On the Spectra of Some Non-Normal Operators

¹M. H. M. Rashid, ²M. S. M. Noorani and ³A. S. Saari

School of Mathematical Sciences, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM, Selangor, Malaysia.

 $^1 malik_okasha@yahoo.com,\ ^2 msn@pkrisc.cc.ukm.my,\ ^3 shabir@pkrisc.cc.ukm.my$

Abstract. In this paper, we prove the following:

- (1) If T is invertible ω -hyponormal completely non-normal, then the point spectrum is empty.
- (2) If T_1 and T_2 are injective ω -hyponormal and if T and S are quasisimilar, then they have the same spectra and essential spectra.
- (3) If T is (p, k)-quasihyponormal operator, then $\sigma_{jp}(T) \{0\} = \sigma_{ap}(T) \{0\}$.
- (4) If $T^*, S \in \mathbf{B}(\mathcal{H})$ are injective (p, k)-quasihyponormal operator, and if XT = SX, where $X \in \mathbf{B}(\mathcal{H})$ is an invertible, then there exists a unitary operator U such that UT = SU and hence T and S are normal operators.

2000 Mathematics Subject Classification: 47A10, 47B20

Key words and phrases: Quasisimilarity, ω -hyponormal, class A, (p, k)-quasihyponormal, Weyl's theorem.

1. Introduction

Let \mathcal{H} be infinite dimensional complex Hilbert spaces with inner product $\langle .,. \rangle$ and let $\mathbf{B}(\mathcal{H})$ denote the algebra of all bounded linear operators acting on \mathcal{H} . An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be positive, in symbol $T \ge 0$ if $\langle Tx, x \rangle \ge 0$ for all $x \in \mathcal{H}$. For a positive operators A and B, write $A \ge B$ if $A - B \ge 0$. If A and B are invertible and positive operators, it is well known that $A \ge B$ implies that $\log A \ge \log B$. However [2], $\log A \ge \log B$ does not necessarily imply $A \ge B$. A result due to Ando [5] states that for invertible positive operators A and B, $\log A \ge \log B$ if and only if $A^r \ge (A^{\frac{r}{2}}B^r A^{\frac{r}{2}})^{\frac{1}{2}}$ for all $r \ge 0$. For an operator T, let U|T| denote the polar decomposition of T, where U is a partially isometric operator, |T| is a positive square root of T^*T and $\ker(T) = \ker(U) = \ker(|T|)$, where $\ker(S)$ denotes the kernel of operator S.

Recall [1, 2, 7, 9] that an operator $T \in \mathbf{B}(\mathcal{H})$ is called *p*-hyponormal if $(T^*T)^p - (TT^*)^p \geq 0$ for $p \in (0, 1]$. If p = 1, *T* is said to be hyponormal and if $p = \frac{1}{2}$, *T* is said to be semi-hyponormal. The Löwner-Heinz inequality implies that if *T* is *p*-hyponormal then its *q*-hyponormal for any $0 < q \leq p$ and $U|T|^p$ is hyponormal. An invertible operator *T* is said to be log-hyponormal if $\log T^*T \geq \log TT^*$.

Received: June 28, 2007; Revised: January 31, 2008.

Following [20], Xia introduced the class of semi-hyponormal operators and obtained results analogous to those of hyponormal operators. Aluthge [1] studied *p*-hyponormal operators for 0 . In particular he defined the operator $<math>\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ which is called the Aluthge transformation and the operator $\widetilde{\widetilde{T}} =$ $|\widetilde{T}|^{\frac{1}{2}}\widetilde{U}|\widetilde{T}|^{\frac{1}{2}}$, where $\widetilde{T} = \widetilde{U}|\widetilde{T}|$ is the polar decomposition of \widetilde{T} . An operator T is said to be ω -hyponormal if $|\widetilde{T}| \geq |T| \geq |\widetilde{T}^*|$.

