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Abstract. In this paper, we prove the following:
(1) If T is invertible ω-hyponormal completely non-normal, then the point

spectrum is empty.

(2) If T1 and T2 are injective ω-hyponormal and if T and S are quasisimilar,
then they have the same spectra and essential spectra.

(3) If T is (p, k)-quasihyponormal operator, then σjp(T )−{0} = σap(T )−{0}.
(4) If T ∗, S ∈ B(H) are injective (p, k)-quasihyponormal operator, and if

XT = SX, where X ∈ B(H) is an invertible, then there exists a unitary

operator U such that UT = SU and hence T and S are normal operators.
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1. Introduction

Let H be infinite dimensional complex Hilbert spaces with inner product 〈., .〉 and
let B(H) denote the algebra of all bounded linear operators acting onH. An operator
T ∈ B(H) is said to be positive, in symbol T ≥ 0 if 〈Tx, x〉 ≥ 0 for all x ∈ H. For
a positive operators A and B, write A ≥ B if A−B ≥ 0. If A and B are invertible
and positive operators, it is well known that A ≥ B implies that logA ≥ logB.
However [2], logA ≥ logB does not necessarily imply A ≥ B. A result due to
Ando [5] states that for invertible positive operators A and B, logA ≥ logB if and
only if Ar ≥ (A

r
2BrA

r
2 )

1
2 for all r ≥ 0. For an operator T , let U |T | denote the

polar decomposition of T , where U is a partially isometric operator, |T | is a positive
square root of T ∗T and ker(T ) = ker(U) = ker(|T |), where ker(S) denotes the kernel
of operator S.

Recall [1, 2, 7, 9] that an operator T ∈ B(H) is called p-hyponormal if (T ∗T )p −
(TT ∗)p ≥ 0 for p ∈ (0, 1]. If p = 1, T is said to be hyponormal and if p = 1

2 , T
is said to be semi-hyponormal. The Löwner-Heinz inequality implies that if T is
p-hyponormal then its q-hyponormal for any 0 < q ≤ p and U |T |p is hyponormal.
An invertible operator T is said to be log-hyponormal if log T ∗T ≥ log TT ∗.
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Following [20], Xia introduced the class of semi-hyponormal operators and ob-
tained results analogous to those of hyponormal operators. Aluthge [1] studied
p-hyponormal operators for 0 < p ≤ 1. In particular he defined the operator

T̃ = |T | 12U |T | 12 which is called the Aluthge transformation and the operator ˜̃
T =

|T̃ | 12 Ũ |T̃ | 12 , where T̃ = Ũ |T̃ | is the polar decomposition of T̃ . An operator T is said
to be ω-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗|.

The class of ω-hyponormal operators were introduced, and their properties were
studied in [3]. In particular, it was shown in [3] that the class of ω-hyponormal
operators contains both the p-hyponormal and log-hyponormal operators. If an
operator T is p-hyponormal, then kerT ⊂ kerT ∗; and if T is log-hyponormal, then
kerT = kerT ∗. However, if T is ω-hyponormal, it is not known whether the kernel
condition kerT ⊂ kerT ∗ holds. For T ∈ B(H), σp(T ) denotes the point spectrum
of T ,i.e., the set of its eigenvalues. Let σjp(T ) denotes the joint point spectrum of
T . We note that λ ∈ σjp(T ) if and only if there exists a non-zero vector x such that
Tx = λx , T ∗x = λx. It is evident that σjp(T ) ⊂ σp(T ). It is well known that, if T
is normal, then σjp(T ) = σp(T ).

If T = U |T | is the polar decomposition of T and λ = |λ|eiθ be the complex
number, |λ| > 0, |eiθ| = 1. Then λ ∈ σjp(T ) if and only if there exist a non-zero
vector x such that Ux = eiθ, |T |x = |λ|x. Let σap(T ) denotes the approximate point
spectrum of T ,i.e., the set of all complex numbers λ which satisfy the following
condition: there exists a sequence {xn} of unit vectors in H such that limn ‖(T −
λ)xn‖ = 0. It is evident that σp(T ) ⊂ σap(T ). Let σjap(T ) be the joint approximate
point spectrum of T , then λ ∈ σjap(T ) if and only if there exists a sequence {xn} of
unit vectors such that lim

n−→∞
‖(T − λ)xn‖ = lim

n−→∞
‖(T ∗ − λ)xn‖ = 0. It is evident

that σjap(T ) ⊂ σap(T ) for all T ∈ B(H). It is well known that, for a normal operator
T , σjap(T ) = σap(T ) = σ(T ).

