BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Fuzzy Pre-semi-closed Sets

 ¹S. MURUGESAN AND ²P. THANGAVELU
¹Department of Mathematics, Sri S. R. Naidu Memorial College, Satur - 626 203, India,
²Department of Mathematics, Aditnar College of Arts and Science, Trichendur - India.
¹satturmuruges@gmail.com; ²pthangavelu2004@yahoo.co.in

Abstract. In this paper, we introduce fuzzy pre-semi-closed sets in fuzzy topological spaces and investigate their properties. Using fuzzy pre-semi-closed sets, equivalences of fuzzy regular open sets are established. As applications to fuzzy pre-semi-closed sets, we introduce fuzzy spaces with new kinds of separation axioms, namely, fuzzy pre-semi- $T_{\frac{1}{2}}$ spaces, fuzzy pre-semi- $T_{\frac{3}{4}}$ spaces and fuzzy semi-pre- $T_{\frac{1}{2}}$ spaces and characterize them.

2000 Mathematics Subject Classification: 54A40

Key words and phrases: Fuzzy generalized closed sets, fuzzy semi-pre-closed sets, fuzzy $T_{\underline{1}}$ space, fuzzy semi- $T_{\underline{2}}^{\underline{1}}$ space.

1. Introduction and Preliminaries

Recently, Veera Kumar [13] introduced pre-semi-closed sets in crisp topological spaces. Extending this concept to fuzzy topological spaces(*fts*), we define a new class of fuzzy generalized sets namely, fuzzy pre-semi-closed sets and investigate their properties. In this section, we list out the definitions and the results which are needed in sequel. Throughout this paper, *fts* X denote a fuzzy topological space (X, τ) , in the sense of Chang [6]. Fuzzy sets in X will be denoted by λ, μ, ν, η . For a fuzzy set λ , the operators fuzzy closure and fuzzy interior are denoted and defined by $\operatorname{Cl} \lambda = \wedge \{\mu : \mu \geq \lambda, 1 - \mu \in \tau\}$ and $\operatorname{Int} \lambda = \vee \{\mu : \mu \leq \lambda, \mu \in \tau\}$ if X is a finite set and $X = \{a_i : i = 1, 2, \ldots, k\}$, where k is a positive integer. Fuzzy sets in X may represented as

$$\lambda = \frac{\alpha_1}{a_1} + \frac{\alpha_2}{a_2} + \dots + \frac{\alpha_k}{a_k}$$

and $0 \le \alpha_1, \alpha_2, \ldots, \alpha_k \le 1$. We do not assume any meaning to symbols used unless defined here. The following lemmas are well-known.

Lemma 1.1. [2, 4, 12] In a fuzzy topological space (X, τ) ,

(i) every fuzzy regular open set is fuzzy open.

Received: June 16, 2007; Revised: June 17, 2008.

- (ii) every fuzzy open set is fuzzy α -open.
- (iii) every fuzzy α -open set is both fuzzy semiopen and fuzzy preopen.
- (iv) every fuzzy semiopen set is fuzzy semi-preopen.
- (v) every fuzzy preopen set is fuzzy semi-preopen.

Lemma 1.2. A fuzzy set λ in a fuzzy topological space (X, τ) is

- (i) fuzzy regular closed [2] (simply Fr-closed) if $\lambda = \text{Cl Int } \lambda$.
- (ii) fuzzy α -closed [4] (simply F α -closed) if Cl Int Cl $\lambda \leq \lambda$.
- (iii) fuzzy pre-closed [4] (simply Fp-closed) if $\operatorname{Cl}\operatorname{Int} \lambda \leq \lambda$.
- (iv) fuzzy semi-closed [2] (simply Fs-closed) if Int $\operatorname{Cl} \lambda \leq \lambda$.
- (v) fuzzy semi-pre-closed [12] (simply Fsp-closed) if Int Cl Int $\lambda \leq \lambda$.