The class of ω -hyponormal operators were introduced, and their properties were studied in [3]. In particular, it was shown in [3] that the class of ω -hyponormal operators contains both the *p*-hyponormal and log-hyponormal operators. If an operator *T* is *p*-hyponormal, then ker $T \subset \ker T^*$; and if *T* is log-hyponormal, then ker $T = \ker T^*$. However, if *T* is ω -hyponormal, it is not known whether the kernel condition ker $T \subset \ker T^*$ holds. For $T \in \mathbf{B}(\mathcal{H})$, $\sigma_p(T)$ denotes the point spectrum of *T*, *i.e.*, the set of its eigenvalues. Let $\sigma_{jp}(T)$ denotes the joint point spectrum of *T*. We note that $\lambda \in \sigma_{jp}(T)$ if and only if there exists a non-zero vector *x* such that $Tx = \lambda x$, $T^*x = \overline{\lambda}x$. It is evident that $\sigma_{jp}(T) \subset \sigma_p(T)$. It is well known that, if *T* is normal, then $\sigma_{jp}(T) = \sigma_p(T)$.

If T = U|T| is the polar decomposition of T and $\lambda = |\lambda|e^{i\theta}$ be the complex number, $|\lambda| > 0$, $|e^{i\theta}| = 1$. Then $\lambda \in \sigma_{jp}(T)$ if and only if there exist a non-zero vector x such that $Ux = e^{i\theta}$, $|T|x = |\lambda|x$. Let $\sigma_{ap}(T)$ denotes the approximate point spectrum of T, i.e., the set of all complex numbers λ which satisfy the following condition: there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that $\lim_n ||(T - \lambda)x_n|| = 0$. It is evident that $\sigma_p(T) \subset \sigma_{ap}(T)$. Let $\sigma_{jap}(T)$ be the joint approximate point spectrum of T, then $\lambda \in \sigma_{jap}(T)$ if and only if there exists a sequence $\{x_n\}$ of unit vectors such that $\lim_{n \to \infty} ||(T - \lambda)x_n|| = \lim_{n \to \infty} ||(T^* - \overline{\lambda})x_n|| = 0$. It is evident that $\sigma_{jap}(T) \subset \sigma_{ap}(T)$ for all $T \in \mathbf{B}(\mathcal{H})$. It is well known that, for a normal operator $T, \sigma_{jap}(T) = \sigma_{ap}(T) = \sigma(T)$.

Following [15] an operator $X \in \mathbf{B}(\mathcal{H})$ is called a quasiaffinity if X is injective and has dense range. Two operators T, S are said to be quasisimilar if there exists quasiaffinities X and Y such that TX = XS and YT = SY. Also an operator T is said to be pure if there exists no non-trivial reducing subspace N of \mathcal{H} such that the restriction of $T|_N$ is normal and is completely hyponormal if it is pure.

2. ω -hyponormal Operators

Following [20], every operator $T \in \mathbf{B}(\mathcal{H})$ has a direct sum decomposition $T = T_1 \oplus T_2$, where T_1 and T_2 are normal and pure parts, respectively.

Theorem 2.1. Let T be invertible ω -hyponormal and completely non-normal ω -hyponormal operator. Then the point spectrum of T is empty.

Proof. Suppose T = U|T| is the polar decomposition of T, $\lambda = \rho e^{i\theta}$, $\rho \ge 0$, $|e^{i\theta}| = 1$. It follows from [3, Corollary 3.3] that $\sigma_{jp}(T) = \sigma_p(T)$, it follows there exists $x \ne 0$ such that $Ux = e^{i\theta}$, $|T|x = \rho x$. Thus, the one dimensional vector space $M = \{\lambda x | \lambda \in \mathbb{C}\}$ reduces T, and the restriction of T to M is normal, which contradicts the assumption that T is completely non-normal, hence $\sigma_p(T) = \phi$.

Theorem 2.2. If $T^* \in \mathbf{B}(\mathcal{H})$ is p-hyponormal, $S \in \mathbf{B}(\mathcal{H})$ is ω -hyponormal and XT = SX for $X \in \mathbf{B}(\mathcal{H})$ is quasiaffinity, then $XT^* = S^*X$.

Proof. Since by assumption XT = SX, we can see that $(\ker X)^{\perp}$ and \overline{ranX} are invariant of T^* and S respectively. Then $T^*|_{(\ker X)}^{\perp}$ is *p*-hyponormal and $S|_{\overline{ranX}}$ is also ω -hyponormal. Now consider the decomposition $\mathcal{H} = (\ker X)^{\perp} \oplus \ker X$ and $\mathcal{H} = \overline{ranX} \oplus (\overline{ranX})^{\perp}$. Then we have the following matrix representation:

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}, \quad S = \begin{pmatrix} S_1 & S_2 \\ 0 & S_3 \end{pmatrix}, \quad X = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix},$$

where T_1^* is *p*-hyponormal, S_1 is ω -hyponormal and X_1 is injective with dense range. Therefore we have $X_1T_1x = XTx = SXx = S_1X_1x$ for $x \in (\ker X)^{\perp}$. That is, $X_1T_1 = S_1X_1$ and T_1 and S_1 are normal by [3, Theorem 2.4]. By Fuglede-Putnam theorem we have $X_1T_1^* = S_1^*X_1$. Therefore $(\ker X)^{\perp}$ and (\overline{ranX}) reduces T^* and S, respectively. Hence we obtain the $XT^* = S^*X$.

