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1. Introduction

The Diophantine equation

(1.1) ax3 + by + c− xyz = 0,

was studied by Mohanty, Mohanty-Ramasamy and Utz. In 1979, Mohanty [5] consid-
ered the case a = b = c = 1 and found all 9 positive integer solutions of this equation.
In 1982, Utz [9] used Mohanty’s method to determine exactly 13 positive integer so-
lutions to this equation when a = c = 1, b = 2. In 1984, Mohanty-Ramasamy [6]
studied equation (1.1) when a = c = 1 and b is a fixed positive integer. They proved
that equation (1.1) has a finite number of positive integer solutions. In particular,
if b > 3 is prime then this number is odd, and this number is exactly 28 when b = 3.
Moreover, they showed (see [8]) that the more general Diophantine equation

(1.2) ax3 + by + c− xyz = 0

has only finitely many positive integral solutions if gcd(ab, c) = 1 and c is squarefree.
In this note, we consider the case a = c = 1 and b a fixed positive integer; i.e.,

the Diophantine equation

(1.3) x3 + by + 1− xyz = 0.
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Let N(b) be the number of positive integral solutions (x, y, z). At the end of [6], the
authors suggest the following conjecture.

Conjecture 1.1. The inequality N(b) ≤ 8b + 15 holds for all positive integers b. If
b is even, then the better inequality N(b) ≤ 4b + 15 holds.

The aim of this note is to confirm a weaker form of Conjecture 1.1 for large b.
Namely, we have the following result.

Theorem 1.1. The estimate

N(b) ≤ 11b + o(b)

holds as b →∞.

Remark 1.1. In [6], the authors gave the value of N(b), for 1 ≤ b ≤ 12. In fact, we
have

N(1) = 9, N(2) = 13, N(3) = 28, N(4) = 20, N(5) = 55, N(6) = 21,
N(7) = 61, N(8) = 45, N(9) = 43, N(10) = 39, N(11) = 97, N(12) = 43.

In Section 2, we give the proof of the above theorem by considering separately four
cases, namely x small, gcd(b, z) large, z small, and none of the above, respectively.

2. The Proof

The following description of all positive integer solutions of equation (1.3) appears
in Theorem 2 in [6].

Lemma 2.1. If b > 7 and (x, y, z) is a positive integer solution of equation (1.3),
then z < b and

xz − b
∣∣∣ b3 + z3

gcd(b, z)2

except for at most three solutions (x, y, z). Two of these exceptional solutions are
(x, y, z) = (1, 1, b + 2), (1, 2, b + 1). The third one appears only when b = x2 + x− 1
and in that case z = x + 1.

For z = 1, . . . , b− 1, we let

fb(z) = #
{

d
∣∣∣ b3 + z3

gcd(b, z)2
: d ≡ −b (mod z)

}
.

Lemma 2.1 above shows that

(2.1) N(b) ≤ 3 +
b−1∑
z=1

fb(z).

Our proof uses known results concerning the average value of the number of
divisors of a given polynomial together with a result of Lenstra [4] concerning the
number of divisors in residue classes with a large modulus.

Case 1. x is small.

Put B = b/(log b)10. Assume that x ≤ B. From equation (1.3), it follows that
y | x3 +1, and that if x and y are determined, then z is uniquely determined. Hence,
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denoting by τ(m) the number of divisors of the positive integer m, we get that the
number of solutions in this category does not exceed

(2.2) N1(b) =
∑
x≤B

τ(x3 + 1).

It is well-known that if f(X) ∈ Z[X] is a fixed primitive polynomial having nonzero
discriminant (i.e., no double roots) and exactly k irreducible factors (all of degree
≥ 1 and integer coefficients), then

(2.3)
∑
n≤T

τ(|f(n)|) � T (log T )k,

where the implied constant above depends on the polynomial f(X). Here, we make
the convention that τ(0) = 0. Indeed, such a result was first proved by Erdős in [2]
when f(X) is irreducible (see also [3]); i.e., when k = 1, and in the general form
stated in the bound (2.3) above by Ennola in [1]. Applying estimate (2.3) to the
sum appearing in the right hand side of (2.2) and using the fact that k = 2 when
F (X) = X3 + 1, we get

(2.4) N1(b) � B(log B)2 � b

(log b)8
= o(b)

as b →∞.

Case 2. gcd(b, z) is large.

Let d = gcd(b, z) and write z = dz1, b = db1. Assume that d > b1/10. Then, by
Lemma 2.1, we have xz1 − b1 | z3

1 + b3
1. If z1 is fixed, then the number of values of

xz1− b1 does not exceed τ(z3
1 + b3

1) ≤ (2b3)o(1) = bo(1) as b →∞. Thus, the number
of solutions in this category does not exceed

N2(b) =
∑
d | b

d>b1/10

∑
z1≤b/d

gcd(z1,b/d)=1

τ(z3
1 + b3

1) ≤
∑
d | b

d>b1/10

∑
z1≤b/d

bo(1)

≤
∑
d | b

d>b1/10

b1+o(1)

d
≤ b1+o(1)τ(b)

b1/10
= b9/10+o(1) = o(b)(2.5)

as b →∞.

Case 3. z is small.