Following [15] an operator X ∈ B(H) is called a quasiaffinity if X is injective
and has dense range. Two operators T, S are said to be quasisimilar if there exists
quasiaffinities X and Y such that TX = XS and Y T = SY . Also an operator T
is said to be pure if there exists no non-trivial reducing subspace N of H such that
the restriction of T |N is normal and is completely hyponormal if it is pure.

2. ω-hyponormal Operators

Following [20], every operator T ∈ B(H) has a direct sum decomposition T =
T1 ⊕ T2, where T1 and T2 are normal and pure parts, respectively.

Theorem 2.1. Let T be invertible ω-hyponormal and completely non-normal ω-
hyponormal operator. Then the point spectrum of T is empty.

Proof. Suppose T = U |T | is the polar decomposition of T , λ = ρeiθ, ρ ≥ 0, |eiθ| = 1.
It follows from [3, Corollary 3.3] that σjp(T ) = σp(T ), it follows there exists x 6= 0
such that Ux = eiθ, |T |x = ρx. Thus, the one dimensional vector space M =
{λx|λ ∈ C} reduces T , and the restriction of T to M is normal, which contradicts
the assumption that T is completely non-normal, hence σp(T ) = φ.

Theorem 2.2. If T ∗ ∈ B(H) is p-hyponormal, S ∈ B(H) is ω-hyponormal and
XT = SX for X ∈ B(H) is quasiaffinity, then XT ∗ = S∗X.
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Proof. Since by assumption XT = SX, we can see that (kerX)⊥and ranX are
invariant of T ∗ and S respectively. Then T ∗|(ker X)⊥ is p-hyponormal and S|ranX

is also ω-hyponormal. Now consider the decomposition H = (kerX)⊥ ⊕ kerX and
H = ranX ⊕ (ranX)⊥. Then we have the following matrix representation:

T =
(
T1 T2

0 T3

)
, S =

(
S1 S2

0 S3

)
, X =

(
X1 0
0 0

)
,

where T ∗1 is p-hyponormal, S1 is ω-hyponormal and X1 is injective with dense range.
Therefore we have X1T1x = XTx = SXx = S1X1x for x ∈ (kerX)⊥. That is,
X1T1 = S1X1 and T1 and S1 are normal by [3, Theorem 2.4]. By Fuglede-Putnam
theorem we have X1T

∗
1 = S∗1X1. Therefore (kerX)⊥ and (ranX) reduces T ∗ and

S, respectively. Hence we obtain the XT ∗ = S∗X.

Theorem 2.3. Let T ∈ B(H) be ω-hyponormal and N ∈ B(H) be a normal opera-
tor. If X ∈ B(H) has dense range and satisfies TX = XN , then T is also a normal
operator.

Proof. Since TX = XN and X has dense range, we have Xran(N) = T . If we
denote the restriction of X to ranN by X1, then X1 : ran(N) −→ ran(T ) has dense
range and for every x ∈ ran(N)

X1Nx = XNx = TXx = TX1x

so that X1N = TX1. Since T is ω-hyponormal, it follows from [3, theorem 2.4] that

T̃ is semi-hyponormal and ˜̃
T is hyponormal and hence there is a quasiaffinity Y such

that ˜̃
TY = Y T . Thus we have˜̃

TY X1 = Y TX1 = Y X1N.

Since Y X1 has dense range, ˜̃
T is normal, and so T is normal.

Lemma 2.1. ( [3]) Let T ∈ B(H) be ω-hyponormal and M be invariant subspace,
then the restriction T |M of T to M is also ω-hyponormal.

Theorem 2.4. Let Ti ∈ B(H) (i = 1, 2) be injective ω-hyponormal such that T1 and
T2 are quasisimilar and let Ti = Ni ⊕Vi on H⊕H, where Ni and Vi are the normal
and pure parts of Ti, respectively. Then N1 and N2 are unitarily equivalent and
there exists X∗ ∈ B(H) and Y ∗ ∈ B(H) with dense range such that V1X

∗ = X∗V2

and Y ∗V1 = V2Y
∗.

