# Note on Transformations of Posets with the Same Upper Bound Graph and Minimal Elements 

Kenjiro Ogawa and Morimasa Tsuchiya<br>Department of Mathematical Sciences, Tokai University<br>Hiratsuka 259-1292, Japan<br>tsuchiya@ss.u-tokai.ac.jp


#### Abstract

Two posets with the same canonical poset and the same upper bound graph can be transformed into each other by a finite sequence of two kinds of transformations, called $x<y$-additions and $x<y$-deletions on minimal elements.


2000 Mathematics Subject Classification: 05C62
Key words and phrases: Upper bound graph, poset operation, canonical poset.

## 1. Introduction

In this paper, we consider finite undirected simple graphs and finite posets. For a poset $P=(X, \leq)$, the upper bound graph (UB-graph) of $P=(X, \leq)$ is the graph $U B(P)=\left(X, E_{U B(P)}\right)$, where $u v \in E_{U B(P)}$ if and only if $u \neq v$ and there exists $m \in X$ such that $u, v \leq_{P} m$. McMorris and Zaslavsky introduced this concept and gave a characterization of upper bound graphs [2].

Figure 1 shows two different posets which have the same upper bound graph. This example induces an interest in properties of posets with the same UB-graph.


$$
: U B(P)=U B(Q)
$$

Figure 1. Posets $P, Q$ and $U B(P)=U B(Q)=G$.
In [3] and [4] we deal with sequences of transformations that convert a poset to any other poset that has the same upper bound graph. In this paper we show that the transformations can be of a special kind involving minimal elements of the posets at each step.

[^0]
## 2. Transformations of posets

For a poset $P=(X, \leq)$ and $x \in X, L_{P}(x)=\{y \in X ; y<x\}$ and $U_{P}(x)$ $=\{y \in X ; y>x\}$. Furthermore $V(P)$ is $X, \max (P)$ is the set of all maximal elements of $P, \min (P)$ is the set of all minimal elements of $P$. For a poset $P$ and $x, y \in V(P), x \|_{P} y$ shows that $x$ is incomparable with $y$ in $P$. For a poset $P$, the canonical poset of $P$ is the poset $\operatorname{can}(\mathrm{P})$ on the set $V(P)$ in which $x \leq_{\operatorname{can}(\mathrm{P})} y$ if and only if (1) $y \in \max (P)$ and $x \leq_{P} y$, or (2) $x=y$.

A clique in the graph $G$ is the vertex set of a maximal complete subgraph. In some cases, we consider that a clique is a maximal complete subgraph. We say a family $\mathcal{C}$ of complete subgraphs edge covers $G$ if for each edge $u v \in E(G)$, there exists $C \in \mathcal{C}$ such that $u, v \in C$.

Theorem 2.1. [2] Let $G$ be a graph with $n$ vertices. The graph $G$ is a UB-graph if and only if there exists a family $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ of complete subgraphs of $G$ such that
(a) $\mathcal{C}$ edge covers $G$,
(b) for each $C_{i}$, there exists a vertex $v_{i} \in C_{i}-\left(\bigcup_{j \neq i} C_{j}\right)$.

Furthermore, such a family $\mathcal{C}$ must consist of cliques of $G$ and is the only such family if $G$ has no isolated vertices.

For a UB-graph $G$ and an edge clique cover $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ satisfying the conditions of Theorem 2.1, a vertex subset $K_{U B}(G)$ that consists of one element of each set $C_{i}-\left(\bigcup_{j \neq i} C_{j}\right)$ is called a kernel of $G$. We know a fact that, given any $K_{U B}(G)$, there exists a poset $P$ such that $G=U B(P)$ and $K_{U B}(G)=\max (P)$.

In the remainder of this paper, we consider a fixed labeled connected UB-graph $G$ with a fixed kernel $K_{U B}(G)$.

We define $\mathcal{P}_{U B}(G)=\left\{P ; U B(P)=G, \max (P)=K_{U B}(G)\right\}$. Each poset $P$ in $\mathcal{P}_{U B}(G)$ is identified with the set of comparable pairs in $P$. Thus $\mathcal{P}_{U B}(G)$ is a poset by set inclusion. The canonical poset $\operatorname{can}(\mathrm{G})$ of $G$ is the canonical poset of any poset $P$ in $\mathcal{P}_{U B}(G)$. By Theorem 2.1, the canonical poset is independent of the choice. For a UB-graph $G$, the canonical poset $\operatorname{can}(G)$ is a height 1 poset and $V(\operatorname{can}(\mathrm{G}))=\max (\operatorname{can}(\mathrm{G})) \cup \min (\operatorname{can}(\mathrm{G}))$.

