Some Common Fixed Point Theorems in Complete \mathcal{L} -Fuzzy Metric Spaces

¹R. Saadati, ²S. Sedghi, ³N. Shobe and S. M. Vaespour

¹Faculty of Sciences, University of Shomal, Amol, P.O.Box 731, Iran and

Department of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15914, Iran

²Department of Mathematics Islamic Azad University–Ghaemshahr Branch,Iran ³Department of Mathematics Islamic Azad University–Babol Branch, Iran ¹rsaadati@eml.cc, ²sedghi_gh@yahoo.com, ³nabi_shobe@yahoo.com

Abstract. In this paper, we prove a common fixed point theorem in \mathcal{L} -fuzzy metric space which is a generalization of some results in Adibi et. al. [1].

2000 Mathematics Subject Classification: 54E40; 54E35; 54H25

Key words and phrases: \mathcal{L} -Fuzzy contractive mapping, Complete \mathcal{L} -fuzzy metric space, Common fixed point theorem

1. Introduction and preliminaries

The notion of fuzzy sets was introduced by Zadeh [23]. Various concepts of fuzzy metric spaces were considered in [7, 8, 13, 14]. Many authors have studied fixed point theory in fuzzy metric spaces; see for example [3, 4, 11, 12, 16, 17]. In the sequel, we shall adopt the usual terminology, notation and conventions of \mathcal{L} -fuzzy metric spaces introduced by Saadati et al. [19] which are a generalization of fuzzy metric spaces [10] and intuitionistic fuzzy metric spaces [18, 20].

Definition 1.1. [11] Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice, and U a non-empty set called a universe. An \mathcal{L} -fuzzy set \mathcal{A} on U is defined as a mapping $\mathcal{A} : U \longrightarrow L$. For each u in U, $\mathcal{A}(u)$ represents the degree (in L) to which u satisfies \mathcal{A} .

Lemma 1.1. [5, 6] Consider the set L^* and the operation \leq_{L^*} defined by:

$$L^* = \{(x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1\},\$$

 $(x_1, x_2) \leq_{L^*} (y_1, y_2) \iff x_1 \leq y_1 \text{ and } x_2 \geq y_2, \text{ for every } (x_1, x_2), (y_1, y_2) \in L^*.$ Then (L^*, \leq_{L^*}) is a complete lattice.

Classically, a triangular norm T on $([0,1], \leq)$ is defined as an increasing, commutative, associative mapping $T : [0,1]^2 \to [0,1]$ satisfying T(1,x) = x, for all $x \in [0,1]$.

Received: November 19, 2006; Revised: August 28, 2007.

These definitions can be straightforwardly extended to any lattice $\mathcal{L} = (L, \leq_L)$. Define first $0_{\mathcal{L}} = \inf L$ and $1_{\mathcal{L}} = \sup L$.

Definition 1.2. A triangular norm (t-norm) on \mathcal{L} is a mapping $\mathcal{T} : L^2 \to L$ satisfying the following conditions:

- (1) $(\forall x \in L)(\mathcal{T}(x, 1_{\mathcal{L}}) = x);$ (boundary condition)
- (2) $(\forall (x,y) \in L^2)(\mathcal{T}(x,y) = \mathcal{T}(y,x));$ (commutativity)
- (3) $(\forall (x, y, z) \in L^3)(\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z));$ (associativity)
- (4) $(\forall (x, x', y, y') \in L^4) (x \leq_L x' \text{ and } y \leq_L y' \Rightarrow \mathcal{T}(x, y) \leq_L \mathcal{T}(x', y')).$ (monotonicity)

A *t*-norm \mathcal{T} on \mathcal{L} is said to be continuous if for any $x, y \in \mathcal{L}$ and any sequences $\{x_n\}$ and $\{y_n\}$ which converge to x and y we have

$$\lim_{n} \mathcal{T}(x_n, y_n) = \mathcal{T}(x, y)$$

For example, $\mathcal{T}(x, y) = \min(x, y)$ and $\mathcal{T}(x, y) = xy$ are two continuous *t*-norms on [0, 1]. A *t*-norm can also be defined recursively as an (n + 1)-ary operation $(n \in \mathbb{N})$ by $\mathcal{T}^1 = \mathcal{T}$ and

$$\mathcal{T}^n(x_1,\cdots,x_{n+1}) = \mathcal{T}(\mathcal{T}^{n-1}(x_1,\cdots,x_n),x_{n+1})$$

for $n \geq 2$ and $x_i \in L$.