Theorem 2.3. Let $T \in \mathbf{B}(\mathcal{H})$ be ω -hyponormal and $N \in \mathbf{B}(\mathcal{H})$ be a normal operator. If $X \in \mathbf{B}(\mathcal{H})$ has dense range and satisfies TX = XN, then T is also a normal operator.

Proof. Since TX = XN and X has dense range, we have $\overline{Xran(N)} = \overline{T}$. If we denote the restriction of \underline{X} to \overline{ranN} by X_1 , then $X_1 : \overline{ran(N)} \longrightarrow \overline{ran(T)}$ has dense range and for every $x \in \overline{ran(N)}$

$$X_1Nx = XNx = TXx = TX_1x$$

so that $X_1N = TX_1$. Since T is ω -hyponormal, it follows from [3, theorem 2.4] that \widetilde{T} is semi-hyponormal and $\widetilde{\widetilde{T}}$ is hyponormal and hence there is a quasiaffinity Y such that $\widetilde{\widetilde{T}}Y = YT$. Thus we have

$$\widetilde{T}YX_1 = YTX_1 = YX_1N.$$

Since YX_1 has dense range, $\tilde{\tilde{T}}$ is normal, and so T is normal.

Lemma 2.1. ([3]) Let $T \in \mathbf{B}(\mathcal{H})$ be ω -hyponormal and M be invariant subspace, then the restriction $T|_M$ of T to M is also ω -hyponormal.

Theorem 2.4. Let $T_i \in \mathbf{B}(\mathcal{H})$ (i = 1, 2) be injective ω -hyponormal such that T_1 and T_2 are quasisimilar and let $T_i = N_i \oplus V_i$ on $\mathcal{H} \oplus \mathcal{H}$, where N_i and V_i are the normal and pure parts of T_i , respectively. Then N_1 and N_2 are unitarily equivalent and there exists $X^* \in \mathbf{B}(\mathcal{H})$ and $Y^* \in \mathbf{B}(\mathcal{H})$ with dense range such that $V_1X^* = X^*V_2$ and $Y^*V_1 = V_2Y^*$.

Proof. There exists quasiaffinities $X \in \mathbf{B}(\mathcal{H})$ and $Y \in \mathbf{B}(\mathcal{H})$ such that $T_1X = XT_2$ and $YT_1 = T_2Y$. Let

$$X := \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}, Y := \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix},$$

then we show that $X^* = X_4$ and $Y^* = Y_4$. By simple matrix calculation shows that $V_1X_3 = X_3N_2$ and $V_2Y_3 = Y_3N_1$. We claim that $X_3 = Y_3 = 0$. Indeed, letting $M = \overline{ranX_3}$, the subspace M is invariant under V_1 . So let $V'_1 = V_1|_M$ and let $X'_3 : \mathcal{H} \longrightarrow M$ be defined by $X'_3x = X_3x$ for each $x \in \mathcal{H}$. Since V'_1 is ω -hyponormal, then by Lemma 2.1, X'_3 has dense range, and $V'_1X'_3 = X'_3N_2$. Hence V'_1 is normal by Theorem 2.3. Thus M reduces V_1 . Since, however, V_1 is pure, we have that $M = \{0\}$, and hence $X_3 = 0$. Similarly, we have $Y_3 = 0$. Thus it follows that X_1 and Y_1 are injective. Since $N_1X_1 = X_1N_2$ and $Y_1N_1 = N_2Y_1$, we have that N_1 and N_2 are unitarily equivalent. Also, we can notice that X_4 , Y_4 have dense ranges and $V_1X_4 = X_4V_2$ and $Y_4V_1 = V_2Y_4$. Hence the proof is complete.