Notation 1.1. Let (X, τ) be a fuzzy topological space. Then the family of fuzzy regular closed (resp. fuzzy semi-closed, fuzzy pre-closed, fuzzy semi-pre-closed) sets in X, may be denoted by its adjective as $r(\text{resp. } \alpha, s, p, sp)$.

Definition 1.1. [2, 4, 12] Let λ be a fuzzy set in a fuzzy topological space (X, τ) . Then fuzzy β -closure of λ is denoted and defined by $\beta \operatorname{Cl} \lambda = \wedge \{\mu : \lambda \leq \mu, \mu \in \beta\}$ where $\beta \in \{r, \alpha, s, p, sp\}$.

The following three lemmas are well-known.

Lemma 1.3. Let λ be a fuzzy set in a fuzzy topological space (X, τ) . Then

- (i) $sp \operatorname{Cl} \lambda \leq s \operatorname{Cl} \lambda \leq \alpha \operatorname{Cl} \lambda \leq r \operatorname{Cl} \lambda$,
- (ii) $sp \operatorname{Cl} \lambda \leq p \operatorname{Cl} \lambda \leq \alpha \operatorname{Cl} \lambda$.

Lemma 1.4. Let λ be a fuzzy set in a fuzzy topological space (X, τ) . Then

- (i) $\alpha \operatorname{Cl} \lambda = \lambda \vee \operatorname{Cl} \operatorname{Int} \operatorname{Cl} \lambda$.
- (ii) $s \operatorname{Cl} \lambda = \lambda \vee \operatorname{Int} \operatorname{Cl} \lambda$.
- (iii) $p \operatorname{Cl} \lambda \geq \lambda \vee \operatorname{Cl} \operatorname{Int} \lambda$.
- (iv) $sp \operatorname{Cl} \lambda \geq \lambda \vee \operatorname{Int} \operatorname{Cl} \operatorname{Int} \lambda$.

Lemma 1.5. Let λ be a fuzzy set in a fuzzy topological space (X, τ) . Then

- (i) $1 sp \operatorname{Int}(\mu) = sp \operatorname{Cl}(1 \mu)$ and $1 sp \operatorname{Cl} \mu = sp \operatorname{Int}(1 \mu)$.
- (ii) $sp \operatorname{Cl}(sp \operatorname{Cl} \mu) = sp \operatorname{Cl} \mu$.

Definition 1.2. A fuzzy set λ in a fuzzy topological space (X, τ) is called:

- (i) [3] Fuzzy generalized closed set if $\operatorname{Cl} \lambda \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy open. We briefly denote it as Fg-closed set.
- (ii) [8] Fuzzy semi-generalized closed set if s Cl λ ≤ μ whenever λ ≤ μ and μ is fuzzy semiopen. We briefly denote it as Fsg-closed set.
- (iii) [9] Fuzzy generalized strongly closed set if α Cl λ ≤ μ whenever λ ≤ μ and μ is fuzzy open. We briefly denote it as Fgα-closed set.
- (iv) [9] Fuzzy generalized almost strongly semi-closed set if $\alpha \operatorname{Cl} \lambda \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy α -open. We briefly denote it as F α g-closed set.
- (v) [11] Fuzzy semi-pre-generalized closed set if $sp \operatorname{Cl} \lambda \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy semi-pre-open. We briefly denote it as Fspg-closed set.
- (vi) [10] Regular generalized fuzzy closed set if $\operatorname{Cl} \lambda \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy regular open. We briefly denote it as rFg-closed set.

- (vii) [5] Fuzzy pre-generalized closed set if $p \operatorname{Cl} \lambda \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy pre-open. We briefly denote it as Fpg-closed set. Similarly, we may define:
- (viii) Fuzzy generalized semi-closed set if $s \operatorname{Cl} \lambda \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy open. We briefly denote it as Fgs-closed set.
 - (ix) Fuzzy generalized pre-closed set if $p \operatorname{Cl} \lambda \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy open. We briefly denote it as Fgp-closed set.
 - (x) Fuzzy generalized semi-pre-closed set if $sp \operatorname{Cl} \lambda \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy open. We briefly denote it as Fgsp-closed set.

