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1. Introduction and preliminaries

The notion of fuzzy sets was introduced by Zadeh [23]. Various concepts of fuzzy
metric spaces were considered in [7, 8, 13, 14]. Many authors have studied fixed
point theory in fuzzy metric spaces; see for example [3, 4, 11, 12, 16, 17]. In the
sequel, we shall adopt the usual terminology, notation and conventions of L-fuzzy
metric spaces introduced by Saadati et al. [19] which are a generalization of fuzzy
metric spaces [10] and intuitionistic fuzzy metric spaces [18, 20].

Definition 1.1. [11] Let L = (L,≤L) be a complete lattice, and U a non-empty set
called a universe. An L-fuzzy set A on U is defined as a mapping A : U −→ L. For
each u in U , A(u) represents the degree (in L) to which u satisfies A.

Lemma 1.1. [5, 6] Consider the set L∗ and the operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},

(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗.
Then (L∗,≤L∗) is a complete lattice .

Classically, a triangular norm T on ([0, 1],≤) is defined as an increasing, commu-
tative, associative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = x, for all x ∈ [0, 1].
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These definitions can be straightforwardly extended to any lattice L = (L,≤L). De-
fine first 0L = inf L and 1L = sup L.

Definition 1.2. A triangular norm (t-norm) on L is a mapping T : L2 → L
satisfying the following conditions:

(1) (∀x ∈ L)(T (x, 1L) = x); (boundary condition)
(2) (∀(x, y) ∈ L2)(T (x, y) = T (y, x)); (commutativity)
(3) (∀(x, y, z) ∈ L3)(T (x, T (y, z)) = T (T (x, y), z)); (associativity)
(4) (∀(x, x′, y, y′) ∈ L4)(x ≤L x′ and y ≤L y′ ⇒ T (x, y) ≤L T (x′, y′)).

(monotonicity)

A t–norm T on L is said to be continuous if for any x, y ∈ L and any sequences
{xn} and {yn} which converge to x and y we have

lim
n
T (xn, yn) = T (x, y)

For example, T (x, y) = min(x, y) and T (x, y) = xy are two continuous t–norms on
[0, 1]. A t-norm can also be defined recursively as an (n + 1)-ary operation (n ∈ N)
by T 1 = T and

T n(x1, · · · , xn+1) = T (T n−1(x1, · · · , xn), xn+1)

for n ≥ 2 and xi ∈ L.

Definition 1.3. A negation on L is any decreasing mapping N : L → L satisfying
N (0L) = 1L and N (1L) = 0L . If N (N (x)) = x, for all x ∈ L, then N is called an
involutive negation.

Definition 1.4. The 3-tuple (X,M, T ) is said to be an L-fuzzy metric space if X is
an arbitrary (non-empty) set, T is a continuous t–norm on L and M is an L-fuzzy
set on X2× ]0,+∞[ satisfying the following conditions for every x, y, z in X and t, s
in ]0,+∞[:

(a) M(x, y, t) >L 0L;
(b) M(x, y, t) = 1L for all t > 0 if and only if x = y;
(c) M(x, y, t) = M(y, x, t);
(d) T (M(x, y, t),M(y, z, s)) ≤L M(x, z, t + s);
(e) M(x, y, ·) : ]0,∞[→ L is continuous and limt→∞M(x, y, t) = 1L.

Let (X,M, T ) be an L-fuzzy metric space. For t ∈ ]0,+∞[, we define the open
ball B(x, r, t) with center x ∈ X and a fixed radius r ∈ L \ {0L, 1L}, as

B(x, r, t) = {y ∈ X : M(x, y, t) >L N (r)}.
A subset A ⊆ X is called open if for each x ∈ A, there exist t > 0 and r ∈ L\{0L, 1L}
such that B(x, r, t) ⊆ A. Let τM denote the family of all open subsets of X. Then
τM is called the topology induced by the L-fuzzy metric M.

Example 1.1. [21] Let (X, d) be a metric space. Denote T (a, b) = (a1b1,min(a2 +
b2, 1)) for all a = (a1, a2) and b = (b1, b2) in L∗ and let M and N be fuzzy sets on
X2×]0,+∞[ be defined as follows:

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)) =
(

t

t + d(x, y)
,

d(x, y)
t + d(x, y)

)
.
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Then (X,MM,N , T ) is an intuitionistic fuzzy metric space.