Definition 1.3. A negation on \mathcal{L} is any decreasing mapping $\mathcal{N} : L \to L$ satisfying $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ and $\mathcal{N}(1_{\mathcal{L}}) = 0_{\mathcal{L}}$. If $\mathcal{N}(\mathcal{N}(x)) = x$, for all $x \in L$, then \mathcal{N} is called an involutive negation.

Definition 1.4. The 3-tuple $(X, \mathcal{M}, \mathcal{T})$ is said to be an \mathcal{L} -fuzzy metric space if X is an arbitrary (non-empty) set, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{M} is an \mathcal{L} -fuzzy set on $X^2 \times]0, +\infty[$ satisfying the following conditions for every x, y, z in X and t, sin $]0, +\infty[$:

(a) $\mathcal{M}(x, y, t) >_L 0_{\mathcal{L}};$

- (b) $\mathcal{M}(x, y, t) = 1_{\mathcal{L}}$ for all t > 0 if and only if x = y;
- (c) $\mathcal{M}(x, y, t) = \mathcal{M}(y, x, t);$
- (d) $\mathcal{T}(\mathcal{M}(x, y, t), \mathcal{M}(y, z, s)) \leq_L \mathcal{M}(x, z, t+s);$
- (e) $\mathcal{M}(x, y, \cdot) : [0, \infty[\to L \text{ is continuous and } \lim_{t \to \infty} \mathcal{M}(x, y, t) = 1_{\mathcal{L}}.$

Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. For $t \in]0, +\infty[$, we define the open ball B(x, r, t) with center $x \in X$ and a fixed radius $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, as

$$B(x, r, t) = \{ y \in X : \mathcal{M}(x, y, t) >_L \mathcal{N}(r) \}.$$

A subset $A \subseteq X$ is called *open* if for each $x \in A$, there exist t > 0 and $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $B(x, r, t) \subseteq A$. Let $\tau_{\mathcal{M}}$ denote the family of all open subsets of X. Then $\tau_{\mathcal{M}}$ is called the *topology induced by the* \mathcal{L} -fuzzy metric \mathcal{M} .

Example 1.1. [21] Let (X, d) be a metric space. Denote $\mathcal{T}(a, b) = (a_1b_1, \min(a_2 + b_2, 1))$ for all $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in L^* and let M and N be fuzzy sets on $X^2 \times [0, +\infty]$ be defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = \left(M(x,y,t), N(x,y,t)\right) = \left(\frac{t}{t+d(x,y)}, \frac{d(x,y)}{t+d(x,y)}\right)$$

Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space.

Example 1.2. [1] Let (X, d) be a metric space. Denote $\mathcal{T}(a, b) = (a_1b_1, \min(a_2 + b_2, 1))$ for all $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in L^* and let M and N be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = \left(M(x,y,t), N(x,y,t)\right) = \left(\frac{ht^n}{ht^n + md(x,y)}, \frac{md(x,y)}{ht^n + md(x,y)}\right),$$

for all $t, h, m, n \in \mathbf{R}^+$. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space.

Lemma 1.2. [10] Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. Then, $\mathcal{M}(x, y, t)$ is nondecreasing with respect to t, for all x, y in X.

