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Abstract. The study of constant width sets goes at least as far back as the

time of Euler. The Apollonian metric, on the other hand, is a relatively new
concept. It was introduced by Beardon in 1998 as a generalization of the hy-

perbolic metric of a ball to arbitrary domains [3]. Close connections between
these concepts were established in [20] and [21]. In this paper, we study the

Apollonian metric of domains which are the complements of constant width

sets. We verify Beardon’s conjecture for such domains and show that in such
domains the circular arcs which are orthogonal to the boundary and only they

are the pseudogeodesic lines.
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1. Introduction

A compact set in Rn is of constant width if the distance between the parallel
support hyperplanes in every direction is constant. The Reuleaux triangles are well-
known examples of planar sets of constant width. On the other hand, Euclidean
balls are trivially of constant width. In fact, sets of constant width can be defined
by taking a certain property of a ball as a definition. For example, the width of
a ball in every direction is constant. Some non-trivial curves of constant width
were already known to Euler [4]. Sets of constant width are well-studied objects in
classical Euclidean geometry and functional analysis. Let Wn be the class of convex
bodies of constant width in Rn. Fillmore [12] has shown that there are sets in Wn

with analytic boundaries but no nontrivial symmetry group as well as sets with
analytic boundaries and the same symmetry group as the regular n-simplex. On
the other hand, there exist extremely singular members of Wn, i.e., convex bodies
whose sets of singular points are dense in their boundaries [11, 23]. Moreover, Wn

is closed in the Hausdorff metric, and any member of Wn can be approximated
arbitrarily closely by sets in Wn both with analytic boundaries and with singular
boundaries (see [10, 9, 13, 24] for properties of sets of constant width.)
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The concept of Apollonian metric, not the name, goes back to Barbilian, who
generalized the hyperbolic metric of a disk to plane Jordan domains by treating it
as a distance-ratio metric [1]. The main objectives of Barbilian’s investigations were
to see if there are plane Jordan domains other than disks and half-planes on which
the Poincaré model of the hyperbolic geometry can be constructed. One of the
conclusions of his work states that such a metric space is totally geodesic if and only
if the underlying domain is a disk. The complete proof of this fact has recently been
given by Gehring and Hag [14]. Although the resulting geometry, called Barbilian
geometry, has been an object of many studies over the years (see [5, 6, 7, 8]), the
original idea of Barbilian has been forgotten for nearly sixty years, except for one
paper by Kelly [22]. Beardon revived Barbilian’s original idea by introducing the
Apollonian metric for arbitrary domains in Rn [3].

The notion of conformality establishes a connection between the Apollonian met-
ric and sets of constant width. The Apollonian metric of a domain D ⊂ Rn is
conformal at every point (i.e., the infinitesimal balls in the Apollonian metric about
every point are similar to Euclidean balls) if and only if D is a ball. This property of
balls can be explained by the fact that they are the only convex bodies of constant
width which are preserved under all Möbius transformations of Rn. The latter is,
in fact, a consequence of the following result on the conformality of the Apollonian
metric: the Apollonian metric aD of a domain D ⊂ Rn is conformal either at every
point, or at only one point, or at no point of D [21, Theorem 2]. More precisely,
the first case happens if and only if D is a ball. For the second case we have the
following result [21, Theorem 3]: The Apollonian metric of a domain D is conformal
at one point if and only if D is, up to Möbius transformations, the complement of
a convex body of constant width. Hence the convex bodies of constant width arise
naturally in the context of the Apollonian metric. The Apollonian metric is a natu-
ral extension of the hyperbolic metric of a ball in the same way as the convex bodies
of constant width are natural extensions of balls (see [20] and [21] for more on the
relations between the Apollonian metric and convex bodies of constant width).

Let W be a convex body of constant width and D = Rn\W be its complementary
domain. Although the Apollonian metric space (D, aD) is not totally geodesic, there
are infinitely many geodesic lines in D, and in particular each point of D lies in a
geodesic segment [18, Theorem 2]. But instead of geodesic lines, we consider a weaker
notion of pseudogeodesic lines introduced in [18]. In particular, each geodesic line is
a pseudogeodesic line. Note that if W is a ball, then the circular arcs in D which are
orthogonal to ∂D are geodesic lines and hence pseudogeodesic lines. Furthermore,
every pair of points in D lies on such a line. The latter is a property that only
balls possess. In general, not every pair of points in D lies on a pseudogeodesic line.
Nevertheless, there are plenty of pseudogeodesic lines in D so that every point in D
belongs to at least one such line [18].