Example 1.2. [1] Let (X, d) be a metric space. Denote T (a, b) = (a1b1,min(a2 +
b2, 1)) for all a = (a1, a2) and b = (b1, b2) in L∗ and let M and N be fuzzy sets on
X2 × (0,∞) defined as follows:

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)) =
(

htn

htn + md(x, y)
,

md(x, y)
htn + md(x, y)

)
,

for all t, h,m, n ∈ R+. Then (X,MM,N , T ) is an intuitionistic fuzzy metric space.

Lemma 1.2. [10] Let (X,M, T ) be an L-fuzzy metric space. Then, M(x, y, t) is
nondecreasing with respect to t, for all x, y in X.

Definition 1.5. A sequence {xn}n∈N in an L-fuzzy metric space (X,M, T ) is called
a Cauchy sequence, if for each ε ∈ L \ {0L} and t > 0, there exists n0 ∈ N such that
for all m ≥ n ≥ n0 (n ≥ m ≥ n0),

M(xm, xn, t) >L N (ε).

The sequence {xn}n∈N is said to be convergent to x ∈ X in the L-fuzzy metric
space (X,M, T ) (denoted by xn

M−→ x) if M(xn, x, t) = M(x, xn, t) → 1L whenever
n → +∞ for every t > 0. A L-fuzzy metric space is said to be complete if and only
if every Cauchy sequence is convergent.

Henceforth, we assume that T is a continuous t-norm on the lattice L such that
for every µ ∈ L \ {0L, 1L}, there is a λ ∈ L \ {0L, 1L} such that

T n−1(N (λ), ...,N (λ)) >L N (µ).

For more information see [19].

Definition 1.6. Let (X,M, T ) be an L-fuzzy metric space. M is said to be contin-
uous on X ×X×]0,∞[ if

lim
n→∞

M(xn, yn, tn) = M(x, y, t)

whenever a sequence {(xn, yn, tn)} in X ×X×]0,∞[ converges to a point (x, y, t) ∈
X×X×]0,∞[ i.e., limnM(xn, x, t) = limnM(yn, y, t) = 1L and limnM(x, y, tn) =
M(x, y, t).

Lemma 1.3. Let (X,M, T ) be an L-fuzzy metric space. Then M is a continuous
function on X ×X×]0,∞[.

Proof. The proof is the same as that for fuzzy spaces (see Proposition 1 of [15]).

Definition 1.7. Let A and S be mappings from an L-fuzzy metric space (X,M, T )
into itself. Then the mappings are said to be weak compatible if they commute at
their coincidence point, that is, Ax = Sx implies that ASx = SAx.

Definition 1.8. Let A and S be mappings from an L-fuzzy metric space (X,M, T )
into itself. Then the mappings are said to be compatible if

lim
n→∞

M(ASxn, SAxn, t) = 1L,∀t > 0
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whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = x ∈ X.

Proposition 1.1. [22] If self-mappings A and S of an L-fuzzy metric space (X,M, T )
are compatible, then they are weak compatible.

Lemma 1.4. [1, 19] Let (X,M, T ) be an L-fuzzy metric space. Define Eλ,M :
X2 −→ R+ ∪ {0} by

Eλ,M(x, y) = inf{t > 0 : M(x, y, t) >L N (λ)}
for each λ ∈ L \ {0L, 1L} and x, y ∈ X. Then we have

(i) For any µ ∈ L \ {0L, 1L} there exists λ ∈ L \ {0L, 1L} such that

Eµ,M(x1, xn) ≤ Eλ,M(x1, x2) + Eλ,M(x2, x3) + · · ·+ Eλ,M(xn−1, xn)

for any x1, ..., xn ∈ X;
(ii) The sequence {xn}n∈N is convergent to x w.r.t. L-fuzzy metric M if and

only if Eλ,M(xn, x) → 0.
Also the sequence {xn}n∈N is Cauchy w.r.t. L-fuzzy metric M if and only if it is
Cauchy with Eλ,M.

Lemma 1.5. Let (X,M, T ) be an L-fuzzy metric space. If

M(xn, xn+1, t) ≥L M(x0, x1, k
nt)

for some k > 1 and n ∈ N. Then {xn} is a Cauchy sequence.

Proof. For every λ ∈ L \ {0L, 1L} and xn ∈ X, we have

Eλ,M(xn+1, xn) = inf{t > 0 : M(xn+1, xn, t) >L N (λ)}
≤ inf{t > 0 : M(x0, x1, k

nt) >L N (λ)}

= inf{ t

kn
: M(x0, x1, t) >L N (λ)}

=
1
kn

inf{t > 0 : M(x0, x1, t) >L N (λ)}

=
1
kn

Eλ,M(x0, x1).

