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1. Introduction

In this paper, we consider finite undirected simple graphs and finite posets. For a
poset P = (X, <), the upper bound graph (UB-graph) of P = (X, <) is the graph
UB(P) = (X, Eyp(p)), where uv € Eypgp) if and only if u # v and there exists
m € X such that u,v <p m. McMorris and Zaslavsky introduced this concept and
gave a characterization of upper bound graphs [2].

Figure 1 shows two different posets which have the same upper bound graph.
This example induces an interest in properties of posets with the same UB-graph.

. P 1 Q 1 UB(P)=UB(Q)

Figure 1. Posets P, Q and UB(P) =UB(Q) = G.

In [3] and [4] we deal with sequences of transformations that convert a poset
to any other poset that has the same upper bound graph. In this paper we show
that the transformations can be of a special kind involving minimal elements of the
posets at each step.
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2. Transformations of posets

For a poset P = (X,<) and z € X, Lp(z) = {y € X ; y < z} and Up(x)
={y € X ; y > z}. Furthermore V(P) is X, max(P) is the set of all maximal
elements of P, min(P) is the set of all minimal elements of P. For a poset P and
x,y € V(P), x ||p y shows that z is incomparable with y in P. For a poset P, the
canonical poset of P is the poset can(P) on the set V(P) in which x <c.npy y if
and only if (1) y € max(P) and z <p y, or (2) z = y.

A clique in the graph G is the vertex set of a maximal complete subgraph. In
some cases, we consider that a clique is a maximal complete subgraph. We say a
family C of complete subgraphs edge covers G if for each edge uv € E(G), there
exists C € C such that u,v € C.

Theorem 2.1. [2] Let G be a graph with n vertices. The graph G is a UB-graph
if and only if there exists a family C = {C4,Cy, ...,Cx} of complete subgraphs of G
such that

(a) C edge covers G,
(b) for each C;, there exists a vertex v; € C; — (U, Cj)-

Furthermore, such a family C must consist of cliques of G and is the only such
family if G has no isolated vertices.

For a UB-graph G and an edge clique cover C = {C1,Cy, ..., C)} satisfying the
conditions of Theorem 2.1, a vertex subset Ky p(G) that consists of one element of
each set C; — (U4, Cj) is called a kernel of G. We know a fact that, given any
Kyp(G), there exists a poset P such that G = UB(P) and Kyp(G) = max(P).

In the remainder of this paper, we consider a fixed labeled connected UB-graph
G with a fixed kernel Kyp(G).

We define Pyg(G) = {P ; UB(P) = G, max(P) = Kyp(G)}. Each poset P
in Pyp(G) is identified with the set of comparable pairs in P. Thus Pyp(G) is a
poset by set inclusion. The canonical poset can(G) of G is the canonical poset of
any poset P in Pyp(G). By Theorem 2.1, the canonical poset is independent of
the choice. For a UB-graph G, the canonical poset can(G) is a height 1 poset and
V(can(G)) = max(can(G)) U min(can(G)).

To consider some relations among posets of Pyp(G), we need some concepts as
follows: For elements  and y in a poset P such that y ¢ max(P) and z is covered
by y, the poset P,_, is obtained from P by subtracting the relation z < y from
P, and we call this transformation the z < y-deletion. For an incomparable pair
2 and y in a poset P such that y ¢ max(P), Up(y) C Up(z) and Lp(y) 2 Lp(z),
the poset P;<y is obtained from P by adding the relation < y to P, and we call
this transformation the z < y-addition. We obtain the following facts on these
transformations.

Fact 1. For a poset P,
(1) P and P,.

w<y have the same UB-graph,
(2) P and Py

<y also have the same UB-graph, and
(3) © < y-additions and x < y-deletions are inverse transformations to each
other.
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By these facts, we obtained the following result.

Theorem 2.2. [3] Let G be a UB-graph and P, Q be posets in Pyp(G). Then

(1) P can be transformed into Q by a sequence of x < y-deletions and x < y-
additions.
(2) Ewvery poset in Pyp(G) is obtained from can(G) by x < y-additions only.

For an z < y-addition, we need to check two conditions: Up(y) C Up(x) and
Lp(y) 2 Lp(z). If x is a minimal element of a poset P, Lp(z) = () and we only
check the condition Up(y) C Up(z) for an & < y-addition on an incomparable pair
2 and y. The next result deals with < y-additions on a minimal element z.

Theorem 2.3. Let G be a UB-graph and P be a poset in Pyp(G). The poset P is
obtained from can(P) by x < y-additions only, where x is a minimal element of the
poset at each step.

Proof. Since P is finite and every deletion reduces the number of comparable pairs
in P, we obtain the following sequence of z < y-deletions, where = is a minimal
element of the poset of each step:

P

r<y—deletion xr<y—deletion

can(P) = can(G) ,

In each step of this sequence of x < y-deletions, U -~ () 2 UP_< (y), z is
<y <y

incomparable with y in P,_, and a minimal element of P,_,, and y ¢ max(P,_,).
Thus the inverse operations of the above x < y-deletions are z < y-additions on z,y
satisfying that = ||p y, Up(z) 2 Up(y), = is a minimal element of P and y is not
a maximal element of P. So we obtain the following sequence of x < y-additions,

where z is a minimal element of the poset at each step.

P z<y—addition N z<y—addition can(P) = can(G).

From this result we obtain the next result.

Theorem 2.4. Let G be a UB-graph and P,Q be posets in Pyp(G). The poset P
can be transformed into Q by a sequence of x < y-deletions and x < y-additions,
where x is a minimal element of the poset at each step and all the deletions can
precede all the additions.

Proof. As in the proof of Theorem 2.3, P can be reduced to can(G) by = < y-
deletions and then can(G) can be enlarged to @ by x < y-additiions, where z is
always a minimal element of the poset at each step. O
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