Definition 1.5. A sequence $\{x_n\}_{n\in\mathbb{N}}$ in an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ is called a Cauchy sequence, if for each $\varepsilon \in L \setminus \{0_{\mathcal{L}}\}$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that for all $m \ge n \ge n_0$ $(n \ge m \ge n_0)$,

$$\mathcal{M}(x_m, x_n, t) >_L \mathcal{N}(\varepsilon).$$

The sequence $\{x_n\}_{n\in\mathbb{N}}$ is said to be convergent to $x \in X$ in the \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ (denoted by $x_n \xrightarrow{\mathcal{M}} x$) if $\mathcal{M}(x_n, x, t) = \mathcal{M}(x, x_n, t) \to 1_{\mathcal{L}}$ whenever $n \to +\infty$ for every t > 0. A \mathcal{L} -fuzzy metric space is said to be complete if and only if every Cauchy sequence is convergent.

Henceforth, we assume that \mathcal{T} is a continuous *t*-norm on the lattice \mathcal{L} such that for every $\mu \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, there is a $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that

$$\mathcal{T}^{n-1}(\mathcal{N}(\lambda),...,\mathcal{N}(\lambda)) >_L \mathcal{N}(\mu).$$

For more information see [19].

Definition 1.6. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. \mathcal{M} is said to be continuous on $X \times X \times]0, \infty[$ if

$$\lim_{n \to \infty} \mathcal{M}(x_n, y_n, t_n) = \mathcal{M}(x, y, t)$$

whenever a sequence $\{(x_n, y_n, t_n)\}$ in $X \times X \times]0, \infty[$ converges to a point $(x, y, t) \in X \times X \times]0, \infty[$ i.e., $\lim_n \mathcal{M}(x_n, x, t) = \lim_n \mathcal{M}(y_n, y, t) = 1_{\mathcal{L}}$ and $\lim_n \mathcal{M}(x, y, t_n) = \mathcal{M}(x, y, t)$.

Lemma 1.3. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. Then \mathcal{M} is a continuous function on $X \times X \times]0, \infty[$.

Proof. The proof is the same as that for fuzzy spaces (see Proposition 1 of [15]).

Definition 1.7. Let A and S be mappings from an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ into itself. Then the mappings are said to be weak compatible if they commute at their coincidence point, that is, Ax = Sx implies that ASx = SAx.

Definition 1.8. Let A and S be mappings from an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ into itself. Then the mappings are said to be compatible if

$$\lim_{n \to \infty} \mathcal{M}(ASx_n, SAx_n, t) = 1_{\mathcal{L}}, \forall t > 0$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = x \in X.$$

Proposition 1.1. [22] If self-mappings A and S of an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ are compatible, then they are weak compatible.

Lemma 1.4. [1, 19] Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. Define $E_{\lambda, \mathcal{M}}$: $X^2 \longrightarrow \mathbb{R}^+ \cup \{0\}$ by

$$E_{\lambda,\mathcal{M}}(x,y) = \inf\{t > 0 : \mathcal{M}(x,y,t) >_L \mathcal{N}(\lambda)\}$$

for each $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and $x, y \in X$. Then we have

- (i) For any $\mu \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ there exists $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $E_{\mu,\mathcal{M}}(x_1, x_n) \leq E_{\lambda,\mathcal{M}}(x_1, x_2) + E_{\lambda,\mathcal{M}}(x_2, x_3) + \dots + E_{\lambda,\mathcal{M}}(x_{n-1}, x_n)$ for any $x_1, \dots, x_n \in X$;
- (ii) The sequence $\{x_n\}_{n\in\mathbb{N}}$ is convergent to x w.r.t. \mathcal{L} -fuzzy metric \mathcal{M} if and only if $E_{\lambda,\mathcal{M}}(x_n,x) \to 0$.

Also the sequence $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy w.r.t. \mathcal{L} -fuzzy metric \mathcal{M} if and only if it is Cauchy with $E_{\lambda,\mathcal{M}}$.

Lemma 1.5. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. If

$$\mathcal{M}(x_n, x_{n+1}, t) \ge_L \mathcal{M}(x_0, x_1, k^n t)$$

for some k > 1 and $n \in \mathbb{N}$. Then $\{x_n\}$ is a Cauchy sequence.