Theorem 1.1. Suppose that W is a convex body of constant width and suppose that
it is regular. Let a, b ∈ ∂D and γ be a circular arc joining a and b in D. Then γ is
a pseudogeodesic line if and only if it is orthogonal to ∂D. Moreover, any point in
D can be joined to ∞ ∈ D by a unique pseudogeodesic line.
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Pseudogeodesic lines are invariant under Apollonian isometries. Beardon asked
if each Apollonian isometry is the restriction of a Möbius transformation. Partial
results confirming Beardon’s conjecture have been given in [3], [15] and [21]. The
most general result to date, which include these partial results, is given in [18] and
[19]. Here we verify Beardon’s conjecture for domains which are the complements
of convex bodies of constant width.

Theorem 1.2. Let W be a convex body of constant width and let D = Rn \ W .
Then every Apollonian isometry f : D → Rn is the restriction of a Möbius map.

Theorem 1.2 can be reformulated as a uniqueness result for convex bodies of
constant width. Namely, two convex bodies of constant width are similar if and only
if their exterior domains are isometric in the Apollonian metric.

Section 2 contains preliminaries on the convex bodies of constant width and on
the Apollonian metric. Section 3 contains auxiliary results on the convex bodies of
constant width as well as on the Apollonian metric of their complements. These
results are needed in the the proofs of Theorem 1.1 and Theorem 1.2 at the end of
Section 3.

2. Preliminaries

The n-dimensional Euclidean space is denoted by Rn. The open and closed balls
of radius r > 0 and centered at x ∈ Rn are denoted by Bn(x, r) and B

n
(x, r),

respectively. Sn−1(x, r) is a sphere of radius r > 0 and centered at x ∈ Rn. The
closed segment between x, y ∈ Rn is denoted by [x, y]. Given a vector u and a point
x ∈ Rn, the open ray emanating from x in the direction of u is denoted by R(x, u)
and the hyperplane passing through x and orthogonal to u is denoted by P (x, u).
For distinct points a, b ∈ Rn, the open ray emanating from a in the direction of a
vector a− b is denoted by R(a, b). The diameter of a set A is denoted by diam(A).
The one-point compactification Rn∪{∞} of Rn is denoted by Rn. For a set A in Rn

or Rn the topological operations A (closure) and ∂A (boundary) are always taken
with respect to Rn. The cross-ratio of a quadruple a, b, c, d of points in Rn with
a 6= b and c 6= d is defined by

|a, b, c, d| = |a− c||b− d|
|a− b||c− d|

,

where we use the convention that |x−∞|/|y −∞| = 1 for all x, y ∈ Rn. A homeo-
morphism f : Rn → Rn is a Möbius transformation if and only if

|f(a), f(b), f(c), f(d)| = |a, b, c, d| for all a, b, c, d ∈ Rn.

(See, for instance, [2, Theorem 3.2.7].)
By a sphere (ball) in Rn we mean the image of Sn−1(0, 1) (Bn(0, 1)) under a

Möbius transformation of Rn. The points x, y ∈ Rn are called inversive with respect
to a sphere S in Rn if y = h(x) where h is the inversion in S.

Most of the notations and concepts related to convex bodies are taken from [10],
[9], [13] and [24]. A convex body in Rn is a compact convex subset of Rn with interior
points. Let K be a convex body. A hyperplane H is said to be a support hyperplane
of K at a if a ∈ K ∩H and K is contained in only one of the two closed halfspaces
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bounded by H. A boundary point a ∈ ∂K of a convex body K is called regular if
K has only one supporting hyperplane containing a; otherwise it is called singular.
We say that K is regular if each point of ∂K is regular. A closed segment [a, b] is
called a chord of K if a 6= b and a, b ∈ ∂K. A chord [a, b] is said to be diametrical
if there exist two parallel supporting hyperplanes, say H1 and H2, of K such that
a ∈ H1 and b ∈ H2. A chord [a, b] is called normal if it is orthogonal to a supporting
hyperplane of K at one of its endpoints; it is called double normal if it is orthogonal
at both endpoints. A convex body K is said to be of constant width if the distance
between the parallel support hyperplanes of K in every direction is constant.