Theorem 2.5. Let $T_1 \in \mathbf{B}(\mathcal{H})$ and $T_2 \in \mathbf{B}(\mathcal{H})$ be injective ω -hyponormal operators. If T and S are quasisimilar, then they have same spectra and essential spectra.

Proof. Let $T_i = N_i \oplus V_i$ on $\mathcal{H} \oplus \mathcal{H}$, where N_i, V_i are the normal and pure parts of T_i (i = 1, 2). Since N_1 and N_2 are unitarily equivalent by Theorem 2.4, we have $\sigma(N_1) = \sigma(N_2)$ and $\sigma_e(N_1) = \sigma_e(N_2)$. Also, since there exists operators $X^* \in \mathbf{B}(\mathcal{H})$ and $Y^* \in \mathbf{B}(\mathcal{H})$ having dense ranges such that $V_1X^* = X^*V_2$ and $Y^*V_1 = V_2Y^*$. Now, since V_1 and V_2 are pure, then V_1 and V_2 are completely hyponormal. So we have $\sigma(V_1) = \sigma(V_2)$ and $\sigma_e(V_1) = \sigma_e(V_2)$. Hence we have

$$\sigma(T_1) = \sigma(T_2), \quad \sigma_e(T_1) = \sigma_e(T_2).$$

Corollary 2.1. Let $T_1 \in \mathbf{B}(\mathcal{H})$ be injective ω -hyponormal operator and $T_2 \in \mathbf{B}(\mathcal{H})$ be an isometry. Assume that there exists quasiaffinities X and Y such that $T_1X = XT_2$ and $YT_1 = T_2Y$, if either X or Y is compact, then T_1 and T_2 are unitary operators and unitarily equivalent.

Proof. Since T_1 and T_2 have the same spectra by Theorem 2.5, we have

$$\sigma(T_1) = \sigma(T_2) \subseteq \overline{D},$$

where \overline{D} is the closed unit disc. Since T_1 is normaliod, we have $||T_1|| \leq 1$ (*i.e.* T_1 is a contraction). Assume Y is compact, apply [6, Theorem 2] to the equation operator $YT_1 = T_2Y$ to conclude T_2 is unitary and apply [6, Theorem 1] to the equation $T_1X = XT_2$ to obtain T_1 is unitary. Hence the result is proved.

Theorem 2.6. If T is ω -hyponormal operator, then $\sigma_{\omega}(T) = \sigma(T) - \pi_{00}(T)$, where $\pi_{00}(T)$ is the isolated eigenvalues of finite multiplicity.

Proof. Since T is ω -hyponormal operator, then by [3, Theorem 2.4] \widetilde{T} is semi-hyponormal, then by [11, Corollary 11] we have $\sigma_{\omega}(\widetilde{T}) = \sigma(\widetilde{T}) - \pi_{00}(\widetilde{T})$. Now by [3, Corollary 2.3] we have $\sigma(T) = \sigma(\widetilde{T})$ and since every isolated point of T is an eigenvalue, we have $\sigma_{\omega}(\widetilde{T}) = \sigma(T) - \pi_{00}(T)$. Put r = 1 in the [3, Theorem 2.4], then we have $\sigma_{\omega}(\widetilde{T}) = \sigma_{\omega}(T)$. So the result is proved.

3. Class A Operators

Recall [18] that a bounded operator T is said to be class A (or belong to class A) if $|T^2| \ge |T|^2$.

Lemma 3.1. [Berberian's Techniques] [20] Let \mathcal{H} be a complex Hilbert space. Then there exists a Hilbert space $\widehat{\mathcal{H}} \supset \mathcal{H}$ and a map $\psi : \mathbf{B}(\mathcal{H}) \longrightarrow \mathbf{B}(\widehat{\mathcal{H}})$ such that

(1) ψ is an isometric *-algebraic isomorphism preserving the order, i.e., $\psi(T^*) = (\psi(T))^*$, $\psi(I) = I$, $\psi(\alpha T + \beta S) = \alpha \psi(T) + \beta \psi(S)$, $\psi(TS) = \psi(T)\psi(S)$, $\|\psi(T)\| = \|T\|$ and $\psi(T) \leq \psi(S)$ whenever $T \leq S$ for all $T, S \in \mathbf{B}(\mathcal{H})$, where $\alpha, \beta \in \mathbb{C}$.