Proof. For every $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and $x_n \in X$, we have

$$E_{\lambda,\mathcal{M}}(x_{n+1},x_n) = \inf\{t > 0 : \mathcal{M}(x_{n+1},x_n,t) >_L \mathcal{N}(\lambda)\}$$

$$\leq \inf\{t > 0 : \mathcal{M}(x_0,x_1,k^nt) >_L \mathcal{N}(\lambda)\}$$

$$= \inf\{\frac{t}{k^n} : \mathcal{M}(x_0,x_1,t) >_L \mathcal{N}(\lambda)\}$$

$$= \frac{1}{k^n}\inf\{t > 0 : \mathcal{M}(x_0,x_1,t) >_L \mathcal{N}(\lambda)\}$$

$$= \frac{1}{k^n}E_{\lambda,\mathcal{M}}(x_0,x_1).$$

From Lemma 1.4, for every $\mu \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ there exists $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, such that $E_{\mu,\mathcal{M}}(x_n, x_m) \leq E_{\lambda,\mathcal{M}}(x_n, x_{n+1}) + E_{\lambda,\mathcal{M}}(x_{n+1}, x_{n+2}) + \dots + E_{\lambda,\mathcal{M}}(x_{m-1}, x_m)$ $\leq \frac{1}{k^n} E_{\lambda,\mathcal{M}}(x_0, x_1) + \frac{1}{k^{n+1}} E_{\lambda,\mathcal{M}}(x_0, x_1) + \dots + \frac{1}{k^{m-1}} E_{\lambda,\mathcal{M}}(x_0, x_1)$ $= E_{\lambda,\mathcal{M}}(x_0, x_1) \sum_{j=n}^{m-1} \frac{1}{k^j} \longrightarrow 0.$

Hence sequence $\{x_n\}$ is a Cauchy sequence.

Definition 1.9. [9] We say that the \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ has property (C), if it satisfies the following condition:

$$\mathcal{M}(x, y, t) = C$$
, for all $t > 0$ implies $C = 1_{\mathcal{L}}$.

2. Main Result

Theorem 2.1. Let A, B, S and T be self-mappings of a complete \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$, which has property (C), satisfying:

- (i) $A(X) \subseteq T(X)$, $B(X) \subseteq S(X)$ and T(X), S(X) are two closed subsets of X;
- (ii) the pairs (A, S) and (B, T) are weak compatible;
- (iii) $\mathcal{M}(Ax, By, t) \geq_L \mathcal{M}(Sx, Ty, kt)$, for every x, y in X and some k > 1.

Then A, B, S and T have a unique common fixed point in X.

Proof. Let $x_0 \in X$ be an arbitrary point in X. By (i), there exists $x_1, x_2 \in X$ such that $y_0 = Ax_0 = Tx_1$, $y_1 = Bx_1 = Sx_2$. Inductively, construct sequences $\{y_n\}$ and $\{x_n\}$ in X such that $y_{2n} = Ax_{2n} = Tx_{2n+1}$, $y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$, for $n = 0, 1, 2, \cdots$. Now, we prove that $\{y_n\}$ is a Cauchy sequence. Let $d_m(t) = \mathcal{M}(y_m, y_{m+1}, t), t > 0$. Then, we have

$$d_{2n}(t) = \mathcal{M}(y_{2n}, y_{2n+1}, t) = \mathcal{M}(Ax_{2n}, Bx_{2n+1}, t)$$

$$\geq_L \quad \mathcal{M}(Sx_{2n}, Tx_{2n+1}, kt) = \mathcal{M}(y_{2n-1}, y_{2n}, kt) = d_{2n-1}(kt).$$