Definition 1.3. A fuzzy set λ in a fuzzy topological space (X, τ) is called fuzzy generalized open set (briefly, Fg-open) if $1 - \lambda$ is fuzzy generalized closed. Similarly, fuzzy generalized semi-open, fuzzy semi-generalized open, fuzzy generalized strongly open, fuzzy generalized almost strongly semi-open, fuzzy generalized semi-pre-open, fuzzy semi-pre-generalized open, fuzzy generalized open sets are defined.

Proposition 1.1. In a fuzzy topological space (X, τ) , the following hold and the converse of each statement is not true:

- (i) [3] Every fuzzy closed set is Fg-closed.
- (ii) [8] Every fuzzy semi-closed set is Fsg-closed.
- (iii) [9] Every fuzzy α -closed set is F α g-closed.
- (iv) [5] Every fuzzy pre-closed set is Fpg-closed.
- (v) [11] Every fuzzy semi-pre-closed set is Fspg-closed.

Definition 1.4. A fuzzy topological space (X, τ) is said to be a

- (i) [3] fuzzy- $T_{\frac{1}{2}}$ space if every Fg-closed set is fuzzy closed.
- (ii) [8] fuzzy semi- $T_{\frac{1}{2}}$ space if every Fsg-closed set is fuzzy semi-closed.
- (iii) [5] fuzzy pre- $T_{\frac{1}{2}}$ space if every Fpg-closed set is fuzzy pre-closed.

2. Fuzzy Pre-semi-closed Sets

In this section, we define a new class of fuzzy generalized closed sets called a fuzzy pre-semi-closed sets and study its properties.

Definition 2.1. Let μ be a fuzzy set in a fts (X, τ) . Then λ is called a fuzzy pre-semi-closed set X if sp Cl $\mu \leq \lambda$, whenever $\mu \leq \lambda$ and λ is a Fg-open set in X.

The following proposition asserts that the class of fuzzy pre-semi-closed set contains the class of fuzzy semi-pre-closed sets.

Proposition 2.1. Every fuzzy semi-pre-closed set in a fts (X, τ) is fuzzy pre-semiclosed.

Proof. Let μ be a fuzzy semi-pre-closed set in a $fts(X, \tau)$. Suppose that $\mu \leq \lambda$ and λ is a Fg-open set in X. Since $sp \operatorname{Cl} \mu = \mu$, it follows that $sp \operatorname{Cl} \mu = \mu \leq \lambda$, and hence μ is fuzzy pre-semi-closed in X. The reverse implication in the above proposition is not true as seen in the following example.

Example 2.1. Consider the *fts* (X, τ) , where $X = \{a, b, c\}$ and

$$\tau = \left\{ 0, 1, \mu = \frac{0.7}{a} + \frac{0.3}{b} + \frac{1}{c}, \quad \lambda = \frac{0.7}{a} + \frac{0}{b} + \frac{0}{c} \right\}$$

Fuzzy closed sets in X are:

$$0, 1, \mu' = \frac{0.3}{a} + \frac{0.7}{b} + \frac{0}{c}, \quad \lambda' = \frac{0.3}{a} + \frac{1}{b} + \frac{1}{c}.$$

So the family of Fg-closed sets is

$$\left\{0,1,\mu',\lambda',\frac{\alpha_1}{a}+\frac{\alpha_2}{b}+\frac{\alpha_3}{c}\text{ either }\alpha_1>0.7\text{ or }\alpha_2>0.3\right\}.$$

Hence the family of Fg-open sets is

$$\left\{0, 1, \mu, \lambda, \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \text{ either } \alpha_1 < 0.3 \text{ or } \alpha_2 < 0.7\right\}.$$

Now

$$\nu = \frac{1}{a} + \frac{0.3}{b} + \frac{0}{c}$$

is not a fuzzy semi-pre-closed set in X, for Int $\nu = \lambda$ and so, Int Cl Int $\nu =$ Int $\operatorname{Cl} \lambda = 1 > \nu$.