We assume that z ≤ B. We keep the notations from the previous cases. We
assume that d ≤ b1/10. Fix d | b. Then xz1 − b1 is a divisor of z3

1 + b3
1. Thus, the

number of numbers in this category does not exceed

(2.6) N3(b) ≤
∑
d | b

d≤b1/10

∑
z1≤B/d

gcd(z1,b/d)=1

τ(z3
1 + b3

1).
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We split the inner sum at z1 = b1/2. The contribution from the solutions with
z1 ≤ b1/2 is

N3(b)′ ≤
∑
d | b

d≤b1/10

∑
z1≤b1/2

τ(z3
1 + b3

1) ≤
∑
d | b

d≤b1/10

∑
z1≤b1/2

bo(1)

≤ bo(1)
∑

d≤b1/10

∑
z1≤b1/2

1 ≤ b1/2+1/10+o(1) = o(b)(2.7)

as b →∞. We now assume that z1 ≥ b1/2 ≥ b
1/2
1 . Fix d. Let τb1(m) be the function

whose value at m is τ(m) if m is coprime to b1 and 0 otherwise. Clearly, τb1(m) is
multiplicative. Write

ρb1(m) = #{n (mod m) : n3 + b3
1 ≡ 0 (mod m)},

when m and b1 are coprime, and ρb1(m) = 0 otherwise. A result of Nair from [7],
shows that since z1 > b1/2, we have

Md(b) =
∑

z1≤B/d
gcd(z1,b/d)=1

τ(z3
1 + b3

1) =
∑

z1≤B/d

τb1(z
3
1 + b3

1)

� B

d

∏
p≤B/d

(
1− ρb1(p)

p

) ∑
m≤B/d

ρb1(m)τb1(m)
m

.(2.8)

Clearly, 1 ≤ ρb1(p
α) ≤ 3 for all prime powers pα when p does not divide b1. Thus,∏

p≤B/d

(
1− ρb1(p)

p

)
≤

∏
p≤b9/10/(log b)10

p-b

(
1− 1

p

)

≤ b

φ(b)

∏
p≤b9/10/(log b)10

(
1− 1

p

)

� log log b

log b
,(2.9)

where the last estimate follows by Mertens’s formula and by the minimal order of
the Euler function in the interval [1, b]. Furthermore, since both ρb1 and τb1 are
multiplicative and nonnegative, we have that∑

z≤B/d

ρb1(m)τb1(m)
m

≤
∏

p≤b/d
p-b1

∑
α≥0

ρb1(p
α)τ(pα)
pα



≤
∏
p≤b

1 +
6
p

+
∑
α≥2

3(α + 1)
pα


≤ exp

6
∑
p≤b

1
p

+ O

∑
p≥2

1
p2


= exp (6 log log b + O(1)) � (log b)6.(2.10)
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Inserting estimates (2.9) and (2.10) into estimate (2.8), we get

Md(b) �
B

d

(
log log b

log b

)
(log b)6 � B(log b)5 log log b

d
.

Summing the above estimate up over all d | b with d < b1/10, we get that

N3(b)′′ ≤
∑
d | d

d≤b1/10

Md(b) � B(log b)5 log log b
∑
d | b

1
d

� B(log b)5(log log b)
σ(b)

b
� B(log b)5(log log b)2,

where we used the maximal order of the sum of divisors function σ(b) on the interval
[1, b]. Recalling the definition of B, we get that

(2.11) N3(b)′′ �
b(log log b)2

(log b)5
= o(b)

as b →∞. Thus, estimates (2.6) together with estimates (2.7) and (2.11) lead to

(2.12) N3(b) = N3(b)′ + N3(b)′′ = o(b)

as b →∞.

Case 4. The remaining solutions.

For the remaining solutions, we fix again d. We have d ≤ b1/10, z ≥ B, therefore
z1 ≥ B/d. Now fix z1 ≤ b/d such that z1 is coprime to b/d. Then xz1 − b1 is
a divisor of z3

1 + b3
1 which is in the fixed arithmetical progression −b1 modulo z1.

Note that z3
1 + b3

1 ≤ 2(b/d)3. Since z1 ≥ B/d, it follows that for all ε > 0, there
exists bε such that if b > bε, then z1 > (b/d)1/(3+ε), uniformly in the divisor d. In
[4], Lenstra showed that for each α > 1/4, there exists a constant c(α) such that
whenever 1 ≤ r < s ≤ n are such that r and s are coprime and s > nα, then n
has at most c(α) divisors d ≡ r (mod s). Using this with α(ε) = 1/(3 + ε), we get
that xz1 − b1 (hence, x) can be chosen it at most c(α(ε)) ways once b is sufficiently
large. Lenstra also showed that c(1/3) can be chosen to be 11. This shows that if b
is sufficiently large, then there are at most 11 divisors of z3

1 + b3
1 of the form xz1− b1

in this range of the solutions. Since z1 can be chosen in at most φ(b/d) ways, we get
that the number of solutions in this case does not exceed

N4(b) ≤
∑
d | b

d≤b1/10

11φ(b/d) ≤ 11
∑
d | b

φ(b/d) = 11b.

This and the previous estimates (2.4), (2.5) and (2.12) complete the proof of the
theorem.
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