For each triple (x, y; k), where x, y ∈ Rn are distinct points and k ∈ (0,+∞), the
Apollonian ball Ba(x, y; k) about x with respect to y and of Apollonian radius k is
defined by

Ba(x, y; k) =
{

z ∈ Rn :
|x− z|
|y − z|

< k

}
.

The boundary of Ba(x, y; k) is called the Apollonian sphere and is denoted by
Sa(x, y; k). Observe that

Sa(x, y; k) =

{
Sn−1

(
x−k2y
1−k2 , k|x−y|

|1−k2|

)
if k 6= 1,

H ∪ {∞} if k = 1,

where H is the hyperplane passing through the midpoint of [x, y] and orthogonal to
it. The Apollonian balls about (with respect to) ∞ are defined as

Ba(x,∞; k) = Bn(x, k) and Ba(∞, x; k) = Rn \Bn(x, k).

Hence the Apollonian spheres are just spheres in Rn and the points x and y are
inversive with respect to Sa(x, y; k).

Let D ⊂ Rn be a domain with at least two boundary points. For each pair of
distinct points x, y ∈ D we let kxy be the Apollonian radius of the largest Apollo-
nian ball about x with respect to y which is contained in D. The Apollonian ball
Ba(x, y; kxy) is called the maximal Apollonian ball in D about x with respect to y.
The Apollonian distance aD(x, y) between the points x and y is defined as

aD(x, y) = max
a,b∈∂D

log
( |x− a||y − b|
|x− b||y − a|

)
= log

( 1
kxy

· 1
kyx

)
.

In particular, af(D)(f(x), f(y)) = aD(x, y) for all Möbius transformations of Rn.
For each pair of distinct points x, y ∈ D, we define

E(∂D;x, y) = ∂D ∩ Sa(x, y; kxy).

When there is no confusion over the domain D, we denote E(∂D;x, y) by E(x, y).
An arc γ is said to join the points x ∈ D and y ∈ D in D if γ ⊂ D and x and y
are the endpoints of γ. An arc γ ⊂ D is called an Apollonian geodesic or simply a
geodesic if

aD(x, y) = aD(x, z) + aD(z, y),
for each ordered triple of points x, z, y ∈ γ. We say that γ is a geodesic segment (ray
or line) if two (one or none) of its endpoints lie in ∂D. We end this section with a
definition of a pseudogeodesic line [18, Definition 4.5].
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Definition 2.1. Let γ ⊂ D be a curve joining two boundary points a and b. Suppose
that z ∈ γ and that there exists a non-degenerate geodesic subcurve S of γ containing
z in its interior, with the additional property that for every x ∈ γ there exists a
closed non-degenerate subcurve S′ of S with one endpoint at z such that aD(x, z) =
aD(x, y) + aD(y, z) for all y ∈ S′. Then γ is called a pseudogeodesic line through z
(or simply a pseudogeodesic line).

3. Main Results

In this section, we study some properties of the Apollonian metric of domains that
are complements of convex bodies of constant width. Lemma 3.2 and Lemma 3.3
provide new properties of convex bodies of constant width. We will need the follow-
ing two properties of convex bodies of constant width (see [13, Lemma 7.1.13] and
[9, (VI), p. 54]).

Proposition 3.1. Let W ∈ Wn. Then every normal of W is a diameter, and hence
a double normal. Any two diameters of W lying in the same 2-dimensional plane
must intersect. In addition, W is strictly convex.

Proposition 3.2. A convex body W is of constant width if and only if every chord
[a, b] of W that is a normal of W at a is also a normal of W at b.

We begin with some properties of convex bodies of constant width.

Lemma 3.1. Let T be the unit circle in C and let ξ1, ξ2, ξ3, ξ4 ∈ T be distinct points
given in this order with |ξ1 − ξ3| = |ξ2 − ξ4|. Then, the 4-gon with vertices at
ξ1, ξ2, ξ3, ξ4 is a trapezoid.