Moreover, ν is fuzzy pre-semi-closed. Indeed, let $\nu \leq \eta$ and η be Fg-open in X. Then $\eta = 1$ and $sp \operatorname{Cl} \nu \leq \eta$.

From the succeeding two examples, it can be seen that fuzzy pre-semi-closedness is independent from Fg-closedness, Fgs-closedness and $Fg\alpha$ -closedness.

Example 2.2. Consider the *fts* (X, τ) , where $X = \{a, b, c\}$ and

$$\tau = \left\{ 0, 1, \lambda = \frac{0.9}{a} + \frac{0.2}{b} + \frac{0}{c} \right\}.$$

Fuzzy closed sets are:

$$0, 1, \lambda' = \frac{0.1}{a} + \frac{0.8}{b} + \frac{1}{c}.$$

So the family of Fg-closed sets in X is

$$\left\{0, 1, \lambda', \text{and } \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \text{ either } 0.9 < \alpha_1 \text{ or } 0.2 < \alpha_2\right\}.$$

Hence the family of Fg-open sets is

$$\left\{0, 1, \lambda, \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \text{ either } \alpha_1 < 0.1 \text{ or } \alpha_2 < 0.8\right\}.$$

Now

$$\nu = \frac{0.9}{a} + \frac{0.1}{b} + \frac{0}{c}$$

is a fuzzy pre-semi-closed set in X, for if $\nu \leq \eta$ and η is Fg-open set in X, then $\eta = 1$ and hence $sp \operatorname{Cl}\nu \leq \eta$. But, Int $\operatorname{Cl}\nu = 1$, $\nu \leq \lambda$ and Int $\operatorname{Cl}\nu = 1 > \lambda$, so ν is not a Fgs-closed set in X and hence by Lemma 1.3, it is neither Fg-closed nor $Fg\alpha$ -closed.

226

Example 2.3. Consider the $fts(X, \tau) : X = \{a, b, c\}$ and

$$\tau = \left\{ 0, 1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c} \right\}.$$

Fuzzy closed sets are:

$$0, 1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}$$

So the family of Fg-closed sets in X is

$$\left\{0, 1, \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \text{ either } \alpha_1 > 0 \text{ or } \alpha_2 > 0\right\}.$$

Hence the family of Fg-open sets in X is

$$\left\{0, 1, \lambda, \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \text{ either } \alpha_1 < 1 \text{ or } \alpha_2 < 1\right\}.$$

Now

$$\nu = \frac{1}{a} + \frac{1}{b} + \frac{0}{c}$$

is not a fuzzy pre-semi-closed set in X; for if $\nu \leq \nu$ and ν is Fg-open set, but, Int Cl Int $\nu = 1$, and hence $sp \operatorname{Cl} \nu = 1 > \nu$. But, ν is Fg-closed set in X and hence it is $Fg\alpha$ -closed and Fgs-closed.

Proposition 2.2. Every fuzzy pre-semi-closed set in a fts (X, τ) is Fgsp-closed.

Proof. Let ν be a fuzzy pre-semi-closed set in a $fts(X, \tau)$. Suppose that $\nu \leq \lambda$ and λ is a fuzzy open set in X. Then, $sp \operatorname{Cl} \nu \leq \lambda$ and λ is Fg-open in X and hence ν is Fgsp-closed in X.

Remark 2.1. In Example 2.3, fuzzy set ν is also a *Fgsp*-closed set but not a fuzzy pre-semi-closed set. Thus, the converse of the above proposition is not true.