Thus $d_{2n}(t) \geq_L d_{2n-1}(kt)$ for every $m = 2n \in \mathbb{N}$ and $\forall t > 0$. Similarly for an odd integer m = 2n + 1, we have $d_{2n+1}(t) \geq_L d_{2n}(kt)$. Hence, for every $n \in \mathbb{N}$, we have $d_n(t) \geq_L d_{n-1}(kt)$. That is,

$$\mathcal{M}(y_n, y_{n+1}, t) \ge_L \mathcal{M}(y_{n-1}, y_n, kt) \ge_L \dots \ge_L \mathcal{M}(y_0, y_1, k^n t)$$

So, by Lemma 1.5, $\{y_n\}$ is Cauchy and the completeness of X implies $\{y_n\}$ converges to y in X. That is, $\lim_{n\to\infty} y_n = y$

$$\lim_{n \to \infty} y_{2n} = \lim_{n \to \infty} Ax_{2n} = \lim_{n \to \infty} Tx_{2n+1}$$
$$= \lim_{n \to \infty} y_{2n+1} = \lim_{n \to \infty} Bx_{2n+1} = \lim_{n \to \infty} Sx_{2n+2} = y.$$

As $B(X) \subseteq S(X)$, there exists $u \in X$ such that Su = y. By (iii), we have

$$\mathcal{M}(Au, Bx_{2n+1}, t) \ge_L \mathcal{M}(Su, Tx_{2n+1}, kt).$$

Since \mathcal{M} is continuous, we get (whenever $n \longrightarrow \infty$ in the above inequality):

$$\mathcal{M}(Au, y, t) \ge_L \mathcal{M}(y, y, kt) = 1_{\mathcal{L}}.$$

Thus $\mathcal{M}(Au, y, t) = 1_{\mathcal{L}}$, i.e. Au = y. Therefore, Au = Su = y. Since $A(X) \subseteq T(X)$, there exists $v \in X$, such that Tv = y. Thus,

$$\mathcal{M}(y, Bv, t) = \mathcal{M}(Au, Bv, t) \ge_L \mathcal{M}(Su, Tv, kt) = 1_{\mathcal{L}}.$$

Hence Tv = Bv = Au = Su = y. Since (A, S) is weak compatible, we conclude that ASu = SAu, that is Ay = Sy. Also, since (B, T) is weak compatible then, TBv = BTv, that is Ty = By. We now prove that Ay = y. By (iii), we have

$$\mathcal{M}(Ay, y, t) = \mathcal{M}(Ay, Bv, t) \geq_L \mathcal{M}(Sy, Tv, kt) = \mathcal{M}(Ay, y, kt)$$

:

$$\geq_L \mathcal{M}(Ay, y, k^n t).$$

On the other hand, from Lemma 1.2 we have that

$$\mathcal{M}(Ay, y, t) \leq_L \mathcal{M}(Ay, y, k^n t).$$

Hence, $\mathcal{M}(Ay, y, t) = C$ for all t > 0. Since $(X, \mathcal{M}, \mathcal{T})$ has property (C), it follows that $C = 1_{\mathcal{L}}$, i.e., Ay = y, therefore Ay = Sy = y. Similarly we prove that By = y. By (iii), we have

$$\mathcal{M}(y, By, t) = \mathcal{M}(Ay, By, t) \geq_L \mathcal{M}(Sy, Ty, kt) = \mathcal{M}(y, By, kt)$$
$$\vdots$$
$$\geq_L \mathcal{M}(y, By, k^n t).$$

On the other hand, from Lemma 1.2 we have that

$$\mathcal{M}(y, By, t) \leq_L \mathcal{M}(y, By, k^n t).$$

Hence, $\mathcal{M}(y, By, t) = C$ for all t > 0. Since $(X, \mathcal{M}, \mathcal{T})$ has property (C), it follows that $C = 1_{\mathcal{L}}$, i.e., By = y. Therefore, Ay = By = Sy = Ty = y, that is, y is a common fixed of A, B, S and T. For uniqueness, let x be another common fixed point of A, B, S and T i.e., x = Ax = Bx = Sx = Tx. Hence

$$\mathcal{M}(y, x, t) = \mathcal{M}(Ay, Bx, t) \geq_L \mathcal{M}(Sy, Tx, kt) = \mathcal{M}(y, x, kt)$$
$$\vdots$$
$$\geq_L \mathcal{M}(y, x, k^n t)$$