Proof. Let z be the intersection point of the segments [ξ1, ξ3] and [ξ2, ξ4]. If z = 0,
then the 4-gon in question is a rectangle. Hence we can assume that z 6= 0. Since
|ξ1 − ξ3| = |ξ2 − ξ4|, we have

dist(0, [ξ1, ξ3]) = dist(0, [ξ2, ξ4]) = r,

for some r ∈ (0, 1). Without loss of generality, we can assume that |ξ1− z| < |ξ3− z|
and |ξ2 − z| < |ξ4 − z|. Then it is enough to show that |ξ3 − z| = |ξ4 − z|. Let
η13 ∈ [ξ1, ξ3] and η24 ∈ [ξ2, ξ4] be the unique points with |η13| = |η24| = r. Then
|η13− ξ3| = |η24− ξ4| from the right triangles with vertices at ξ3, η13, 0 and ξ4, η24, 0.
Similarly, |η13 − z| = |η24 − z| from the right triangles with vertices at z, η13, 0 and
z, η24, 0. Hence |ξ3 − z| = |ξ4 − z|, as required.

Recall that if a, c, b, d are four points in Rn, then |a, b, c, d|+ |b, a, c, d| = 1 if and
only if they lie on a circle in Rn in this order. (For a proof see, for instance, [4,
Proposition 10.9.2]). As an immediate consequence of this along with Lemma 3.1,
we obtain the following lemma.

Lemma 3.2. Let W be a convex body of constant width and let [a, b] and [c, d] be
diametrical chords of W . Then |a, b, c, d| + |b, a, c, d| = 1 if and only if the 4-gon
Q(a, c, b, d) with vertices at a, c, b and d in this order is either a segment or a
triangle or a trapezoid.
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Proof. Let |a, b, c, d| + |b, a, c, d| = 1. If a = c and b = d or a = d and b = c, then
Q(a, c, b, d) is a segment. If a = c and b 6= d or a = d and b 6= c, then Q(a, c, b, d)
is a triangle. If the points a, b, c, d are distinct, then Q(a, c, b, d) is a trapezoid by
Lemma 3.1.

Conversely, if Q(a, c, b, d) is either a segment, or a triangle or a trapezoid, then
the points a, c, b, d lie on a circle in this order and hence |a, b, c, d|+ |b, a, c, d| = 1.

The trapezoids spanned on the diametrical chords of a convex body of constant
width, as in Lemma 3.2, have the following additional property, which will be crucial
in the proof of Theorem 1.1.

Lemma 3.3. Let W be a convex body of constant width. Suppose that [a, b] and
[c, d] are diametrical chords of W and let Q(a, c, b, d) be a trapezoid with vertices at
a, c, b and d in this order. Let C be the circle passing though a and c and tangent to
[a, b] and [c, d] at these points. Let R(a, d) ∩C = {a′} and R(c, b) ∩C = {c′}. Then
the points a, a′, c′, c lie on C in this order.

Proof. If |a−c| ≥ |b−d| then the statement is obvious. Suppose that |a−c| < |b−d|.
Then R(a, d)∩R(c, b) 6= ∅. Let e be the intersection point of these rays and let s be
the center of C. It is enough to show that |e− s| ≥ |a− s|. Let α = ŝce be the angle
at the vertex c of a triangle ∆(sce). Similarly, let β = ŝec. Then d̂cb = π/2−α and
d̂bc = π/2−β. Since [c, d] is a diametrical chord, we have |d− c| ≥ |d− b|. Applying
the law of sine twice, we obtain α ≥ β and hence |e− s| ≥ |a− s|, as required.

Next, we will discuss properties of the Apollonian metric of domains which are
the complements of convex bodies of constant width. Throughout the rest of this
section we fix a convex body of constant width W ∈ Wn and put D = Rn \ W .
Observe that W ⊂ B

n
(a,diam(W )) for each a ∈ ∂W . In particular, if [a, b] is a

diametrical chord of W , there exists a unique closed ball which is the smallest of
all the balls of the form B

n
(s, |s − b|), s ∈ [a, b], containing W (see, for instance,

[21, Lemma 4.13]). We denote such a ball by B(a, b;W ). Next corollary is an easy
consequence of Proposition 3.1.

Corollary 3.1. For each x ∈ D\{∞}, there exist unique points a, b ∈ ∂D such that

|x− a| = dist(x, ∂D) and |x− b| = max{|x− ζ| : ζ ∈ ∂D}.
Moreover, [a, b] is a diametrical chord and x ∈ R(a, b).

The next lemma is an extension of Corollary 3.1.

Lemma 3.4. Let x, y ∈ D \ {∞} be distinct points and let a, b ∈ ∂D be points with
|x− a| = dist(x, ∂D) and |y − b| = dist(y, ∂D). Then

aD(x, y) = aD(x,∞) + aD(∞, y)

if and only if [a, b] is a diametrical chord and x ∈ R(a, b) and y ∈ R(b, a).