Proposition 2.3. Union of two fuzzy pre-semi-closed sets in a fts need not be fuzzy pre-semi-closed.

Proof. Consider the $fts(X, \tau) : X = \{a, b, c\}$ and

$$\tau = \left\{ 0, 1, \lambda = \frac{1}{a} + \frac{0.5}{b} + \frac{0}{c} \right\}.$$

Fuzzy closed sets are:

$$0, 1, \lambda' = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c}.$$

So the family of Fg-closed sets in X is

$$\left\{0, 1, \lambda', \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \text{ where } \alpha_3 \neq 0\right\}.$$

Hence the family of Fg-open sets in X is

$$\left\{0, 1, \lambda, \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \text{ where } 1 \neq \alpha_3\right\}.$$

Let

$$\mu = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}$$
 and $\nu = \frac{0}{a} + \frac{0.5}{b} + \frac{0}{c}$

be fuzzy sets in X. Now, since Int Cl Int $\mu = 0 \leq \mu$ and Int Cl Int $\nu = 0 \leq \nu, \mu$ and ν are fuzzy semi-pre-closed sets in X and hence by Proposition 2.1, μ and ν are fuzzy pre-semi-closed sets in X. But $\mu \lor \nu$ is not fuzzy pre-semi-closed set in X. Indeed, $\mu \lor \nu = \lambda$ and λ is Fg-open, but $sp \operatorname{Cl} \lambda = 1 > \lambda$.

Proposition 2.4. Let μ be a fuzzy set in a fts (X, τ) . If μ is Fg-open and fuzzy pre-semi-closed, then μ is fuzzy semi-closed.

Proof. Since $\mu \leq \mu$ is Fg-open, it follows that

$$\mu \lor \text{ Int } \operatorname{Cl} \operatorname{Int } \mu \leq sp \operatorname{Cl} \mu \leq \mu.$$

Hence, Int Cl Int $\mu \leq \mu$ and μ is fuzzy semi-closed.

As a consequence of Lemma 1.1, Lemma 1.3, Proposition 2.2 and Proposition 2.1, we get Figure 1.

Figure 1

The following proposition characterizes fuzzy regular open sets.

Proposition 2.5. Let μ be a fuzzy set in a fts (X, τ) . Then the following are equivalent:

228

- (i) μ is fuzzy regular open.
- (ii) μ is fuzzy open and fuzzy pre-semi-closed.
- (iii) μ is fuzzy open and Fgsp-closed.

Proof. (i) \Rightarrow (ii): Let μ be fuzzy regular open in a *fts* (X, τ) . Then it is both fuzzy open and fuzzy semi-closed and hence by Lemma 1.1 and Proposition 2.1, it is fuzzy pre-semi-closed.

(ii) \Rightarrow (iii): Let μ be fuzzy open and fuzzy pre-semi-closed. Then, by Proposition 2.2, it is Fgsp-closed.

(iii) \Rightarrow (i): Let μ be fuzzy open and Fgsp-closed. Then, $\mu \leq \mu$ and μ is fuzzy open and so, $\mu \vee$ Int Cl Int $\mu \leq sp$ Cl $\mu \leq \mu$. Hence, Int Cl Int $\mu \leq \mu$. Since μ is fuzzy open it follows that Int Cl $\mu \leq \mu =$ Int $\mu \leq$ Int Cl μ . Hence μ is fuzzy regular open.

Proposition 2.6. Let μ be a fuzzy pre-semi-closed set in a fts (X, τ) . If μ is a fuzzy set in X such that $\mu \leq \lambda \leq sp \operatorname{Cl} \mu$, then λ is also fuzzy pre-semi-closed.