On the other hand, from Lemma 1.2 we have that

$$\mathcal{M}(y, x, t) \leq_L \mathcal{M}(y, x, k^n t).$$

Hence, $\mathcal{M}(y, x, t) = C$ for all t > 0. Since $(X, \mathcal{M}, \mathcal{T})$ has property (C), it follows that $C = 1_{\mathcal{L}}$, i.e., y = x. Therefore, y is the unique common fixed point of self-maps A, B, S and T.

Theorem 2.2. Let $\{A_i\}$ and $\{B_j\}$ be two sequences of self-mappings of a complete \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$, which has property (C), such that,

- (i) there exists $i_0, j_0 \in \mathbb{N}$ such that $A^m_{i_0}(X) \subseteq T(X), B^n_{j_0}(X) \subseteq S(X)$ and T(X), S(X) are two closed subsets of X,
- (ii) $A_iB_i = B_iA_i$, $TA_i = A_iT$, $SA_i = A_iS$, $TB_i = B_iT$ and $SB_i = B_iS$, for all $i \in \mathbb{N}$,
- (iii) $\mathcal{M}(A_i^m x, B_j^n y, t) \geq_L \mathcal{M}(Sx, Ty, k_{ij}t)$, for every x, y in X, for some $n, m \in \mathbb{N}$; here $k_{ij} > k > 1$ for $i, j = 1, 2, \cdots$, and t > 0.

Then, A_i, B_j, S and T have a unique common fixed point in X for all $i, j = 1, 2, \cdots$.

Proof. By Theorem 2.1, S, T and $A = A_{i_0}^m$ and $B = B_{j_0}^n$ for some $i_0, j_0 \in \mathbb{N}$, have a unique common fixed point in X. That is, there exists a unique $x \in X$ such that

$$S(x) = T(x) = A_{i_0}^m(x) = B_{j_0}^n(x) = x.$$

Suppose there exists $j \in \mathbb{N}$ such that $j \neq j_0$. Then we have

$$\mathcal{M}(x, B_j^n x, t) = \mathcal{M}(A_{i_0}^m x, B_j^n x, t) \geq \mathcal{M}(Sx, Tx, k_{ij}t) = 1_{\mathcal{L}}.$$

Hence, for every $j \in \mathbb{N}$ we have $B_j^n x = x$. Similarly for every $i \in \mathbb{N}$, we get $A_i^m x = x$. Therefore for every $i, j \in \mathbb{N}$, we have

$$A_i^m x = B_i^n x = Sx = Tx = x.$$

To show uniqueness, assume that y is another fixed point of A_i^m, B_j^n, S and T. Then we have

$$\mathcal{M}(x, y, t) = \mathcal{M}(A_i^m x, B_i^n y, t) \geq_L \mathcal{M}(Sx, Ty, k_{ij}t) = \mathcal{M}(x, y, k_{ij}t) = \mathcal{M}(A_i^m x, B_i^n y, k_{ij}t)$$
$$\geq_L \mathcal{M}(x, y, k_{ij}^2 t)$$
$$\vdots$$
$$\geq_L \mathcal{M}(x, y, k_{ij}^n t)$$
$$\geq_L \mathcal{M}(x, y, k^n t).$$

On the other hand, by Lemma 1.2 we have

$$\mathcal{M}(x, y, t) \le \mathcal{M}(x, y, k^n t).$$

Hence, $\mathcal{M}(x, y, t) = C$ for all t > 0. Since $(X, \mathcal{M}, \mathcal{T})$, has property (C), it follows that $C = 1_L$, i.e., x = y. Now, we prove that $A_i x = x$. Since

$$A_i x = A_i(B_i^n x) = B_i^n(A_i x) \text{ and } A_i x = A_i(A_i^m x) = A_i^m(A_i x),$$

also

$$A_i x = A_i S x = S A_i x$$
 and $A_i x = A_i T x = T A_i x$.