Proof. There exists quasiaffinities X ∈ B(H) and Y ∈ B(H) such that T1X = XT2

and Y T1 = T2Y . Let

X :=
(
X1 X2

X3 X4

)
, Y :=

(
Y1 Y2

Y3 Y4

)
,

then we show that X∗ = X4 and Y ∗ = Y4. By simple matrix calculation shows
that V1X3 = X3N2 and V2Y3 = Y3N1. We claim that X3 = Y3 = 0. Indeed, letting
M = ranX3, the subspace M is invariant under V1. So let V ′1 = V1|M and let
X ′

3 : H −→M be defined by X ′
3x = X3x for each x ∈ H. Since V ′1 is ω-hyponormal,

then by Lemma 2.1, X ′
3 has dense range, and V ′1X

′
3 = X ′

3N2. Hence V ′1 is normal
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by Theorem 2.3. Thus M reduces V1. Since, however, V1 is pure, we have that
M = {0}, and hence X3 = 0. Similarly, we have Y3 = 0. Thus it follows that X1

and Y1 are injective. Since N1X1 = X1N2 and Y1N1 = N2Y1, we have that N1 and
N2 are unitarily equivalent. Also, we can notice that X4, Y4 have dense ranges and
V1X4 = X4V2 and Y4V1 = V2Y4. Hence the proof is complete.

Theorem 2.5. Let T1 ∈ B(H) and T2 ∈ B(H) be injective ω-hyponormal operators.
If T and S are quasisimilar, then they have same spectra and essential spectra.

Proof. Let Ti = Ni ⊕ Vi on H ⊕H, where Ni, Vi are the normal and pure parts of
Ti (i = 1, 2). Since N1 and N2 are unitarily equivalent by Theorem 2.4, we have
σ(N1) = σ(N2) and σe(N1) = σe(N2). Also, since there exists operators X∗ ∈ B(H)
and Y ∗ ∈ B(H) having dense ranges such that V1X

∗ = X∗V2 and Y ∗V1 = V2Y
∗.

Now, since V1 and V2 are pure, then V1 and V2 are completely hyponormal. So we
have σ(V1) = σ(V2) and σe(V1) = σe(V2). Hence we have

σ(T1) = σ(T2), σe(T1) = σe(T2).

Corollary 2.1. Let T1 ∈ B(H) be injective ω-hyponormal operator and T2 ∈ B(H)
be an isometry. Assume that there exists quasiaffinities X and Y such that T1X =
XT2 and Y T1 = T2Y , if either X or Y is compact, then T1 and T2 are unitary
operators and unitarily equivalent.

Proof. Since T1 and T2 have the same spectra by Theorem 2.5, we have

σ(T1) = σ(T2) ⊆ D,

where D is the closed unit disc. Since T1 is normaliod, we have ‖T1‖ ≤ 1 (i.e. T1 is a
contraction). Assume Y is compact, apply [6, Theorem 2] to the equation operator
Y T1 = T2Y to conclude T2 is unitary and apply [6, Theorem 1] to the equation
T1X = XT2 to obtain T1 is unitary. Hence the result is proved.

Theorem 2.6. If T is ω-hyponormal operator, then σω(T ) = σ(T )− π00(T ), where
π00(T ) is the isolated eigenvalues of finite multiplicity.

Proof. Since T is ω-hyponormal operator, then by [3, Theorem 2.4] T̃ is semi-
hyponormal, then by [11, Corollary 11] we have σω(T̃ ) = σ(T̃ ) − π00(T̃ ). Now
by [3, Corollary 2.3] we have σ(T ) = σ(T̃ ) and since every isolated point of T is an
eigenvalue, we have σω(T̃ ) = σ(T )−π00(T ). Put r = 1 in the [3, Theorem 2.4], then
we have σω(T̃ ) = σω(T ). So the result is proved.

3. Class A Operators

Recall [18] that a bounded operator T is said to be class A (or belong to class A)
if |T 2| ≥ |T |2.

