongly B-bounded. Hence
LB(V, V ′) is a linear space. �

Theorem 3.4. When σ = min, Lψ(V, V ′) is a linear space.

Proof. Let f and g be two strongly ψ-bounded linear operator from (V, v, τ, τ∗) into
(V ′, µ, σ, σ∗). By Definition 2.4, for every p ∈ V and x > 0, there exist ψ1(x) < x
and ψ2(y) < y, such that

vp(x) > 1− x⇒ µfp
(ψ1(x)) > 1− ψ1(x) ,

vp(y) > 1− y ⇒ µgp
(ψ2(y)) > 1− ψ2(y) .

Let ψ(x+ y) = ψ1(x) + ψ2(y) < x+ y. If vp(x+ y) > 1− (x+ y), then

µ(f+g)p
(ψ(x+ y)) = µfp+gp

(ψ1(x) + ψ2(y))
≥ σ(µfp(ψ1(x), µgp(ψ2(y)))
≥ min(µfp(ψ1(x), µgp(ψ2(y)))
> 1− ψ(x+ y).

So f + g is strongly ψ-bounded.
Now let α ∈ < and f ∈ Lψ(V, V ′). Because of (PN2), it suffices to consider case

α ≥ 0. If either α = 0 or α = 1, then αf is strongly ψ-bounded.
Proceeding by induction, assume that αf ∈ Lψ(V, V ′) for α = 0, 1, 2, . . . , n − 1

with n ∈ N. Then, for every p ∈ A, let ψ(x+ y) > ψ1(x) + ψ2(y)

µnfp(ψ(x+ y)) ≥ σ(µ(n−1)fp
(Ψ1(x),Ψ2(y)) > 1−Ψ(x+ y).

So that αf is strongly ψ-bounded. Therefore αf is strongly ψ-bounded for every
positive integer n. If α is not a positive integer, there is n ∈ Z, such that n − 1 <
α < n; therefore Lemma 1.1, every p ∈ A one has µαfp ≥ µngp , which means that
αf is strongly ψ-bounded. �
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[7] B. Lafuerza Guillén, J. A. Rodŕıgues Lallena and C. Sempi, A study of boundedness in prob-

abilistic normed spaces, J. Math. Anal. Appl. 232 (1999), 183–196
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