That is $A_i x$ is also a common fixed point of A_i^m, B_i^n, S and T. Therefore $A_i x = x$. Similarly, one can show that $B_j x = x$, i.e., x is a unique common fixed point of the mappings A_i, B_j, S and T, for $i, j = 1, 2, \ldots$ This completes the proof.

Corollary 2.1. Let $(X, \mathcal{M}, \mathcal{T})$ be a complete \mathcal{L} -fuzzy metric space. Let $\{A_n\}$ be a sequence of mappings A_i of a complete \mathcal{L} -fuzzy metric space $X, \mathcal{M}, \mathcal{T}$) which has property (C), into itself such that, for any two mappings A_i, A_j ,

$$\mathcal{M}(A_i^m x, A_j^m y, \alpha_{ij} t) \ge_L \mathcal{M}(x, y, t)$$

for some m; here $0 < \alpha_{ij} < k < 1$ for $i, j = 1, 2, ..., x, y \in X$ and t > 0. Then the sequence $\{A_n\}$ has a unique common fixed point in X.

Proof. By Theorem 2.2, it is enough to set S = T = I, where I is the identity map and $B_j^n = A_J^m$. Also we replace α_{ij} by $\frac{1}{k_{ij}}$.

Acknowledgment. The authors would like to thank the referees for giving useful comments and suggestions for the improvement of this paper.

References

- H. Adibi, Y. J. Cho, D. O'Regan and R. Saadati, Common fixed point theorems in *L*-fuzzy metric spaces, *Appl. Math. Comput.* 182(2006), 820–828.
- [2] A. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1986), 87-96.
- [3] S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung and S. M. Kang, Coincidence point and minimization theorems in fuzzy metric spaces, *Fuzzy Sets Syst.* 88(1997), 119–128.
- [4] Y. J. Cho, H. K. Pathak, S. M. Kang and J. S. Jung, Common fixed points of compatible maps of type (β) on fuzzy metric spaces, *Fuzzy Sets Syst.* 93(1998), 99–111.

- [5] G. Deschrijver, C. Cornelis, and E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms. *IEEE Transactions on Fuzzy Sys.* 12(2004), 45–61.
- [6] G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 33(2003), 227–235.
- [7] Z. K. Deng, Fuzzy pseduo-metric spaces, J. Math. Anal. Appl. 86(1982), 74–95.
- [8] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69(1979), 205-230.
- [9] J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 46(1992), 107-113.
- [10] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64(1994), 395–399.
- [11] J. Goguen, *L*-fuzzy sets, J. Math. Anal. Appl. 18(1967), 145–174.
- [12] V. Gregori and A. Sapena, On fixed point theorem in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), 245–252.
- [13] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12(1984), 215–229.
- [14] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, *Kybernetica* 11(1975), 326–334.
- [15] J. Rodríguez López and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Syst. 147(2004), 273–283.
- [16] D. Miheţ, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Syst. 144(2004), 431–439.
- [17] E. Pap, O. Hadzic and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, J. Math. Anal. Appl. 202(1996), 433–449.
- [18] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals 22(2004), 1039– 1046.
- [19] R. Saadati, A. Razani, and H. Adibi, A Common fixed point theorem in *L*-fuzzy metric spaces, *Chaos, Solitons and Fractals* doi:10.1016/j.chaos.2006.01.023.
- [20] R. Saadati and J. H. Park, On the Intuitionistic Fuzzy Topological Spaces, Chaos, Solitons and Fractals 27(2006), 331–344.
- [21] R. Saadati and J. H. Park, Intuitionistic fuzzy Euclidean normed spaces, Commun. Math. Anal. 1(2)(2006), 1–6.
- [22] B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301(2005), 439–448.
- [23] L. A. Zadeh, Fuzzy sets, Inform. and Control 8(1965), 338-353.