Lemma 3.1. [Berberian’s Techniques] [20] Let H be a complex Hilbert space. Then
there exists a Hilbert space Ĥ ⊃ H and a map ψ : B(H) −→ B(Ĥ) such that

(1) ψ is an isometric ∗-algebraic isomorphism preserving the order, i.e., ψ(T ∗) =
(ψ(T ))∗, ψ(I) = I, ψ(αT + βS) = αψ(T ) + βψ(S), ψ(TS) = ψ(T )ψ(S),
‖ψ(T )‖ = ‖T‖ and ψ(T ) ≤ ψ(S) whenever T ≤ S for all T, S ∈ B(H),
where α, β ∈ C.
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(2) σ(T ) = σ(ψ(T )), σap(T ) = σap(ψ(T )) = σp(ψ(T )), σjp(T ) = σjp(ψ(T )) and
σjp(ψ(T )) = σjap(ψ(T )).

Theorem 3.1. If T is class A operator, then σjp(T )− {0} = σp(T )− {0}

Proof. It is enough to show that σjp(T )− {0} ⊇ σp(T )− {0}. Let λ ∈ σp(T )− {0},
then it follows from [18] that there exists a non-zero vector x such that (T −λ)x = 0.
But T is class A, by [19, Lemma 8] (T ∗ − λ)x = 0. This implies that λ ∈ σjp(T ).

Theorem 3.2. If T is a class A, then σjap(T )− {0} = σap(T )− {0}.

Proof. Let ψ be the representation of Lemma 3.1. First, we show that ψ(T ) is class
A.

|ψ(T )|2 = |ψ(T )||ψ(T )|
= ψ(|T |)ψ(|T |)
= ψ(|T |2)
≤ |ψ(T 2)| (since T belong to class A)

= |(ψ(T ))2|.

Now by Berberian techniques, we have

σap(T )− {0} = σap(ψ(T ))− {0}
= σp(ψ(T ))− {0}
= σjp(ψ(T ))− {0} (by Theorem 3.1)

= σjap(T )− {0}.

Corollary 3.1. If T is an invertible class A operator, then σap(T ) = σjap(T ).

Theorem 3.3. IF T is class A operator, then σ(T )−{0} = {λ : λ ∈ σap(T ∗)}−{0}.

Proof. Note that, for any operator T ∈ B(H), the equality σ(T ) = σp(T ) ∪ {λ : λ ∈
σap(T ∗)} − {0} holds. If T is class A, then Theorem 3.1 implies σjp(T ) − {0} =
σp(T ) − {0}. Since σp(T ) − {0} = σjp(T ) − {0} ⊂ {λ : λ(T ∗)} − {0}. Since
σp(T ∗) ⊂ σap(T ∗), the result follows.

Theorem 3.4. Let T be a class A on a separable Hilbert space H. Then the nu-
merical range of T has at most a countable number of extreme points.

Proof. To every extreme point there corresponds an eigenvalue, and we know that
distinct eigenvalues corresponds orthogonal eigenvectors. Since the space is separa-
ble, we are done.

4. (p, k)-quasihyponormal Operators

Definition 4.1. [14] A bounded operator T is said to be (p, k)-quasihyponormal
if T ∗k((T ∗T )p − (TT ∗)p)T k ≥ 0, where p ∈ (0, 1] and k is a positive integer. Es-
pecially, when p = 1, k = 1 and p = k = 1, T is called k-quasihyponormal, p-
quasihyponormal, quasihyponormal, respectively.
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Lemma 4.1. [14] Let T be (p, k)-quasihyponormal operator, then T has a matrix

representation T =
(
T1 T2

0 T3

)
on H = ran(T k)⊕kerT ∗k, where T1 is p-hyponormal

on ran(T k) and T k
3 = 0. Furthermore, σ(T ) = σ(T1) ∪ {0}.

Lemma 4.2. [17] If T is (p, k)-quasihyponormal operator and λ ∈ C − {0} and
(T − λ)x = 0 for some x ∈ H. Then (T ∗ − λ)x = 0.

Corollary 4.1. If T is (p, k)-quasihyponormal operator, then σjp(T )−{0} = σp(T )−
{0}.

Theorem 4.1. If T is (p, k)-quasihyponormal operator, then σjp(T )−{0} = σap(T )−
{0}.

Proof. Let ψ be the representation of Berberian. First, we show that ψ(T ) is (p, k)-
quasihyponormal.

