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Abstract. A three-fold triple system is a design wherein each pair of treat-

ments occurs exactly once. One way to construct this design is by using an

idempotent commutative quasigroup. This paper attempts to provide another
method of constructing a 3-fold triple system. Firstly, we would like to discuss

compatible factorization without multiple edges using a patterned starter con-
struction. Then, we will use this construction to enumerate a distinct 3-fold

triple system for every odd order v > 3.
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1. Introduction

The standard ideas and definitions of a graph are assumed. The complete graph
on n vertices by kn. A one-factor in a graph G refers to a set of edges in which
every vertex appears exactly once, and the partition of the edge-set of G into one-
factors is called a one-factorization. From this explanation it is obvious that for it
to possess one-factorization, a graph with one-factor must have an even number of
vertices.

If G has an odd number of vertices, then a near-one-factor consisting of one
vertex (the focus) and a set of disjoint edges that contain every other vertex occurs.
In such a situation, a near-one-factorization refers to a set of edge-disjoint near one
factor that together contain all the edges.

Given the near-one-factor N = x ab cd · · · yz it will be convenient to refer
it to {xab}{xcd}{xyz} as the set of triples associated with N . A comprehensive
discussion concerning one-factorization can be found in [2], [3], [7], [8], [9] and [10].

Wallis [11] introduces certain designs whose blocks are ordered triples, or triads
subject to certain conditions. One of these designs, called design B, has seven
treatments whose blocks are 35 triples of the treatment (refer to Table 1).

The blocks are arranged in seven rows in the following manner:
i) each block occurs exactly once in the design;
ii) each treatment occurs either twice or three times in each row;
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Table 1. A design for seven treatments

126 316 451
231 427 562
342 531 673
453 642 714
564 753 125
675 164 236
712 275 347

532
643
754
165
276
317
321

674
715
126
237
341
452
563

iii) no two treatments occur together in two or more blocks in any row;
iv) the blocks are ordered so that no treatment occur twice in the same position

in any row.

If we consider column one in Table 1, we see each treatment occurs as a focus
exactly once and each associated triples contains no repetition. In order to discuss
this type of construction, we define such a set of near-one-factor to be a compatible
factorization or CF . They form a ”factorization” of the multigraph, with treat-
ments as vertices, formed by taking the union of the factors with multiplicities
preserved. This multigraph is called the graph of compatible factorization and is
denoted as CF .

Now, it is natural to ask when compatible factorization exist. In the following
sections, we formally define CF and examine the construction of CF . Then we
would like to use this construction to construct a 3-fold triple system such that
each pair of treatments occurs exactly three times.

2. Compatible factorizations

Consider the following combinatorial problem: we are given n vertices and we wish
to construct an array from a certain set of triples of these vertices; each triple
must occur, at most, once in the array. We must arrange the elements in rows and
columns such that in each row no pair of vertices is repeated and the number of
rows equals the number of given vertices. For example, if v = 7 and we want to
produce the following triples:

{123}, {124}, {136}, {134}, {125}, {126}, {137}, {145}, {167}, {236},
{235}, {245}, {345}, {367}, {267}, {257}, {347}, {467}, {567}, {456}, {457}.

We would have 21 different triples with seven vertices. Each vertex would appear
precisely nine times but each pair of elements would not appear a constant number
of times. Since we have seven elements, we shall have seven rows and consequently
three columns. One possible construction is the following:
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F1: 1 23 45 67
F2: 2 14 26 57
F3: 3 16 25 47
F4: 4 13 25 67
F5: 5 12 34 67
F6: 6 12 37 45
F7: 7 13 26 45

C1 C2 C3 C4

In this case we have 7 rows and 4 columns. Now in order to form a triple, we
append C1 with C2, C1 with C3, and C1 with C4 thus obtaining three triples in
each row. For instance, in F1 we have triples {123}, {145}, {167} and by continuing
in the same fashion in F2 through F7, we will generate the desired triples. Any
solution to this problem will be called a compatible factorization of order v and will
be denoted as CF (v).

Definition 2.1. A compatible factorization of order v or CF (v), is an v(v−1)
2 array

that satisfies the following conditions:
i) The entries in row i form a near-one-factor with focus i.
ii) The triples associated with the rows contain no repetitions.

Note that the triples are unordered. For example {456}, {546} are considered
the same triple. An obvious necessary condition for the existence of CF (v) is that
v must be odd.

Theorem 2.1. There exists a compatible factorization for every odd order v >3.

Proof. Suppose v = 2t + 1 >3. Therefore, the near-one-factor from the patterned
starter, with i-th factor is given as:

i(i + 1)(i− 1)(i + 2)(i− 2) · · · (i + n)(i− n) mod v

and is a compatible factorization. �

No CF(3) can exist: with the three symbols 1,2,3 the only possible near-one-
factor with focus 1 being 1 23, the only possible near-one-factor with focus 2 being
2 13, and these two have a common associated triple.

By Theorem 2.1, the first case is order five and there is a unique CF(5) up to
isomorphism. Complete searches show there are 62,800 CF(7) of which only 231 can
be classified up to isomorphism [6] with the number for CF(v) getting arbitrarily
large for other orders.