To consider some relations among posets of $\mathcal{P}_{U B}(G)$, we need some concepts as follows: For elements $x$ and $y$ in a poset $P$ such that $y \notin \max (P)$ and $x$ is covered by $y$, the poset $P_{x<y}^{-}$is obtained from $P$ by subtracting the relation $x \leq y$ from $P$, and we call this transformation the $x<y$-deletion. For an incomparable pair $x$ and $y$ in a poset $P$ such that $y \notin \max (P), U_{P}(y) \subseteq U_{P}(x)$ and $L_{P}(y) \supseteq L_{P}(x)$, the poset $P_{x<y}^{+}$is obtained from $P$ by adding the relation $x \leq y$ to $P$, and we call this transformation the $x<y$-addition. We obtain the following facts on these transformations.

Fact 1. For a poset $P$,
(1) $P$ and $P_{x<y}^{-}$have the same UB-graph,
(2) $P$ and $P_{x<y}^{+}$also have the same UB-graph, and
(3) $x<y$-additions and $x<y$-deletions are inverse transformations to each other.

By these facts, we obtained the following result.
Theorem 2.2. [3] Let $G$ be a UB-graph and $P, Q$ be posets in $\mathcal{P}_{U B}(G)$. Then
(1) $P$ can be transformed into $Q$ by a sequence of $x<y$-deletions and $x<y$ additions.
(2) Every poset in $\mathcal{P}_{U B}(G)$ is obtained from can $(\mathrm{G})$ by $x<y$-additions only.

For an $x<y$-addition, we need to check two conditions: $U_{P}(y) \subseteq U_{P}(x)$ and $L_{P}(y) \supseteq L_{P}(x)$. If $x$ is a minimal element of a poset $P, L_{P}(x)=\emptyset$ and we only check the condition $U_{P}(y) \subseteq U_{P}(x)$ for an $x<y$-addition on an incomparable pair $x$ and $y$. The next result deals with $x<y$-additions on a minimal element $x$.

Theorem 2.3. Let $G$ be a UB-graph and $P$ be a poset in $\mathcal{P}_{U B}(G)$. The poset $P$ is obtained from $\mathrm{can}(\mathrm{P})$ by $x<y$-additions only, where $x$ is a minimal element of the poset at each step.

Proof. Since $P$ is finite and every deletion reduces the number of comparable pairs in $P$, we obtain the following sequence of $x<y$-deletions, where $x$ is a minimal element of the poset of each step:

$$
P \xrightarrow{x<y-\text { deletion }} \ldots \xrightarrow{x<y-\text { deletion }} \operatorname{can}(\mathrm{P})=\operatorname{can}(\mathrm{G}),
$$

In each step of this sequence of $x<y$-deletions, $U_{P_{x<y}^{-}}(x) \supseteq U_{P_{x<y}^{-}}(y), x$ is incomparable with $y$ in $P_{x<y}^{-}$and a minimal element of $P_{x<y}^{-}$, and $y \notin \max \left(P_{x<y}^{-}\right)$. Thus the inverse operations of the above $x<y$-deletions are $x<y$-additions on $x, y$ satisfying that $x \|_{P} y, U_{P}(x) \supseteq U_{P}(y), x$ is a minimal element of $P$ and $y$ is not a maximal element of $P$. So we obtain the following sequence of $x<y$-additions, where $x$ is a minimal element of the poset at each step.

$$
P \stackrel{x<y-\text { addition }}{\Vdash} \ldots \stackrel{x<y-\text { addition }}{\longleftarrow} \operatorname{can}(\mathrm{P})=\operatorname{can}(\mathrm{G}) .
$$

From this result we obtain the next result.
Theorem 2.4. Let $G$ be a UB-graph and $P, Q$ be posets in $\mathcal{P}_{U B}(G)$. The poset $P$ can be transformed into $Q$ by a sequence of $x<y$-deletions and $x<y$-additions, where $x$ is a minimal element of the poset at each step and all the deletions can precede all the additions.

Proof. As in the proof of Theorem 2.3, $P$ can be reduced to can(G) by $x<y$ deletions and then $\operatorname{can}(\mathrm{G})$ can be enlarged to $Q$ by $x<y$-additions, where $x$ is always a minimal element of the poset at each step.

Acknowledgments. We thank Prof. H.Era and referees for their valuable suggestions.

## References

[1] H. Era, K. Ogawa and M. Tsuchiya, On transformations of posets which have the same bound graph, Discrete Math. 235 (1-3)(2001), 215-220.
[2] F. R. McMorris and T. Zaslavsky, Bound graphs of a partially ordered set, J. Combin. Inform. System Sci. 7(2) (1982), 134-138.
[3] K. Ogawa, On distances of posets with the same upper bound graphs, Yokohama Math. J. 47 (1999), Special Issue, 231-237.
[4] K. Ogawa and M. Tsuchiya, Note on distances of posets whose double bound graphs are the same, Util. Math. 67 (2005), 153-160.


[^0]:    Received: September 13, 2005; Revised: January 20, 2006.