(ψ(T ))∗k[(ψ(T )∗ψ(T ))p − (ψ(T )ψ(T )∗)p](ψ(T ))k = ψ(T ∗k)[(ψ(T ∗)ψ(T ))p

− (ψ(T )ψ(T ∗))p]ψ(T k)

= ψ(T ∗k)[(ψ(T ∗T )p)

− (ψ(TT ∗)p)]ψ(T k)

= ψ[T ∗k((T ∗T )p − (TT ∗)p)T k].

But T is (p, k)-quasihyponormal, then T ∗k((T ∗T )p − (TT ∗)p)T k ≥ 0. So

ψ(T ∗k((T ∗T )p − (TT ∗)p)T k) ≥ 0.

Thus ψ(T ) is (p, k)-quasihyponormal. Now

σa(T )− {0} = σa(ψ(T ))− {0}
= σp(ψ(T ))− {0}
= σjp(ψ(T ))− {0} (by Corollary 4.1)

= σjap(T )− {0}.

Corollary 4.2. If T is an invertible (p, k)-quasihyponormal, then

σjap(T ) = σap(T ).

Definition 4.2. [8, exercise 2, page 349] The compression spectrum of T , denoted
by σc(T ), is

σc(T ) = {λ ∈ C : λ ∈ σp(T ∗)}.

Corollary 4.3. If T is (p, k)-quasihyponormal operator, then

σ(T )− {0} = σc(T )− {0}.

Proof. Note that, for any operator T ∈ B(H) the equality σ(T ) − {0} = σp(T ) ∪
σc(T ) − {0} holds. If T is (p, k)-quasihyponormal, then Corollary 4.1 implies that
σjp(T ) − {0} = σp(T ) − {0} ⊆ σc(T ) − {0}. Since σp(T ∗) ⊂ σap(T ∗), the result
follows.
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Theorem 4.2. If T and S ∈ B(H) are quasisimilar (p, k)-quasihyponormal opera-
tors, then σω(T ) = σω(S).

Proof. Suppose that X,Y ∈ B(H) and are injective operators with dense range
such that XT = SX and TY = Y S. If the range of T k is dense, then SkX = XT k

implies that the range of Sk is also dense. Therefore T and S are quasisimilar
p-hyponormal operators, and hence the result follows from [22, Corollary 12]. If
instead the range of T k is not dense, the T kX = XSk implies that the range of
Sk is not dense. Therefore by Lemma 4.1, T and S have the following matrix

representations: T =
(
T1 T2

0 T3

)
on ran(T k) ⊕ ker(T ∗k) and S =

(
S1 S2

0 S3

)
on

ran(Sk) ⊕ ker(S∗k), where T1 and S1 are p-hyponormal operators and T k
3 = 0 and

Sk
3 = 0. Since quasisimilar p-hyponormal have equal Weyl’s spectra. It suffices to

show:

(i) T1 and S1 are quasisimilar,

(ii) Domain (T3)={0} if and only if Domain (S3)={0}.

Observe that

XT k = SXT k−1 = S2XT k−2 = · · · = SkX(4.1)

Y T k = SY T k−1 = S2Y T k−2 = · · · = SkY(4.2)

If we denote the X1 : ran(T k) −→ ran(Sk) and Y1 : ran(Sk) −→ ran(T k), then
X1 and Y1 are injective and have dense range. Now for any x ∈ ran(T k), X1T1x =
XTx = SXx = S1X1x and for any y ∈ ran(Sk), Y1S1y = Y Sy = TY y = T1Y1x.
Hence T1 and S1 are quasisimilar. Assume that T ∗kx = 0 for x 6= 0 in H. Then
by Equations 4.1, we have that S∗kY ∗x = 0. Since Y ∗ is one to one, we have the
domain (S3)={0} implies domain(T3)={0}, and similarly domain(T3)={0} implies
domain (S3)={0}.

In 1976, Stampfli and Wadhwa [16] showed that if T ∗ ∈ B(H) is hyponormal,
S ∈ B(H) is dominant, X ∈ B(H) is injective and has dense range, and ifXT = SX,
then T and S are normal. on the other hand, in 1981, Gupta and Ramanujan [10]
showed that if T ∈ B(H) is k-quasihyponormal operator and S ∈ B(H) is normal
operator for which TY = Y S where Y ∈ B(H) is injective with dense range, then
T is normal operator unitarily equivalent to S. In the following theorem, we extend
the result of Gupta and Ramanujan to the class of (p, k)-quasihyponormal operators,
we need the following lemma:

Lemma 4.3. [12, Corollary 7] Let T ∈ B(H) be p-hyponormal operator and let
S ∈ B(H) be p-hyponormal operator. If TX = XS, where X ∈ B(H) is an injective
with dense range, then T is normal unitarily equivalent to S.