Proof. Let c, d ∈ ∂D be distinct points such that

|x− c| = max{|x− ζ| : ζ ∈ ∂D} and |y − d| = max{|y − ζ| : ζ ∈ ∂D}.
Then by Corollary 3.1, we have

E(x,∞) = {a}, E(∞, x) = {c}, E(y,∞) = {b} and E(∞, y) = {d}.
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Moreover, we have that both [a, c] and [b, d] are diametrical chords of W and that
x ∈ R(a, c) and y ∈ R(b, d).

Sufficiency. Since [a, b] is a diametrical chord, we have c = b and d = a. Let B be
the maximal Apollonian ball in D about x with respect to y. Since the points x and
y are inversive with respect to ∂B, the center of ∂B lies on R(x, y)∪{∞}∪R(y, x).
Hence ∂B ∩ ∂W = {a}, i.e., E(x, y) = {a}. Similarly, we show that E(y, x) = {b}.
Then the proof is completed by using Lemma 4.1 [18].

Necessity. By Lemma 4.1 [18], we have

E(x, y) ⊂
(

E(x,∞) ∩ E(∞, y)
)

and E(y, x) ⊂
(

E(y,∞) ∩ E(∞, x)
)
.

Since E(x, y) and E(y, x) are nonempty subsets of ∂D, so are E(x,∞)∩E(∞, y) and
E(y,∞) ∩ E(∞, x). Hence we obtain d = a and c = b, as required.

We have the following corollary to Lemma 3.4.

Corollary 3.2. For each x ∈ D \ {∞}, there exists a unique point y ∈ D \ {∞}
such that

aD(x,∞) = aD(y,∞) and aD(x, y) = aD(x,∞) + aD(∞, y).

Lemma 3.5. Suppose that W is regular. Let x, y, z ∈ D be distinct points and let
C be the unique circle in Rn containing these points. If

aD(x, y) = aD(x, z) + aD(z, y)

then C intersects W orthogonally. Moreover,

C ∩ ∂W = E(x, y) ∪ E(y, x).

Proof. By Lemma 4.4 [18], there exists an Apollonian geodesic γ ⊂ C containing z in
its (relative) interior. Furthermore, for all x1, y1 ∈ γ such that the points x, x1, y1, y
lie on C in this order, we have

E(x, y) ⊂ E(x1, y1) and E(y, x) ⊂ E(y1, x1).

So, in proving the lemma, we can assume that the points x, z, y lie in γ in this
order. Let h be a preliminary Möbius transformation of Rn such that h(z) = ∞.
Fix a ∈ E(h(x), h(y)). Then a ∈ E(h(x),∞) by Lemma 4.1 [18]. Since

ah(D)(h(x), x′) + ah(D)(x′,∞) = ah(D)(h(x),∞)

for all x′ ∈ h(γ) lying between h(x) and ∞, we have a ∈ E(x′,∞). Hence for each
such x′, we have

a ∈ ∂B, where B = Ba(x′,∞; k).
By considering the balls B and using Corollary 3.1 as well as the regularity of W , we
conclude that a ∈ h(C). Since a is arbitrary, we obtain that E(h(x), h(y)) = {a}. By
letting x′ tend to ∞ along h(C), we conclude that the hyperplane containing a and
orthogonal to h(C) is a support hyperplane of h(W ) at a. Hence h(C) intersects
h(W ) at a orthogonally. Similarly, we show that E(h(y), h(x)) = {b} and h(C)
intersects h(W ) at b orthogonally. In particular,

h(C) ∩ h(W ) = {a, b} = E(h(x), h(y)) ∪ E(h(y), h(x)).
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Finally, Corollary 2.3.15 in [20] implies that

E(x, y) = {h−1(a)} and E(y, x) = {h−1(b)}.
Thus, C intersects W orthogonally and

C ∩ ∂W = E(x, y) ∪ E(y, x),

thus completing the proof.
A homeomorphism f : D → Rn is called an Apollonian isometry if

af(D)(f(x), f(y)) = aD(x, y) for all x, y ∈ D.

Clearly, every Möbius mapping is an Apollonian isometry. The following theorem is
the same as Theorem 3.4.1 in [20], but here we give an alternative proof of it using
Lemma 3.4, which is significantly shorter than the original proof in [20].