(2)
$$\sigma(T) = \sigma(\psi(T)), \ \sigma_{ap}(T) = \sigma_{ap}(\psi(T)) = \sigma_p(\psi(T)), \ \sigma_{jp}(T) = \sigma_{jp}(\psi(T)) \ and \ \sigma_{jp}(\psi(T)) = \sigma_{jap}(\psi(T)).$$

Theorem 3.1. If T is class A operator, then $\sigma_{jp}(T) - \{0\} = \sigma_p(T) - \{0\}$

Proof. It is enough to show that $\sigma_{jp}(T) - \{0\} \supseteq \sigma_p(T) - \{0\}$. Let $\lambda \in \sigma_p(T) - \{0\}$, then it follows from [18] that there exists a non-zero vector x such that $(T - \lambda)x = 0$. But T is class A, by [19, Lemma 8] $(T^* - \overline{\lambda})x = 0$. This implies that $\lambda \in \sigma_{jp}(T)$.

Theorem 3.2. If *T* is a class *A*, then $\sigma_{jap}(T) - \{0\} = \sigma_{ap}(T) - \{0\}$.

Proof. Let ψ be the representation of Lemma 3.1. First, we show that $\psi(T)$ is class A.

$$\begin{aligned} |\psi(T)|^2 &= |\psi(T)||\psi(T)| \\ &= \psi(|T|)\psi(|T|) \\ &= \psi(|T|^2) \\ &\leq |\psi(T^2)| \qquad (\text{since } T \text{ belong to class } A) \\ &= |(\psi(T))^2|. \end{aligned}$$

Now by Berberian techniques, we have

$$\sigma_{ap}(T) - \{0\} = \sigma_{ap}(\psi(T)) - \{0\}$$

= $\sigma_{p}(\psi(T)) - \{0\}$
= $\sigma_{jp}(\psi(T)) - \{0\}$ (by Theorem 3.1)
= $\sigma_{jap}(T) - \{0\}.$

Corollary 3.1. If T is an invertible class A operator, then $\sigma_{ap}(T) = \sigma_{jap}(T)$.

Theorem 3.3. IF T is class A operator, then $\sigma(T) - \{0\} = \{\lambda : \overline{\lambda} \in \sigma_{ap}(T^*)\} - \{0\}.$

Proof. Note that, for any operator $T \in \mathbf{B}(\mathcal{H})$, the equality $\sigma(T) = \sigma_p(T) \cup \{\lambda : \overline{\lambda} \in \sigma_{ap}(T^*)\} - \{0\}$ holds. If T is class A, then Theorem 3.1 implies $\sigma_{jp}(T) - \{0\} = \sigma_p(T) - \{0\}$. Since $\sigma_p(T) - \{0\} = \sigma_{jp}(T) - \{0\} \subset \{\lambda : \overline{\lambda}(T^*)\} - \{0\}$. Since $\sigma_p(T^*) \subset \sigma_{ap}(T^*)$, the result follows.

Theorem 3.4. Let T be a class A on a separable Hilbert space \mathcal{H} . Then the numerical range of T has at most a countable number of extreme points.

Proof. To every extreme point there corresponds an eigenvalue, and we know that distinct eigenvalues corresponds orthogonal eigenvectors. Since the space is separable, we are done.

4. (p,k)-quasihyponormal Operators

Definition 4.1. [14] A bounded operator T is said to be (p, k)-quasihyponormal if $T^{*k}((T^*T)^p - (TT^*)^p)T^k \ge 0$, where $p \in (0, 1]$ and k is a positive integer. Especially, when p = 1, k = 1 and p = k = 1, T is called k-quasihyponormal, p-quasihyponormal, respectively.

Lemma 4.1. [14] Let T be (p, k)-quasihyponormal operator, then T has a matrix representation $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\mathcal{H} = \overline{ran(T^k)} \oplus \ker T^{*k}$, where T_1 is p-hyponormal on $\overline{ran(T^k)}$ and $T_3^k = 0$. Furthermore, $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Lemma 4.2. [17] If T is (p, k)-quasihyponormal operator and $\lambda \in \mathbb{C} - \{0\}$ and $(T - \lambda)x = 0$ for some $x \in \mathcal{H}$. Then $(T^* - \overline{\lambda})x = 0$.

Corollary 4.1. If T is (p, k)-quasihyponormal operator, then $\sigma_{jp}(T) - \{0\} = \sigma_p(T) - \{0\}$.