From Lemma 1.4, for every µ ∈ L \ {0L, 1L} there exists λ ∈ L \ {0L, 1L}, such that

Eµ,M(xn, xm) ≤ Eλ,M(xn, xn+1) + Eλ,M(xn+1, xn+2) + · · ·+ Eλ,M(xm−1, xm)

≤ 1
kn

Eλ,M(x0, x1) +
1

kn+1
Eλ,M(x0, x1) + · · ·+ 1

km−1
Eλ,M(x0, x1)

= Eλ,M(x0, x1)
m−1∑
j=n

1
kj
−→ 0.

Hence sequence {xn} is a Cauchy sequence.

Definition 1.9. [9] We say that the L-fuzzy metric space (X,M, T ) has property
(C), if it satisfies the following condition:

M(x, y, t) = C, for all t > 0 implies C = 1L.
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2. Main Result

Theorem 2.1. Let A,B, S and T be self-mappings of a complete L-fuzzy metric
space (X,M, T ), which has property (C), satisfying:

(i) A(X) ⊆ T (X), B(X) ⊆ S(X) and T (X), S(X) are two closed subsets of X;
(ii) the pairs (A,S) and (B, T ) are weak compatible;
(iii) M(Ax,By, t) ≥L M(Sx, Ty, kt), for every x, y in X and some k > 1.

Then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point in X. By (i), there exists x1, x2 ∈ X
such that y0 = Ax0 = Tx1, y1 = Bx1 = Sx2. Inductively, construct sequences
{yn} and {xn} in X such that y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2,
for n = 0, 1, 2, · · · . Now, we prove that {yn} is a Cauchy sequence. Let dm(t) =
M(ym, ym+1, t), t > 0. Then, we have

d2n(t) = M(y2n, y2n+1, t) = M(Ax2n, Bx2n+1, t)
≥L M(Sx2n, Tx2n+1, kt) = M(y2n−1, y2n, kt) = d2n−1(kt).

Thus d2n(t) ≥L d2n−1(kt) for every m = 2n ∈ N and ∀t > 0. Similarly for an odd
integer m = 2n + 1, we have d2n+1(t) ≥L d2n(kt). Hence, for every n ∈ N, we have
dn(t) ≥L dn−1(kt). That is,

M(yn, yn+1, t) ≥L M(yn−1, yn, kt) ≥L · · · ≥L M(y0, y1, k
nt).

So, by Lemma 1.5, {yn} is Cauchy and the completeness of X implies {yn} converges
to y in X. That is, limn→∞ yn = y

lim
n→∞

y2n = lim
n→∞

Ax2n = lim
n→∞

Tx2n+1

= lim
n→∞

y2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = y.

As B(X) ⊆ S(X), there exists u ∈ X such that Su = y. By (iii), we have

M(Au, Bx2n+1, t) ≥L M(Su, Tx2n+1, kt).

Since M is continuous, we get (whenever n −→∞ in the above inequality):

M(Au, y, t) ≥L M(y, y, kt) = 1L.

Thus M(Au, y, t) = 1L, i.e. Au = y. Therefore, Au = Su = y.
Since A(X) ⊆ T (X), there exists v ∈ X, such that Tv = y. Thus,

M(y, Bv, t) = M(Au, Bv, t) ≥L M(Su, Tv, kt) = 1L.

Hence Tv = Bv = Au = Su = y. Since (A,S) is weak compatible, we conclude
that ASu = SAu, that is Ay = Sy. Also, since (B, T ) is weak compatible then,
TBv = BTv, that is Ty = By. We now prove that Ay = y. By (iii), we have

M(Ay, y, t) = M(Ay, Bv, t) ≥L M(Sy, Tv, kt) = M(Ay, y, kt)
...
≥L M(Ay, y, knt).

On the other hand, from Lemma 1.2 we have that

M(Ay, y, t) ≤L M(Ay, y, knt).
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Hence, M(Ay, y, t) = C for all t > 0. Since (X,M, T ) has property (C), it follows
that C = 1L, i.e., Ay = y, therefore Ay = Sy = y.
Similarly we prove that By = y. By (iii), we have

M(y, By, t) = M(Ay, By, t) ≥L M(Sy, Ty, kt) = M(y, By, kt)
...
≥L M(y, By, knt).