Theorem 3.1. Let W be a convex body of constant width, D = Rn\W , f : D → Rn

be an Apollonian isometry with f(∞) = ∞ and D′ = f(D). Then W ′ = Rn \D′ is
a convex body of constant width.

Proof. Let [a, b] be any diametrical chord of W . First, we will show that there exist
a′, b′ ∈ ∂W ′ such that

f(R(a, b)) = R(a′, b′) and f(R(b, a)) = R(b′, a′)

and the hyperplanes P (a′, u) and P (b′, u) are support hyperplanes of W ′, where
u = a′ − b′.

Let x ∈ R(a, b) and y ∈ R(b, a) be arbitrary points. By Lemma 3.4 we have

aD(x, y) = aD(x,∞) + aD(∞, y)

and since f is an isometry, we have

aD′(x′, y′) = aD′(x′,∞) + aD′(∞, y′),

where x′ = f(x) and y′ = f(y). By Lemma 4.4 [18] there is a closed non-degenerate
geodesic subarc γ′ of R(x′, y′) ∪ R(y′, x′) containing ∞ in its (relative) interior.
Let x′1 and y′1 be the endpoints of γ′ so that the points x′, x′1,∞ lie on γ′ in this
order. Put x1 = f−1(x′1) and y1 = f−1(y′1) and let a1, b1 ∈ ∂W be such that
|x1 − a1| = dist(x1, ∂W ) and |y1 − b1| = dist(y1, ∂W ). Since

aD(x1, y1) = aD(x1,∞) + aD(∞, y1),

Lemma 3.4 implies that [a1, b1] is a diametrical chord of W and that x1 ∈ R(a1, b1)
and y1 ∈ R(b1, a1). Since γ = f−1(γ′) is a geodesic, for any z ∈ γ lying between y1

and ∞ we have
aD(x1, z) = aD(x1,∞) + aD(∞, z).

Then by applying Lemma 3.4 to the pair (x1, z) we conclude that z ∈ R(b1, a1) and
hence f−1(R(y′1, x

′
1)) ⊂ R(y1, x1). Similarly, we obtain f−1(R(x′1, y

′
1)) ⊂ R(x1, y1).

Thus,
γ = R(x1, y1) ∪ {∞} ∪R(y1, x1).
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Let now x′2 be an arbitrary point on R(x′, y′) lying between x′ and x′1. By Lemma
4.4 [18] there exists a closed non-degenerate subarc γ′2 of γ′ having ∞ as one of its
endpoints and such that

aD′(x′2,∞) = aD′(x′2, z
′) + aD′(z′,∞) for all z′ ∈ γ′2.

Hence

aD(x2,∞) = aD(x2, z) + aD(z,∞) for all z ∈ γ2 = f−1(γ′2),

where x2 = f−1(x′2). Lemma 4.1 [18] implies that

E(x2,∞) ⊂ E(z,∞) = {a1} and E(∞, x2) ⊂ E(∞, z) = {b1}.
Then Corollary 3.1 implies that x2 ∈ R(a1, b1). Similarly, f−1(y′2) ∈ R(b1, a1) for
all y′2 ∈ R(y′, x′) lying between y′ and y′1. Since x′2 and y′2 are arbitrary points, we
conclude that

a1 = a, b1 = b, f−1(R(x′, y′)) = R(x, y) and f−1(R(y′, x′)) = R(y, x).

Since x and y can be taken arbitrarily close to a and b, respectively, we conclude
that

f(R(a, b)) = R(a′, b′) and f(R(b, a)) = R(b′, a′)
for some a′, b′ ∈ ∂W ′.

Next, we will show that P+(a′, u) ∩ W ′ = ∅, where P+(a′, u) is the open half-
space determined by P (x, u) and having u as an inner normal vector. It is enough
to show that for each x′ ∈ R(a′, b′), the point a′ is a unique point with |x′ − a′| =
dist(x′, ∂W ′). Let d′ ∈ ∂W ′ be any point with |x′ − d′| = dist(x′, ∂W ′). Assume
first that |x′− d′| < |x′− a′|. Let x′0 ∈ R(a′, b′) be the unique point with |x′0 − a′| =
(|x′− a′| − |x′− d′|)/2. Then the point x0 = f−1(x′0) belongs to the ray R(a, b) and
hence by Lemma 4.4 [18] there exists z ∈ R(a, b) such that for x = f−1(x′) we have

aD(x0,∞) = aD(x0, z) + aD(z,∞)

and
aD(x,∞) = aD(x, z) + aD(z,∞).