Theorem 4.1. If T is (p, k)-quasihyponormal operator, then $\sigma_{jp}(T) - \{0\} = \sigma_{ap}(T) - \{0\}$.

Proof. Let ψ be the representation of Berberian. First, we show that $\psi(T)$ is (p, k)-quasihyponormal.

$$\begin{aligned} (\psi(T))^{*k} [(\psi(T)^*\psi(T))^p - (\psi(T)\psi(T)^*)^p](\psi(T))^k &= \psi(T^{*k}) [(\psi(T^*)\psi(T))^p \\ &- (\psi(T)\psi(T^*))^p]\psi(T^k) \\ &= \psi(T^{*k}) [(\psi(T^*T)^p) \\ &- (\psi(TT^*)^p)]\psi(T^k) \\ &= \psi[T^{*k}((T^*T)^p - (TT^*)^p)T^k]. \end{aligned}$$

But T is (p, k)-quasihyponormal, then $T^{*k}((T^*T)^p - (TT^*)^p)T^k \ge 0$. So

$$\psi(T^{*k}((T^*T)^p - (TT^*)^p)T^k) \ge 0.$$

Thus $\psi(T)$ is (p, k)-quasihyponormal. Now

 σ

$$a(T) - \{0\} = \sigma_a(\psi(T)) - \{0\} = \sigma_p(\psi(T)) - \{0\} = \sigma_{jp}(\psi(T)) - \{0\}$$
 (by Corollary 4.1)
= $\sigma_{jap}(T) - \{0\}.$

I

Corollary 4.2. If T is an invertible (p, k)-quasihyponormal, then

$$\sigma_{jap}(T) = \sigma_{ap}(T).$$

Definition 4.2. [8, exercise 2, page 349] The compression spectrum of T, denoted by $\sigma_c(T)$, is

$$\sigma_c(T) = \{ \lambda \in \mathbb{C} : \overline{\lambda} \in \sigma_p(T^*) \}.$$

Corollary 4.3. If T is (p, k)-quasihyponormal operator, then

$$\sigma(T) - \{0\} = \sigma_c(T) - \{0\}.$$

Proof. Note that, for any operator $T \in \mathbf{B}(\mathcal{H})$ the equality $\sigma(T) - \{0\} = \sigma_p(T) \cup \sigma_c(T) - \{0\}$ holds. If T is (p, k)-quasihyponormal, then Corollary 4.1 implies that $\sigma_{jp}(T) - \{0\} = \sigma_p(T) - \{0\} \subseteq \sigma_c(T) - \{0\}$. Since $\sigma_p(T^*) \subset \sigma_{ap}(T^*)$, the result follows.

140

Theorem 4.2. If T and $S \in \mathbf{B}(\mathcal{H})$ are quasisimilar (p, k)-quasihyponormal operators, then $\sigma_{\omega}(T) = \sigma_{\omega}(S)$.

Proof. Suppose that $X, Y \in \mathbf{B}(\mathcal{H})$ and are injective operators with dense range such that XT = SX and TY = YS. If the range of T^k is dense, then $S^kX = XT^k$ implies that the range of S^k is also dense. Therefore T and S are quasisimilar p-hyponormal operators, and hence the result follows from [22, Corollary 12]. If instead the range of T^k is not dense, the $T^kX = XS^k$ implies that the range of S^k is not dense. Therefore by Lemma 4.1, T and S have the following matrix representations: $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\overline{ran(T^k)} \oplus \ker(T^{*k})$ and $S = \begin{pmatrix} S_1 & S_2 \\ 0 & S_3 \end{pmatrix}$ on $\overline{ran(S^k)} \oplus \ker(S^{*k})$, where T_1 and S_1 are p-hyponormal operators and $T_3^k = 0$ and $S_3^k = 0$. Since quasisimilar p-hyponormal have equal Weyl's spectra. It suffices to show:

- (i) T_1 and S_1 are quasisimilar,
- (ii) Domain $(T_3) = \{0\}$ if and only if Domain $(S_3) = \{0\}$.

