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Abstract. A linear map ϕ : A → B between (Banach) algebras is called 3-
homomorphism if ϕ(abc) = ϕ(a)ϕ(b)ϕ(c) for each a, b, c ∈ A. We investigate 3-

homomorphisms on Banach algebras with bounded approximate identities and

establish in two ways (for unital and non-unital cases) that every involution
preserving homomorphism between C∗-algebras is norm decreasing.
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1. Introduction

In Hejazian et al. [3] the notion of 3-homomorphism between (Banach) algebras
was introduced and some of their significant properties were investigated. A lin-
ear mapping ϕ : A → B between (Banach) algebras is called 3-homomorphism if
ϕ(abc) = ϕ(a)ϕ(b)ϕ(c) for each a, b, c ∈ A. Obviously, each homomorphism is a
3-homo-morphism. One can verify that if A is unital and ϕ is a 3-homomorphism
then ψ(a) = ϕ(1)ϕ(a) is a homomorphism.

There might exist 3-homomorphisms that are not homomorphisms. For instance,
if ψ : A → B is a homomorphism, then ϕ := −ψ is a 3-homomorphism which is not
a homomorphism. As another example, assume that A and B are Banach algebras
such that A3 = {0} and B3 = {0}. Then each linear mapping between A and B is
trivially a 3-homomorphism. One can find some non-trivial examples in [3].

In this paper, we investigate 3-homomorphisms on Banach algebras with bounded
approximate identities. In particular we establish in two ways (for unital and non-
unital cases) that every involution preserving homomorphism between C∗-algebras
is norm decreasing.
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Throughout the paper, we denote by T ∗ the dual of a linear mapping T and by
A∗ the dual of a Banach algebra A. We also denote the involution on a C∗-algebra
by #.

2. 3-Homomorphisms on C∗-algebras

Suppose that ϕ is a non-zero 3-homomorphism from a unital algebra A to C. Then
ϕ(1) = 1 or −1. Hence either ϕ or −ϕ is a character on A. If A is a Banach algebra,
then ϕ is automatically continuous [1, Theorem 2.1.29]. It may happen, however,
that a 3-homomorphism is not continuous. For instance, let A be the algebra of all
3 × 3 matrices having 0 on and below the diagonal and B be the algebra of all A-
valued continuous functions from [0, 1] into A with sup norm. Then B is an infinite
dimensional Banach algebra in which the product of any three elements is 0. Since
B is infinite dimensional there are linear discontinuous maps and so discontinuous
3-homomorphisms from B into itself.

Using extreme points of the closed unit ball of a W ∗-algebra A authors of [3]
showed that if B is a C∗-algebra and ϕ : A → B is a weakly-norm continuous
involution preserving 3-homomorphism, then ‖ϕ‖ ≤ 1. Then they asked whether
every preserving involution 3-homomorphism between C∗-algebras is continuous. We
shall establish this by applying the strategy used by Harris [2, Proposition 3.4] where
it is shown that each J∗-homomorphism between J∗-algebras is norm decreasing.

Theorem 2.1. Let ϕ : A → B be an involution preserving 3-homomorphism between
unital C∗-algebras. Then ‖ϕ‖ ≤ 1.

Proof. Let a ∈ A, let λ > 0 and let λ /∈ σ(a#a). Then λ1A − a#a has an inverse b.
Then we have the following sequence of deductions:

ab(λ1A − a#a) = a

(λb− ba#a)a(λb− ba#a) = a

ϕ(λb− ba#a)ϕ(a)
(
λϕ(b)− ϕ(b)ϕ(a#)ϕ(a)

)
= ϕ(a)

ϕ(a#)
(
ϕ(λb− ba#a)ϕ(a)ϕ(b)

) (
λ1B − ϕ(a#)ϕ(a)

)
= ϕ(a#)ϕ(a)

ϕ(a#)ϕ(ab)
(
λ1B − ϕ(a#)ϕ(a)

)
= ϕ(a#)ϕ(a)

λ1B − ϕ(a#)ϕ(ab)
(
λ1B − ϕ(a#)ϕ(a)

)
= λ1B − ϕ(a#)ϕ(a)

1B =
1
λ

(
1B + ϕ(a#)ϕ(ab)

)
× (λ1B − ϕ(a#)ϕ(a)

)
.