Therefore for z′ = f(z) we have

aD′(x′0,∞) = aD′(x′0, z
′) + aD′(z′,∞)

and
aD′(x′,∞) = aD′(x′, z′) + aD′(z′,∞).

Let c′ ∈ ∂W ′ be a point with |x′0 − c′| = dist(x′0, ∂W ′). Then by our choice of
x′0, we have c′ 6= d′. Since c′ ∈ E(x′0,∞) and d′ ∈ E(x′,∞), by Lemma 4.1 [18]
we have d′, c′ ∈ E(z′,∞), i.e., |z′ − d′| = |z′ − c′|. But since z′ ∈ R(a′, b′) and
|x′ − d′| < |x′ − a′|, we obtain that |z′ − d′| < |z′ − c′|, a contradiction. Hence we
conclude that |x′ − d′| = |x′ − a′|. Then there exists z′ ∈ R(a′, b) such that

aD′(x′,∞) = aD′(x′, z′) + aD′(z′,∞).

Again, by Lemma 4.1 [18], we have a′, d′ ∈ E(x′,∞) ⊂ E(z′,∞), i.e., |z′ − d′| =
|z′ − a′|. Since z′ ∈ R(a′, b′), we conclude that d′ = a′. Similarly, we obtain that
P−(b′, u)∩W ′ = ∅, where P−(a′, u) is the open half-space determined by P (x, u) and
having u as an outer normal vector. Thus, the hyperplanes P (a′, u) and P (b′, u) are
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support hyperplanes of W ′ at a′ and b′, respectively. Moreover, for each x′ ∈ R(a′, b′)
(y′ ∈ R(b′, a′)) the point a′ (b′) is the unique point in W ′ with

|x′ − a′| = dist(x′, ∂W ′) (|y′ − b′| = dist(y′, ∂W ′)).

In particular, for each x′ ∈ D′ there exists a unique point a′ ∈ W ′ such that
|x′ − a′| = dist(x′, ∂W ′). Then Theorem 11.1.7.3 [4] implies that W ′ is a convex
set. Since αD (and hence aD′) is a metric, we conclude by Theorem 1.1[3] that W ′

does not lie in any hyperplane in Rn and hence is a convex body. Next we will show
that W ′ is of constant width. Let [a′, b′] be a chord of W ′ that is normal at a′. Let
x′ ∈ R(a′, b′) be any point and x = f−1(x′). By Corollary 3.1 there exists a unique
diametrical chord [a, b] of W with x ∈ R(a, b). Then

f(R(b, a)) = R(b′, a′) and f(R(a, b)) = R(a′, b′)

as we have shown above. Since P (b′, u) with u = a′ − b′ is a support hyperplane of
W ′ at b′, we obtain that the chord [a′, b′] is normal of W ′ at b′ and by Property 3.2
we conclude that W ′ is a convex body of constant width.

We end this section with the proofs of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Suppose that γ is a pseudogeodesic line. Then there exist
distinct points x, z, y ∈ γ such that

aD(x, y) = aD(x, z) + aD(z, y)

and hence γ intersects ∂D orthogonally by Lemma 3.5.
Suppose now that γ intersects ∂D orthogonally at a and b. Let [a, c] and [b, d]

be diametrical chords of W . Since W is regular, we have c 6= d. Assume first that
c 6= b. Then d 6= a and hence the points a, b, c, d are distinct. Due to regularity of
W the diametrical chords [a, c] and [b, d] are tangent to γ. In particular, they lie in
the 2-dimensional plane containing γ. By Proposition 3.1, the chords [a, c] and [b, d]
intersect each other, say at p. Then |a−p| = |b−p| and since |a−c| = |b−d|, we obtain
that [a, b] is parallel to [c, d] and hence the 4-gon Q(a, b, c, d) is a trapezoid. Let a′