On the other hand, from Lemma 1.2 we have that

M(y, By, t) ≤L M(y, By, knt).

Hence, M(y, By, t) = C for all t > 0. Since (X,M, T ) has property (C), it follows
that C = 1L, i.e., By = y. Therefore, Ay = By = Sy = Ty = y, that is, y is a
common fixed of A,B, S and T . For uniqueness, let x be another common fixed
point of A,B, S and T i.e., x = Ax = Bx = Sx = Tx. Hence

M(y, x, t) = M(Ay, Bx, t) ≥L M(Sy, Tx, kt) = M(y, x, kt)
...
≥L M(y, x, knt)

On the other hand, from Lemma 1.2 we have that

M(y, x, t) ≤L M(y, x, knt).

Hence, M(y, x, t) = C for all t > 0. Since (X,M, T ) has property (C), it follows
that C = 1L, i.e., y = x. Therefore, y is the unique common fixed point of self-maps
A,B, S and T .

Theorem 2.2. Let {Ai} and {Bj} be two sequences of self-mappings of a complete
L-fuzzy metric space (X,M, T ), which has property (C), such that,

(i) there exists i0, j0 ∈ N such that Am
i0

(X) ⊆ T (X), Bn
j0

(X) ⊆ S(X) and T (X),
S(X) are two closed subsets of X,

(ii) AiBi = BiAi , TAi = AiT , SAi = AiS, TBi = BiT and SBi = BiS, for
all i ∈ N,

(iii) M(Am
i x,Bn

j y, t) ≥L M(Sx, Ty, kijt), for every x, y in X, for some n, m ∈
N; here kij > k > 1 for i, j = 1, 2, · · · , and t > 0.

Then, Ai, Bj , S and T have a unique common fixed point in X for all i, j =
1, 2, · · · .

Proof. By Theorem 2.1, S, T and A = Am
i0

and B = Bn
j0

for some i0, j0 ∈ N, have
a unique common fixed point in X. That is, there exists a unique x ∈ X such that

S(x) = T (x) = Am
i0 (x) = Bn

j0(x) = x.

Suppose there exists j ∈ N such that j 6= j0. Then we have

M(x,Bn
j x, t) = M(Am

i0x, Bn
j x, t) ≥ M(Sx, Tx, kijt) = 1L.

Hence, for every j ∈ N we have Bn
j x = x. Similarly for every i ∈ N, we get

Am
i x = x. Therefore for every i, j ∈ N, we have

Am
i x = Bn

j x = Sx = Tx = x.
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To show uniqueness, assume that y is another fixed point of Am
i , Bn

j , S and T . Then
we have

M(x, y, t) = M(Am
i x, Bn

i y, t) ≥L M(Sx, Ty, kijt) = M(x, y, kijt) = M(Am
i x, Bn

i y, kijt)

≥L M(x, y, k2
ijt)

...
≥L M(x, y, kn

ijt)

≥L M(x, y, knt).

On the other hand, by Lemma 1.2 we have

M(x, y, t) ≤M(x, y, knt).

Hence, M(x, y, t) = C for all t > 0. Since (X,M, T ), has property (C), it follows
that C = 1L, i.e., x = y. Now, we prove that Aix = x. Since

Aix = Ai(Bn
i x) = Bn

i (Aix) and Aix = Ai(Am
i x) = Am

i (Aix),

also
Aix = AiSx = SAix and Aix = AiTx = TAix.

That is Aix is also a common fixed point of Am
i , Bn

i , S and T . Therefore Aix = x.
Similarly, one can show that Bjx = x, i.e., x is a unique common fixed point of the
mappings Ai, Bj , S and T , for i, j = 1, 2, . . . . This completes the proof.

Corollary 2.1. Let (X,M, T ) be a complete L-fuzzy metric space. Let {An} be
a sequence of mappings Ai of a complete L-fuzzy metric space X,M, T ) which has
property (C), into itself such that, for any two mappings Ai, Aj,

M(Am
i x,Am

j y, αijt) ≥L M(x, y, t)

for some m; here 0 < αij < k < 1 for i, j = 1, 2, . . . , x, y ∈ X and t > 0. Then the
sequence {An} has a unique common fixed point in X.

Proof. By Theorem 2.2, it is enough to set S = T = I, where I is the identity map

and Bn
j = Am

J . Also we replace αij by
1

kij
.
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