Since λ1B − ϕ(a#)ϕ(a) is self-adjoint, it follows that λ1B − ϕ(a)#ϕ(a) is invertible
and so λ /∈ σ

(
ϕ(a)#ϕ(a)

)
. Hence

σ
(
ϕ(a)#ϕ(a)

)
⊆ σ(a#a) ∪ {0}.

Since the norm of a normal element c of a C∗-algebra is equal to its spectral radius
r(c) (see [1, Theorem 3.2.3]), we have

‖ϕ(a)‖2 = ‖ϕ(a#a)‖ = r
(
ϕ(a)#ϕ(a)

)
≤ r(a#a) = ‖a#a‖ = ‖a‖2.

So ϕ is norm decreasing.
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3. 3-homomorphisms from algebras with bounded approximate identity

Let A be a Banach algebra. Let a ∈ A and ξ ∈ A∗ be arbitrary, then a.ξ ∈ A∗ and
ξ.a ∈ A∗ are defined by 〈a.ξ, x〉 = 〈ξ, xa〉, x ∈ A and 〈ξ.a, x〉 = 〈ξ, ax〉, x ∈ A.
For ξ ∈ A∗ and F ∈ A∗∗, functionals F.ξ ∈ A∗ and ξ.F ∈ A∗ are given by 〈F.ξ, x〉 =
〈F, ξ.x〉, x ∈ A and 〈ξ.F, x〉 = 〈F, x.ξ〉, x ∈ A. Recall that the first Arens product of
F,G ∈ A∗∗ is F / G ∈ A∗∗, where

〈F / G, ξ〉 = 〈F,G.ξ〉 (ξ ∈ A∗).
Similarly, the second Arens product of F,G ∈ A∗∗ is F . G ∈ A∗∗, where

〈F . G, ξ〉 = 〈G, ξ.F 〉 (ξ ∈ A∗).
It is well known that (A∗∗, /) and (A∗∗, .) are Banach algebras and that A is a
closed subalgebra of each of them. The algebra A is Arens regular if the products /
and . coincide on A∗∗.

A left approximate identity for A is a net (eα) ⊂ A such that limα eαa = a, for
each a ∈ A. If there exists m > 0 such that supα ‖eα‖ ≤ m, the left approximate
identity (eα) is said to be bounded by m. The definitions of a right approximate
identity and a bounded right approximate identity are similar. Recall from [1, Propo-
sition 2.9.16] that A has a left approximate identity bounded by m if and only if
(A∗∗, .) has a left identity of norm at most m. Similarly, A has a right approximate
identity bounded by m if and only if (A∗∗, /) has a right identity of norm at most
m.

Lemma 3.1. Let A and B be Banach algebras and ϕ : A → B be a 3-homomorphism.
Then, for arbitrary a, b ∈ A, ξ ∈ B∗, and F,G ∈ A∗∗, the following hold:

(i) ϕ∗(ϕ(a)ϕ(b).ξ) = ab.ϕ∗(ξ);
(ii) ϕ∗(ξ.ϕ(a)ϕ(b)) = ϕ∗(ξ).ab;
(iii) ϕ∗(ϕ(a).ξ.ϕ∗∗(F )) = a.ϕ∗(ξ).F ;
(iv) ϕ∗(ϕ∗∗(F ).ξ.ϕ(a)) = F.ϕ∗(ξ).a;
(v) ϕ∗(ξ.ϕ∗∗(F ) . ϕ∗∗(G)) = ϕ∗(ξ).F . G;
(vi) ϕ∗(ϕ∗∗(F ) / ϕ∗∗(G).ξ) = F / G.ϕ∗(ξ).