3. Construction of compatible factorization

Construction of Example 1 is done by trial and error by iterating, in each row, a
pair of vertices in union with an isolated vertex, forming a triple not used in the
previous row. The two cases that will be considered in CF construction are: (i) no
multiple edges, (ii) multiple edges.

However, this paper focuses on constructions with no multiple edges. A discus-
sion on construction with multiple edges can be found in [5].
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Definition 3.1. A compatible factorization with no multiple edges is a near-one-
factor for which the totality of associated triples contains no repetitions.

Theorem 3.1. There exist a compatible factorization with no multiple edges for
every odd orders v > 3.

Proof. This follows from the proof of the Theorem 2.1. �

Table 2 and 3 display examples with no multiple edges of CF(5) and CF(7)
respectively. From Table 2, the associated triples are {125}, {134}, {231}, {245},
{342}, {351}, {453}, {412}, {514}, and {523}. Form Table 3, the associated triples
are {127}, {136}, {145}, ..., {734}. For CF(7) with no multiple edges, there are
exactly two CF(7) up to isomorphism [5].

Table 2. A unique CF(5)

1 25 34
2 31 45
3 42 51
4 53 12
5 14 23

Table 3. CF(7) with no multiple edges

1 27 36 45
2 31 47 56
3 42 51 67
4 53 62 71
5 64 73 12
6 75 14 23
7 16 25 34

4. Three-fold triple system

Definition 4.1. A λ-fold triple system is a pair (S, T ), where S is a finite set
and T is a collection of 3-element subsets of S called triples such that each pair of
distinct elements of S belongs to exactly λ triples of T .

A triple system in which each pair appears exactly once is called a Steiner Triple
System (STS). Such a system exists for all v ≡ 1 or 3 (mod 6). In 1961, Hanani
[4] determined that a triple system of n elements and λ-fold exists if and only if
λ(n− 1) ≡ 0(mod 6) and λn(n− 1) ≡ 0(mod 6).

In this section we would like to construct a triple system such that each pair of
treatments occurs exactly three times (the 3-fold triple system). Previous construc-
tions of the 3-fold triple system utilised idempotent commutative quasigroups [7].
In contrast, we would like to provide another alternative method in the construction
of a 3-fold triple system.
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Table 4. Commutative idempotent quasigroup of order 7

◦ 1 2 3 4 5 6 7
1 1 6 4 2 7 5 3
2 4 2 7 5 3 1 6
3 7 5 3 1 6 4 2
4 3 1 6 4 2 7 5
5 6 4 2 7 5 3 1
6 2 7 5 3 1 6 4
7 5 3 1 6 4 2 7

Case 1. 3-fold triple system construction using idempotent commutative quasi-
group

Definition 4.2. A quasigroup of order n is a pair (Q, ◦), where Q is a set of size
n and “◦” is a binary operation on Q such that for every pair of elements a, b ∈ Q,
the equations a ◦ x = b and y ◦ a = b have unique solutions.

Definition 4.3. A quasigroup is said to be idempotent if cell (i, i) contains symbol
i for 1 ≤ i ≤ n. A quasigroup is said to be commutative if cells (i, j) and (j, i)
contain the same symbol, for all 1 ≤ i, j ≤ n.

Theorem 4.1. There exist a 3-fold triple system of every odd order v > 1.

Proof. The following construction provides a proof of this theorem. The 3-fold
construction. Let (Q, ◦ ) be an idempotent commutative quasigroup of order v.
Let T = {{a, b, a ◦ b} |a <b ∈ Q}. Then (Q, T) is a 3-fold triple system of order
v. �

By using Table 4 and Theorem 3, we have the following 3-fold triple system.

125 234 375
132 257 451
146 264 451
153 271 472
167 347 562
174 354 576
236 361 673

Case 2. 3-fold triple system construction using compatible factorization

Theorem 4.2. There exist a 3-fold triple system of every odd order v > 3 with a
distinct triple.

Proof. Suppose v = 2t + 1 > 3. Let Q be a compatible factorization from near-
one-factor from the patterned starter with i-th factor by Theorem 2.1. Now let
T = {i(i + 1)(i − 1), i(i + 2)(i − 2), · · · i(i + n)(i − n)} mod v. Then (Q,T ) is a
3-fold triple system with a distinct triple. �

In this case, each triple occurs exactly once and each pair occurs exactly three
times.
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Table 5. Compatible factorization of order 7 and the associated 3-fold triple systems

1 27 36 45
2 31 47 56
3 42 51 67
4 53 62 71
5 64 73 12
6 75 14 23
7 16 25 34

127 136 145
231 247 256
342 351 367
453 462 471
564 573 512
675 614 623
716 725 734

5. Concluding remarks

We have constructed compatible factorization without multiple edges from the gen-
eralization of near-one-factorization. We have also proven the existence for such
factorization. Then we discussed two different approaches in designing a 3-fold
triple system. The first case used a commutative idempotent quasigroup approach
while the alternative method used compatible factorization approach. The differ-
ence between the two being that the alternative method provides for a distinct
triple (refer Definition 2.1) which explains for the non-existence of the case 3-fold
triple system for order three when compatible factorizations are used.
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