and b′ be the intersection points of γ with the rays R(a, d) and R(b, c), respectively.
By Lemma 3.3 the points a, a′, b′, b lie on γ in this order. Let z ∈ D ∩ γ be such
that |z− a| = |z− b|. We will show that γ is a pseudogeodesic line through z. Write
B1 = B(c, a;W ) and B2 = B(d, b;W ). Let z1 (z2) be inversive to z with respect
to ∂B1 (∂B2). Let C be the circle containing γ. Since C is orthogonal to B1 and
B2 and since the points a, a′, b′, b lie on γ in this order, {z1, z2} = C ∩W and such
that the points a, z2, z1, b lie on C in this order. Let h be an inversion in the sphere
Sn−1(z, |z − a|). Then h(C) is a straight line, the points h(a) = a, h(z2), h(z1),
h(b) = b lie on h(C) in this order,

h(B1) = B
n
(h(z1), |h(z1)− a|) and h(B2) = B

n
(h(z2), |h(z2)− b|).

Moreover,
h(W ) ⊂ h(B1) ∩ h(B2).

We need to show that h(γ) is a pseudogeodesic line through ∞. Let

S = h(γ) \
(
h(B1) ∪ h(B2)

)
.
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Clearly, S contains ∞ in its interior and is non-degenerate. By Corollary 2.4.7 [20], S
is an Apollonian geodesic. Now let x ∈ h(γ) be arbitrary. If x ∈ S then we let S′ be
the subarc of S from x to ∞. Otherwise, we let S′ be the subarc of S from x? to ∞.
Here x? is the image of x under the inversion in the sphere ∂(h(B2)) if x ∈ R(a, b)
and the image of x under the inversion in the sphere ∂(h(B1)) if x ∈ R(b, a). It
remains to show that

(3.1) ah(D)(x,∞) = ah(D)(x, y) + ah(D)(y,∞) for all y ∈ S′.

There is nothing to prove if x ∈ S. Otherwise, we can assume, due to symmetry,
that x ∈ R(b, a) \ S. It is easy to see that

E(x,∞) = E(x, y) = E(y,∞) = {b} and E(∞, x) = E(∞, y) = {a}.
By the choice of x? the center of the maximal Apollonian ball about y with respect
to x lies in [h(z1), x]. Since h(W ) ⊂ h(B1), we obtain that E(y, x) = {a}. Hence
(3.1) holds by Lemma 4.1 [18], as required.

Assume now that c = b. Then d = a and hence [a, b] is a diametrical chord and
γ = R(a, b) ∪ {∞} ∪ R(b, a). Since W ⊂ Bn(a, |a − b|) ∩ Bn(b, |a − b|), the same
reasoning as above applied to h(C) implies that γ is a pseudogeodesic line.

Proof of Theorem 1.2. For disks this result was proved by Gehring and Hag
([16, Theorem 3.29]) and was generalized for balls in Rn by Hästö ([17, Theorem
1.9]). Hence we can assume that W is not a ball. Since ∂W does not lie on any
hyperplane in Rn, by Theorem 5.7 [18] we can assume, without loss of generality,
that f extends continuously to D, f(D) = D and that f |∂D = id∂D. First, we will
show that f(∞) = ∞. Assume that f(∞) 6= ∞ and let x = f(∞). Let h be the
inversion in Sn−1(x, 1). Then the map h◦f satisfies the assumptions of Theorem 3.1
and hence the set

W ′ = Rn \ (h ◦ f)(D) = Rn \ h(D) = h(W )

is a convex body of constant width. By Theorem 3 [21], the Apollonian metric aD

is conformal at x. Since aD is also conformal at ∞, Theorem 2 [21] implies that W
is a ball, which is a required contradiction. Thus, f(∞) = ∞. Let x ∈ D \ {∞}
be an arbitrary point. By Corollary 3.1 there exists a unique diametrical chord
[a, b] of W such that x ∈ R(a, b). From the proof of Theorem 3.1 we obtain that
f(R(a, b)) = R(a′, b′) and f(R(b, a)) = R(b′, a′). In particular, a′ ∈ ∂D is a unique
point with |f(x)−a′| = dist(f(x), ∂D). Since f(a) = a and f(b) = b, we obtain that
a′ = a and b′ = b. Hence f(x) ∈ R(a, b). Since aD(x,∞) = aD(f(x),∞), we obtain
that f(x) = x. Thus, f |D = id|D, which completes the proof.

Remark 3.1. We believe that the regularity assumption in Theorem 1.1 can be
omitted. For sets of constant width in R2, Theorem 1.2 is the same as Theorem
3.5.1 in ([20]).
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