Proof. (i) Let a, b ∈ A, and ξ ∈ B∗ be arbitrary. Then, for each x ∈ A,

〈ϕ∗(ϕ(a)ϕ(b).ξ), x〉 = 〈ϕ(a)ϕ(b).ξ, ϕ(x)〉
= 〈ξ, ϕ(x)ϕ(a)ϕ(b)〉
= 〈ξ, ϕ(xab)〉
= 〈ϕ∗(ξ), xab〉
= 〈ab.ϕ∗(ξ), x〉.

(iii) Let a ∈ A, ξ ∈ B∗, and F ∈ A∗∗ be arbitrary. Then, for each x ∈ A,

〈ϕ∗(ϕ(a).ξ.ϕ∗∗(F )), x〉 = 〈ϕ(a).ξ.ϕ∗∗(F ), ϕ(x)〉
= 〈ϕ∗∗(F ), ϕ(x)ϕ(a).ξ〉
= 〈F,ϕ∗(ϕ(x)ϕ(a).ξ)〉
= 〈F, xa.ϕ∗(ξ)〉
= 〈a.ϕ∗(ξ).F, x〉.
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(v) Let ξ ∈ B∗, and F,G ∈ A∗∗ be arbitrary. Then, for each x ∈ A,

〈ϕ∗(ξ.ϕ∗∗(F ) . ϕ∗∗(G)), x〉 = 〈(ξ.ϕ∗∗(F ) . ϕ∗∗(G)), ϕ(x)〉
= 〈ϕ∗∗(G), ϕ(x).ξ.ϕ∗∗(F )〉
= 〈G,ϕ∗(ϕ(x).ξ.ϕ∗∗(F ))〉
= 〈G, x.ϕ∗(ξ).F 〉
= 〈ϕ∗(ξ).F . G, x〉.

The proofs of (ii), (iv), and (vi) are similar.

Proposition 3.1. Let A and B be Banach algebras. If ϕ : A → B is a 3-
homomorphism, then ϕ∗∗ is a 3-homomorphism from (A∗∗, /) to (B∗∗, /) and from
(A∗∗, .) to (B∗∗, .).

Proof. Let F,G,H ∈ A∗∗ be arbitrary. Then, for each ξ ∈ B∗,

〈ϕ∗∗(F / G / H), ξ〉 = 〈F / G / H,ϕ∗(ξ)〉
= 〈F,G / H.ϕ∗(ξ)〉
= 〈F,ϕ∗(ϕ∗∗(G) / ϕ∗∗(H).ξ)〉
= 〈ϕ∗∗(F ), ϕ∗∗(G) / (ϕ∗∗(H).ξ)〉
= 〈ϕ∗∗(F ) / ϕ∗∗(G), ϕ∗∗(H).ξ〉
= 〈ϕ∗∗(F ) / ϕ∗∗(G) / ϕ∗∗(H), ξ〉,

where the second equality holds by Lemma 3.1 (vi).
The proof of the second assertion is similar.

Theorem 3.1. Let A and B be Banach algebras and ϕ : A → B be a 3-homomorphism.
If A has a bounded left approximate identity, then

ψ(F ) := ϕ∗∗(L) . ϕ∗∗(F ) (F ∈ A∗∗)

defines a homomorphism from (A∗∗, .) to (B∗∗, .), where L is a left identity in A∗∗.
Moreover,

ϕ(a) = ϕ∗∗(L) . ψ(a) (a ∈ A).

Similarly, if A has a bounded right approximate identity, then

ψ(F ) := ϕ∗∗(F ) / ϕ∗∗(R) (F ∈ A∗∗)

defines a homomorphism from (A∗∗, /) to (B∗∗, /), where R is a left identity in A∗∗.
Moreover,

ϕ(a) = ψ(a) / ϕ∗∗(R) (a ∈ A).

