BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Note on Transformations of Posets with the Same Upper Bound Graph and Minimal Elements

Kenjiro Ogawa and Morimasa Tsuchiya

Department of Mathematical Sciences, Tokai University Hiratsuka 259-1292, Japan tsuchiya@ss.u-tokai.ac.jp

Abstract. Two posets with the same canonical poset and the same upper bound graph can be transformed into each other by a finite sequence of two kinds of transformations, called x < y-additions and x < y-deletions on minimal elements.

2000 Mathematics Subject Classification: 05C62

Key words and phrases: Upper bound graph, poset operation, canonical poset.

1. Introduction

In this paper, we consider finite undirected simple graphs and finite posets. For a poset $P = (X, \leq)$, the upper bound graph (UB-graph) of $P = (X, \leq)$ is the graph $UB(P) = (X, E_{UB(P)})$, where $uv \in E_{UB(P)}$ if and only if $u \neq v$ and there exists $m \in X$ such that $u, v \leq_P m$. McMorris and Zaslavsky introduced this concept and gave a characterization of upper bound graphs [2].

Figure 1 shows two different posets which have the same upper bound graph. This example induces an interest in properties of posets with the same UB-graph.

Figure 1. Posets P, Q and UB(P) = UB(Q) = G.

In [3] and [4] we deal with sequences of transformations that convert a poset to any other poset that has the same upper bound graph. In this paper we show that the transformations can be of a special kind involving minimal elements of the posets at each step.

Received: September 13, 2005; Revised: January 20, 2006.

2. Transformations of posets

For a poset $P = (X, \leq)$ and $x \in X$, $L_P(x) = \{y \in X ; y < x\}$ and $U_P(x) = \{y \in X ; y > x\}$. Furthermore V(P) is X, $\max(P)$ is the set of all maximal elements of P, $\min(P)$ is the set of all minimal elements of P. For a poset P and $x, y \in V(P), x \parallel_P y$ shows that x is incomparable with y in P. For a poset P, the canonical poset of P is the poset can(P) on the set V(P) in which $x \leq_{\operatorname{can}(P)} y$ if and only if (1) $y \in \max(P)$ and $x \leq_P y$, or (2) x = y.

A *clique* in the graph G is the vertex set of a maximal complete subgraph. In some cases, we consider that a clique is a maximal complete subgraph. We say a family C of complete subgraphs *edge covers* G if for each edge $uv \in E(G)$, there exists $C \in C$ such that $u, v \in C$.

Theorem 2.1. [2] Let G be a graph with n vertices. The graph G is a UB-graph if and only if there exists a family $C = \{C_1, C_2, ..., C_k\}$ of complete subgraphs of G such that

- (a) C edge covers G,
- (b) for each C_i , there exists a vertex $v_i \in C_i (\bigcup_{j \neq i} C_j)$.

Furthermore, such a family C must consist of cliques of G and is the only such family if G has no isolated vertices.

For a UB-graph G and an edge clique cover $C = \{C_1, C_2, ..., C_k\}$ satisfying the conditions of Theorem 2.1, a vertex subset $K_{UB}(G)$ that consists of one element of each set $C_i - (\bigcup_{j \neq i} C_j)$ is called a *kernel* of G. We know a fact that, given any $K_{UB}(G)$, there exists a poset P such that G = UB(P) and $K_{UB}(G) = \max(P)$.

In the remainder of this paper, we consider a fixed labeled connected UB-graph G with a fixed kernel $K_{UB}(G)$.

We define $\mathcal{P}_{UB}(G) = \{P ; UB(P) = G, \max(P) = K_{UB}(G)\}$. Each poset Pin $\mathcal{P}_{UB}(G)$ is identified with the set of comparable pairs in P. Thus $\mathcal{P}_{UB}(G)$ is a poset by set inclusion. The canonical poset $\operatorname{can}(G)$ of G is the canonical poset of any poset P in $\mathcal{P}_{UB}(G)$. By Theorem 2.1, the canonical poset is independent of the choice. For a UB-graph G, the canonical poset $\operatorname{can}(G)$ is a height 1 poset and $V(\operatorname{can}(G)) = \max(\operatorname{can}(G)) \cup \min(\operatorname{can}(G))$.