Observe that

(4.1)
$$XT^{k} = SXT^{k-1} = S^{2}XT^{k-2} = \dots = S^{k}X$$

(4.2)
$$YT^{k} = SYT^{k-1} = S^{2}YT^{k-2} = \dots = S^{k}Y$$

If we denote the $X_1 : \overline{ran(T^k)} \longrightarrow \overline{ran(S^k)}$ and $Y_1 : \overline{ran(S^k)} \longrightarrow \overline{ran(T^k)}$, then X_1 and Y_1 are injective and have dense range. Now for any $x \in \overline{ran(T^k)}$, $X_1T_1x = XTx = SXx = S_1X_1x$ and for any $y \in \overline{ran(S^k)}$, $Y_1S_1y = YSy = TYy = T_1Y_1x$. Hence T_1 and S_1 are quasisimilar. Assume that $T^{*k}x = 0$ for $x \neq 0$ in \mathcal{H} . Then by Equations 4.1, we have that $S^{*k}Y^*x = 0$. Since Y^* is one to one, we have the domain $(S_3)=\{0\}$ implies domain $(T_3)=\{0\}$, and similarly domain $(T_3)=\{0\}$.

In 1976, Stampfli and Wadhwa [16] showed that if $T^* \in \mathbf{B}(\mathcal{H})$ is hyponormal, $S \in \mathbf{B}(\mathcal{H})$ is dominant, $X \in \mathbf{B}(\mathcal{H})$ is injective and has dense range, and if XT = SX, then T and S are normal. on the other hand, in 1981, Gupta and Ramanujan [10] showed that if $T \in \mathbf{B}(\mathcal{H})$ is k-quasihyponormal operator and $S \in \mathbf{B}(\mathcal{H})$ is normal operator for which TY = YS where $Y \in \mathbf{B}(\mathcal{H})$ is injective with dense range, then T is normal operator unitarily equivalent to S. In the following theorem, we extend the result of Gupta and Ramanujan to the class of (p, k)-quasihyponormal operators, we need the following lemma:

Lemma 4.3. [12, Corollary 7] Let $T \in \mathbf{B}(\mathcal{H})$ be p-hyponormal operator and let $S \in \mathbf{B}(\mathcal{H})$ be p-hyponormal operator. If TX = XS, where $X \in \mathbf{B}(\mathcal{H})$ is an injective with dense range, then T is normal unitarily equivalent to S.

Theorem 4.3. If $T^* \in \mathbf{B}(\mathcal{H})$ is injective (p,k)-quasihyponormal operator, $S \in \mathbf{B}(\mathcal{H})$ is injective (p,k)-quasihyponormal operator, and if XT = SX, where $X \in \mathbf{B}(\mathcal{H})$ is an injective with dense range. Then $XT^* = S^*X$.

Proof. Since by assumption XT = SX, we can see that $(\ker X)^{\perp}$ and \overline{ranX} are invariant subspace of T^* and S, respectively. Therefore we have that $T^*|_{(\ker X)^{\perp}}$ and $S|_{\overline{ranX}}$ are also (p,k)-quasihyponormal operators. Now consider the decomposition $\mathcal{H} = (\ker X)^{\perp} \oplus \ker X$. Then we have the matrix representations:

(4.3)
$$T = \begin{pmatrix} T_1 & 0 \\ T_2 & T_3 \end{pmatrix}, S = \begin{pmatrix} S_1 & S_2 \\ 0 & S_3 \end{pmatrix}, X = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix}$$

where T_1^* and S_1 are injective *p*-hyponormal and X_1 is an injective with dense range. Therefore we have

(4.4)
$$X_1T_1x = XTx = SXx = S_1X_1x \quad \text{for} \quad x \in (\ker X)^{\perp}.$$

that is, $X_1T_1 = S_1X_1$ and hence T_1 and S_1 are normal and $X_1T_1^* = S_1^*X_1$ by the Fuglede-Putnam Theorem. Therefore $(\ker X)^{\perp}$ and \overline{ranX} reduces T^* and S, respectively. Hence, we obtain the $XT^* = S^*X$.

Theorem 4.4. If $T^* \in \mathbf{B}(\mathcal{H})$ is injective (p,k)-quasihyponormal operator, $S \in \mathbf{B}(\mathcal{H})$ is injective (p,k)-quasihyponormal operator, and if XT = SX, where $X \in \mathbf{B}(\mathcal{H})$ is an invertible. Then there exists a unitary operator U such that UT = SU and hence T and S are normal operators.

Proof. Since XT = SX, it follows by Theorem 4.3 that $XT^* = S^*X$ and so $TX^* = X^*S$. Now $TX^*X = X^*SX = X^*XT$. Let X = UP be the polar decomposition of X. Since X is invertible, it follows that P is invertible and U is unitary. Since $TP^2 = P^2T$ and $P \ge 0$, it follows that TP = PT. Thus TUP = UPS implies SUP = UPT = UTP, since P is invertible, we have UT = SU. Now T and S are unitarily equivalent. Hence, T and S are normal operators.