Proof. Let $\lambda \leq \eta$ and η be Fg-open in X. Then $\mu \leq \eta$ and since μ is fuzzy pre-semiclosed, it follows from Lemma 1.5(ii) that $sp \operatorname{Cl} \lambda \leq sp \operatorname{Cl}(sp \operatorname{Cl} \mu) = sp \operatorname{Cl} \mu \leq \eta$. Hence, λ is fuzzy pre-semi-closed.

Definition 2.2. A fuzzy set μ in a fts (X, τ) is said to be fuzzy pre-semi open if $1 - \mu$ is fuzzy pre-semi-closed.

Proposition 2.7. Let μ be a fuzzy pre-semi-closed set in a fts (X, τ) . If λ is a fuzzy set in X such that sp Int $\mu \leq \lambda \leq \mu$, then λ is also a fuzzy pre-semi open.

Proof. Now, $1 - \mu$ is a fuzzy pre-semi-closed set in X and λ is a fuzzy set in X such that $1 - \mu \leq 1 - \lambda \leq 1 - sp$ Int μ . By Lemma 1.3, $1 - \mu \leq 1 - sp$ Int $\mu = sp$ Cl $(1 - \mu)$. Hence, by Proposition 2.6, $1 - \lambda$ is also fuzzy pre-semi-closed and λ is fuzzy pre-semi open.

3. Fuzzy Pre-semi- $T_{\frac{1}{2}}$ Spaces

As applications of fuzzy pre-semi-closed sets, three fuzzy spaces namely, fuzzy pre-semi- $T_{\frac{1}{2}}$ spaces, fuzzy pre-semi- $T_{\frac{3}{4}}$ spaces and fuzzy semi-pre- $T_{\frac{1}{3}}$ space are introduced.

Definition 3.1. A fuzzy topological space (X, τ) is called a

- (i) fuzzy pre-semi-T_{1/2} space if every fuzzy pre-semi-closed set in it is fuzzy semipre-closed,
- (ii) fuzzy semi-pre- $T_{\frac{1}{2}}$ space if every Fgsp-closed set in it is fuzzy semi-pre-closed.

Proposition 3.1. Every fuzzy semi-pre- $T_{\frac{1}{2}}$ space is a fuzzy pre-semi- $T_{\frac{1}{2}}$ space.

Proof. Let (X, τ) be a fuzzy semi-pre- $T_{\frac{1}{2}}$ space and λ be a fuzzy pre-semi-closed set in X. By Proposition 2.2, λ is *Fgsp*-closed set in X and hence it is fuzzy semi-preclosed set in X. Thus, (X, τ) is fuzzy pre-semi- $T_{\frac{1}{2}}$ space.

The converse of the above proposition is not valid as seen in the following example.

Example 3.1. Consider the fts (X, τ) : $X = \{a, b, c\}$ and

$$\tau = \left\{0, 1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}\right\}.$$

Fuzzy closed sets are:

$$0, 1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}.$$

So the family of Fg-closed sets in X is

$$\left\{0, 1, \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c}, \text{ either } \alpha_1 \neq 0 \text{ or } \alpha_2 \neq 0\right\}.$$

Hence the family of Fg-open sets in X is

$$\left\{0, 1, \lambda, \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c}, \text{ either } \alpha_2 \neq 1 \text{ or } \alpha_3 \neq 1\right\}$$

Now

$$\nu = \frac{1}{a} + \frac{0}{b} + \frac{1}{c}$$

is not a fuzzy pre-semi-closed sets in X. Indeed, $\nu \leq \eta$ and η is Fg-open implies that $\eta = 1$ and hence, $sp \operatorname{Cl} \nu \leq \eta$. But, ν is not fuzzy semi-pre-closed; for $sp \operatorname{Cl} \nu = 1 > \nu$. Thus, X is not a fuzzy semi-pre- $T_{\frac{1}{2}}$ space. However, X is a fuzzy pre-semi- $T_{\frac{1}{2}}$ space. Indeed, every fuzzy pre-semi-closed set in X is fuzzy semi-pre-closed. For:

Case 1. Suppose that μ is Fg-open. Then μ is fuzzy pre-semi-closed implies that $sp \operatorname{Cl} \mu \leq \mu$ and hence $sp \operatorname{Cl} \mu = \mu$. So, μ is fuzzy semi-pre-closed.