To consider some relations among posets of $\mathcal{P}_{UB}(G)$, we need some concepts as follows: For elements x and y in a poset P such that $y \notin \max(P)$ and x is covered by y, the poset $P_{x < y}^-$ is obtained from P by subtracting the relation $x \leq y$ from P, and we call this transformation the x < y-deletion. For an incomparable pair x and y in a poset P such that $y \notin \max(P)$, $U_P(y) \subseteq U_P(x)$ and $L_P(y) \supseteq L_P(x)$, the poset $P_{x < y}^+$ is obtained from P by adding the relation $x \leq y$ to P, and we call this transformation the x < y-addition. We obtain the following facts on these transformations.

Fact 1. For a poset P,

- (1) P and $P_{x < y}^{-}$ have the same UB-graph,
- (2) P and $P_{x < y}^+$ also have the same UB-graph, and
- (3) x < y-additions and x < y-deletions are inverse transformations to each other.

By these facts, we obtained the following result.

Theorem 2.2. [3] Let G be a UB-graph and P, Q be posets in $\mathcal{P}_{UB}(G)$. Then

- (1) P can be transformed into Q by a sequence of x < y-deletions and x < y-additions.
- (2) Every poset in $\mathcal{P}_{UB}(G)$ is obtained from can(G) by x < y-additions only.

For an x < y-addition, we need to check two conditions: $U_P(y) \subseteq U_P(x)$ and $L_P(y) \supseteq L_P(x)$. If x is a minimal element of a poset P, $L_P(x) = \emptyset$ and we only check the condition $U_P(y) \subseteq U_P(x)$ for an x < y-addition on an incomparable pair x and y. The next result deals with x < y-additions on a minimal element x.

Theorem 2.3. Let G be a UB-graph and P be a poset in $\mathcal{P}_{UB}(G)$. The poset P is obtained from can(P) by x < y-additions only, where x is a minimal element of the poset at each step.

Proof. Since P is finite and every deletion reduces the number of comparable pairs in P, we obtain the following sequence of x < y-deletions, where x is a minimal element of the poset of each step:

$$P \xrightarrow{x < y - deletion} \dots \xrightarrow{x < y - deletion} \operatorname{can}(P) = \operatorname{can}(G)$$
,

In each step of this sequence of x < y-deletions, $U_{P_{x<y}^-}(x) \supseteq U_{P_{x<y}^-}(y)$, x is incomparable with y in $P_{x<y}^-$ and a minimal element of $P_{x<y}^-$, and $y \notin \max(P_{x<y}^-)$. Thus the inverse operations of the above x < y-deletions are x < y-additions on x, ysatisfying that $x \parallel_P y$, $U_P(x) \supseteq U_P(y)$, x is a minimal element of P and y is not a maximal element of P. So we obtain the following sequence of x < y-additions, where x is a minimal element of the poset at each step.

$$P \xleftarrow{x < y - addition} \dots \xleftarrow{x < y - addition} \operatorname{can}(P) = \operatorname{can}(G).$$

From this result we obtain the next result.

Theorem 2.4. Let G be a UB-graph and P, Q be posets in $\mathcal{P}_{UB}(G)$. The poset P can be transformed into Q by a sequence of x < y-deletions and x < y-additions, where x is a minimal element of the poset at each step and all the deletions can precede all the additions.

Proof. As in the proof of Theorem 2.3, P can be reduced to can(G) by x < y-deletions and then can(G) can be enlarged to Q by x < y-additions, where x is always a minimal element of the poset at each step.

Acknowledgments. We thank Prof. H.Era and referees for their valuable suggestions.

References

- H. Era, K. Ogawa and M. Tsuchiya, On transformations of posets which have the same bound graph, *Discrete Math.* 235 (1–3)(2001), 215–220.
- [2] F. R. McMorris and T. Zaslavsky, Bound graphs of a partially ordered set, J. Combin. Inform. System Sci. 7(2) (1982), 134–138.

181

K. Ogawa and M. Tsuchiya

- K. Ogawa, On distances of posets with the same upper bound graphs, Yokohama Math. J. 47 (1999), Special Issue, 231–237.
- [4] K. Ogawa and M. Tsuchiya, Note on distances of posets whose double bound graphs are the same, *Util. Math.* **67** (2005), 153–160.