Proof. We shall prove only the first part of the theorem. Since ϕ is a 3-homomorphism
the mapping ϕ∗∗ is a 3-homomorphism from (A∗∗, .) to (B∗∗, .), by Proposition 3.1.
By [1, Proposition 2.9.16], there exists a left identity L in (A∗∗, .). Thus

ψ(F ) := ϕ∗∗(L) . ϕ∗∗(F ) (F ∈ A∗∗)

defines a homomorphism from (A∗∗, .) to (B∗∗, .) and

ϕ∗∗(F ) = ϕ∗∗(L) . ψ(F ) (F ∈ A∗∗).
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Since the restriction of ϕ∗∗ to A is ϕ, we have

ϕ(a) = ϕ∗∗(L) . ψ(a) (a ∈ A).

We now give another proof of Theorem 2.1:

Corollary 3.1. Suppose that A and B are C∗-algebras. Then each involution pre-
serving 3-homomorphism ϕ : A → B is norm decreasing.

Proof. Each C∗-algebra has approximate identity of bound 1 (cf. [1, Theorem
3.2.21]). By [1, Corollary 3.2.37], A and B are Arens regular and A∗∗ and B∗∗
are von Neumann algebras equipped with the involution that are defined in the
following way (see [1, p. 349]). A linear involution on A∗ is defined by

〈ξ#, a〉 = 〈ξ, a#〉 (a ∈ A, ξ ∈ A∗),
and an involution on A∗∗ is given by

〈F#, ξ〉 = 〈F, ξ#〉 (F ∈ A∗∗, ξ ∈ A∗).
The involution on B∗∗ is defined similarly. The algebra A∗∗ is unital, with identity
E of norm ‖E‖ = 1.

It is easy to check that ϕ∗∗ is an involution preserving 3-homomorphism. Namely,
for each a ∈ A and each ξ ∈ B∗, we have

〈ϕ∗(ξ#), a〉 = 〈ξ, ϕ(a)#〉 = 〈ξ, ϕ(a#)〉 = 〈ϕ∗(ξ)#, a〉.
It follows, for each F ∈ A∗∗ and each ξ ∈ B∗, that

〈ϕ∗∗(F#), ξ〉 = 〈F,ϕ∗(ξ)#〉 = 〈F,ϕ∗(ξ#)〉 = 〈ϕ∗∗(F )#, ξ〉.
Since

ϕ∗∗(E)ϕ∗∗(F ) = ϕ∗∗(E)ϕ∗∗(FE2)
= ϕ∗∗(E)ϕ∗∗(F )ϕ∗∗(E)2

= ϕ∗∗(EFE)ϕ∗∗(E)
= ϕ∗∗(F )ϕ∗∗(E),

for each F ∈ A∗∗, we conclude that ψ(F ) = ϕ∗∗(E)ϕ∗∗(F ) (F ∈ A∗∗) defines an
involution preserving homomorphism. Indeed, for each F ∈ A∗∗, we have

ψ(F#) = ϕ∗∗(E)ϕ∗∗(F#) = (ϕ∗∗(F )ϕ∗∗(E)#)# = ψ(F )#.

By [1, Corollary 3.2.4], each involution preserving homomorphism between C∗-
algebras is norm-decreasing. Thus

‖ϕ∗∗(F )‖ = ‖ϕ∗∗(E)ψ(F )‖ ≤ ‖ϕ∗∗(E)‖‖F‖ (F ∈ A∗∗).
Since

ψ(E) = ϕ∗∗(E)2 = ϕ∗∗(E)#ϕ∗∗(E)
we have

1 ≥ ‖ψ(E)‖ = ‖ϕ∗∗(E)#ϕ∗∗(E)‖ = ‖ϕ∗∗(E)‖2,
which gives ‖ϕ∗∗(E)‖ ≤ 1. Thus,

‖ϕ∗∗(F )‖ ≤ ‖ϕ∗∗(E)‖‖F‖ ≤ ‖F‖ (F ∈ A∗∗).
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