Case 2. Suppose that μ is not Fg-open. Then

$$\mu = \frac{\alpha_1}{a} + \frac{1}{b} + \frac{1}{c} \quad \text{where} \quad 0 \le \alpha_1 < 1,$$

and 1 is the only Fg-open set containing μ and hence μ is fuzzy pre-semi-closed. Moreover, μ is fuzzy semi-pre-closed. Indeed, Int Cl Int $\mu = 0 < \mu$.

Definition 3.2. Fuzzy topological space (X, τ) is called a fuzzy semi-pre- $T_{\frac{1}{3}}$ space if every Fgsp-closed set in it is fuzzy pre-semi-closed.

Proposition 3.2. Every fuzzy semi-pre- $T_{\frac{1}{2}}$ space is a fuzzy semi-pre- $T_{\frac{1}{2}}$ space.

Proof. Let (X, τ) be a fuzzy semi-pre- $T_{\frac{1}{2}}$ space and μ be a Fgsp-closed set in (X, τ) . Then μ is fuzzy semi-pre-closed and hence by Proposition 2.1, is fuzzy pre-semi-closed. Thus, (X, τ) is a fuzzy semi-pre- $T_{\frac{1}{3}}$ space. It will be an interesting exercise to prove that the converse of the above proposition is not valid.

Definition 3.3. A fuzzy topological space (X, τ) is called a fuzzy pre-semi- $T_{\frac{3}{4}}$ space if every fuzzy pre-semi-closed set in it is fuzzy pre-closed.

Proposition 3.3. Every fuzzy pre-semi- $T_{\frac{3}{4}}$ space is a fuzzy pre-semi- $T_{\frac{1}{2}}$ space.

Proof. Let (X, τ) be a fuzzy pre-semi- $T_{\frac{3}{4}}$ space and λ be a fuzzy pre-semi-closed set in (X, τ) . Then, λ is fuzzy pre-closed. Thus, (X, τ) is a fuzzy pre-semi- $T_{\frac{1}{2}}$ space. Converse of the above proposition is not true as seen in the following example.

230

Example 3.2. Let (X, τ) be a *fts*, where $X = \{a, b, c\}$ and

$$\tau = \left\{ 0, 1, \lambda_1 = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}, \quad \lambda_2 = \frac{0}{a} + \frac{1}{b} + \frac{0}{c}, \quad \lambda_3 = \frac{1}{a} + \frac{1}{b} + \frac{0}{c} \right\}.$$

Fuzzy closed sets in (X, τ) are

$$0, 1, \lambda'_1 = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \quad \lambda'_2 = \frac{1}{a} + \frac{0}{b} + \frac{1}{c}, \quad \lambda'_3 = \frac{0}{a} + \frac{0}{b} + \frac{1}{c}$$

If μ is Fg-closed, then $\mu \leq \lambda$ implies $\operatorname{Cl} \mu \leq \lambda$ whenever λ is fuzzy open. Thus, Fg-closed sets in (X, τ) are:

$$0, 1, \lambda'_1 = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \quad \lambda'_2 = \frac{1}{a} + \frac{0}{b} + \frac{1}{c}, \quad \lambda'_3 = \frac{0}{a} + \frac{0}{b} + \frac{1}{c} \quad \text{and} \quad \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c}$$

where $\alpha_3 \neq 0$. So, the family of Fg-open sets in (X, τ) is

$$\left\{0, 1, \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \quad \text{where} \quad \alpha_3 \neq 1\right\}.$$