Corollary 4.4. If $T^*, S \in \mathbf{B}(\mathcal{H})$ are injective (p, k)-quasihyponormal operators, and if XT = SX, where $X \in \mathbf{B}(\mathcal{H})$ is positive. Then T = S.

Theorem 4.5. If $T^* \in \mathbf{B}(\mathcal{H})$ is injective (p, k)-quasihyponormal operator, and let $S \in \mathbf{B}(\mathcal{H})$ be an isometry. Assume there exists quasiaffinities X and Y such that TX = XS and YT = SY. If either X or Y is compact, then T and S are unitary.

Proof. Since T and S have the same spectra by [13, Theorem 2.8] we have $\sigma(T) = \sigma(S) \subseteq \overline{\mathbf{D}}$, where $\overline{\mathbf{D}}$ is the closed unit disc. Since T is normaliod, we have that $||T|| \leq 1$ (*i.e.*, T is a contraction). Assume that Y is compact. Applying [6, Theorem 2] to the operator equation YT = SY to conclude S is unitary. Now applying of [6, Theorem 1] to XT = SX, it follows that T is unitary. So the result follows.

References

- A. Aluthge, On p-hyponormal operators for 0 13 (1990), no. 3, 307–315.
- [2] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), no. 4, 497–501.
- [3] A. Aluthge and D. Wang, w-hyponormal operators, Integral Equations Operator Theory 36 (2000), no. 1, 1–10.
- [4] A. Aluthge and D. Wang, w-hyponormal operators. II, Integral Equations Operator Theory 37 (2000), no. 3, 324–331.
- [5] T. Ando, On some operator inequalities, Math. Ann. 279 (1987), no. 1, 157–159.

- [6] T. Ando and K. Takahashi, On operators with unitary ρ-dilations, Ann. Polon. Math. 66 (1997), 11–14.
- [7] S. C. Arora and P. Arora, On p-quasihyponormal operators for 0 J. 41 (1993), no. 1, 25–29.
- [8] J. B. Conway, A course in functional analysis, Second edition, Springer, New York, 1990.
- B. P. Duggal, Quasi-similar p-hyponormal operators, Integral Equations Operator Theory 26 (1996), no. 3, 338–345.
- [10] B. C. Gupta and P. B. Ramanujan, On k-quasihyponormal operators. II, Bull. Austral. Math. Soc. 24 (1981), no. 1, 61–67.
- [11] T. Huruya, A note on p-hyponormal operators, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3617–3624.
- [12] I. H. Jeon and B. P. Duggal, p-hyponormal operators and quasisimilarity, Integral Equations Operator Theory 49 (2004), no. 3, 397–403.
- [13] A.-H. Kim and I. H. Kim, Essential spectra of quasisimilar (p, k)-quasihyponormal operators, J. Inequal. Appl. 2006, Art. ID 72641, 7 pp.
- [14] I. H. Kim, On (p, k)-quasihyponormal operators, Math. Inequal. Appl. 7 (2004), no. 4, 629– 638.
- [15] M. O. Otieno, On intertwining and w-hyponormal operators, Opuscula Math. 25 (2005), no. 2, 275–285.
- [16] J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, *Indiana Univ. Math. J.* 25 (1976), no. 4, 359–365.
- [17] K. Tanahashi, A. Uchiyama and M. Chō, Isolated points of spectrum of (p, k)-quasihyponormal operators, *Linear Algebra Appl.* 382 (2004), 221–229.
- [18] A. Uchiyama, Weyl's theorem for class A operators, Math. Inequal. Appl. 4 (2001), no. 1, 143–150.
- [19] A. Uchiyama and K. Tanahashi, On the Riesz idempotent of class A operators, Math. Inequal. Appl. 5 (2002), no. 2, 291–298.
- [20] D. Xia, Spectral theory of hyponormal operators, Birkhäuser, Basel, 1983.
- [21] Y. Yang, On a class of operators, Glasgow Math. J. 40 (1998), no. 2, 237–240.
- [22] R. Yingbin and Y. Zikun, Spectral structure and subdecomposability of p-hyponormal operators, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2069–2074.