It is enough to prove that, if μ is not fuzzy semi-pre-closed then it is not fuzzy pre-semi-closed and there is a fuzzy pre-semi-closed set which is not pre-closed. Let $\mu \neq 0$ be a fuzzy set in X. Then,

$$\operatorname{Int} \mu = \begin{cases} 0 & & \\ \lambda_1 & & \\ \lambda_2 & & \\ \lambda_3 & & \\ 1 & & \\ \end{cases}, \quad \operatorname{Cl} \operatorname{Int} \ \mu = \begin{cases} 0 & & \\ \lambda_2' & & \\ \lambda_3' & & \text{and } \operatorname{Int} \operatorname{Cl} \operatorname{Int} \mu = \begin{cases} 0 & & \\ \lambda_1 & & \\ \lambda_2 & & \\ 1 & \\$$

So, μ is not fuzzy semi-pre-closed if $\lambda_3 \leq \mu$. In that case, μ is also not fuzzy presemi-closed. For μ is Fg-open and $\mu \leq \mu$. But $sp \operatorname{Cl} \mu \geq \mu \lor$ Int Cl Int $\mu = 1 > \mu$. Thus X is a pre-semi- $T_{\frac{1}{2}}$ space. But it is not a fuzzy pre-semi- $T_{\frac{3}{4}}$ space. Indeed,

$$\mu = \frac{1}{a} + \frac{0.3}{b} + \frac{0}{c}$$

is a fuzzy semi-pre-closed and hence it is fuzzy pre-semi-closed but it is not fuzzy pre-closed, as ClInt $\mu \neq \mu$.

4. Conclusion

In this paper, by the introduction of fuzzy pre-semi-closed sets, we have equivalences of fuzzy regular open sets and fuzzy spaces with new separation axioms, namely, fuzzy semi-pre- $T_{\frac{1}{3}}$ space, pre-semi- $T_{\frac{3}{4}}$ space and fuzzy pre-semi- $T_{\frac{1}{2}}$ space. In crisp topology construction of counter examples is easy, but here that will be a rewarding exercises.

Acknowledgement. We acknowledge the suggestions of the referees for the improvement of the paper.

S. Murugesan and P. Thangavelu

References

- K. M. Abd El-Hakiem, Generalized semi-continuous mappings in fuzzy topological spaces, J. Fuzzy Math. 7(3)(1999), 577–589.
- [2] K. K. Azad, On fuzzy continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981), 14–32.
- G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, *Fuzzy Sets and Systems* 86(1)(1997), 93–100.
- [4] A. S. Bin Shahna, On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy Sets and Systems 44(1991), 14–32.
- [5] M. Caldas, G. Navagi and R. Saraf, On some functions concerning fuzzy pg-closed sets, *Proyec*ciones 25(3)(2006), 262–271.
- [6] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968), 182-190.
- [7] George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Seventh Printing, Prentice-Hall, Inc., 1995.
- [8] H. Maki et al., Generalized closed sets in fuzzy topological space, I, Meetings on Topological Spaces Theory and its Applications (1998), 23–36.
- [9] O. Bedre Ozbakir, On generalized fuzzy strongly semiclosed sets in fuzzy topological spaces, Int. J. Math. Math. Sci. 30(11)(2002), 651–657.
- [10] J. H. Park and J. K. Park, On regular generalized fuzzy closed sets and generalizations of fuzzy continuous functions, *Indian J. Pure Appl. Math.* 34(7)(2003), 1013–1024.
- [11] R. K. Saraf, G. Navalagi and Meena Khanna, On fuzzy semi-pre-generalized closed sets, Bull. Mal. Mat. Sci. Soc. 28(1)(2005), 19–30.
- [12] S. S. Thakur and S. Singh, On fuzzy semi-preopen sets and fuzzy semi-pre continuity, Fuzzy Sets and Systems 98(1998), 383–391.
- [13] M. K. R. S. Veera Kumar, Pre-semi-closed sets, Indian J. Math. 44(2) (2002), 165-181.