Theorem 4.3. If T ∗ ∈ B(H) is injective (p, k)-quasihyponormal operator, S ∈
B(H) is injective (p, k)-quasihyponormal operator, and if XT = SX, where X ∈
B(H) is an injective with dense range. Then XT ∗ = S∗X.



142 M. H. M. Rashid, M. S. M. Noorani and A. S. Saari

Proof. Since by assumption XT = SX, we can see that (kerX)⊥ and ranX are
invariant subspace of T ∗ and S, respectively. Therefore we have that T ∗|(ker X)⊥ and
S|ranX are also (p, k)-quasihyponormal operators. Now consider the decomposition
H = (kerX)⊥ ⊕ kerX. Then we have the matrix representations:

(4.3) T =
(
T1 0
T2 T3

)
, S =

(
S1 S2

0 S3

)
, X =

(
X1 0
0 0

)
where T ∗1 and S1 are injective p-hyponormal and X1 is an injective with dense range.
Therefore we have

(4.4) X1T1x = XTx = SXx = S1X1x for x ∈ (kerX)⊥.

that is, X1T1 = S1X1 and hence T1 and S1 are normal and X1T
∗
1 = S∗1X1 by

the Fuglede-Putnam Theorem. Therefore (kerX)⊥ and ranX reduces T ∗ and S,
respectively. Hence, we obtain the XT ∗ = S∗X.

Theorem 4.4. If T ∗ ∈ B(H) is injective (p, k)-quasihyponormal operator, S ∈
B(H) is injective (p, k)-quasihyponormal operator, and if XT = SX, where X ∈
B(H) is an invertible. Then there exists a unitary operator U such that UT = SU
and hence T and S are normal operators.

Proof. Since XT = SX, it follows by Theorem 4.3 that XT ∗ = S∗X and so TX∗ =
X∗S. Now TX∗X = X∗SX = X∗XT . Let X = UP be the polar decomposition
of X. Since X is invertible, it follows that P is invertible and U is unitary. Since
TP 2 = P 2T and P ≥ 0, it follows that TP = PT . Thus TUP = UPS implies
SUP = UPT = UTP , since P is invertible, we have UT = SU . Now T and S are
unitarily equivalent. Hence, T and S are normal operators.

Corollary 4.4. If T ∗, S ∈ B(H) are injective (p, k)-quasihyponormal operators, and
if XT = SX, where X ∈ B(H) is positive. Then T = S.

Theorem 4.5. If T ∗ ∈ B(H) is injective (p, k)-quasihyponormal operator, and let
S ∈ B(H) be an isometry. Assume there exists quasiaffinities X and Y such that
TX = XS and Y T = SY . If either X or Y is compact, then T and S are unitary.

Proof. Since T and S have the same spectra by [13, Theorem 2.8] we have σ(T ) =
σ(S) ⊆ D, where D is the closed unit disc. Since T is normaliod, we have that
‖T‖ ≤ 1 (i.e., T is a contraction). Assume that Y is compact. Applying [6, Theorem
2] to the operator equation Y T = SY to conclude S is unitary. Now applying of [6,
Theorem 1] to XT = SX, it follows that T is unitary. So the result follows.

References

[1] A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory
13 (1990), no. 3, 307–315.

[2] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Oper-
ator Theory 24 (1996), no. 4, 497–501.

[3] A. Aluthge and D. Wang, w-hyponormal operators, Integral Equations Operator Theory 36

(2000), no. 1, 1–10.
[4] A. Aluthge and D. Wang, w-hyponormal operators. II, Integral Equations Operator Theory

37 (2000), no. 3, 324–331.

[5] T. Ando, On some operator inequalities, Math. Ann. 279 (1987), no. 1, 157–159.



On the Spectra of Some Non-Normal Operators 143

[6] T. Ando and K. Takahashi, On operators with unitary ρ-dilations, Ann. Polon. Math. 66

(1997), 11–14.

[7] S. C. Arora and P. Arora, On p-quasihyponormal operators for 0 < p < 1, Yokohama Math.
J. 41 (1993), no. 1, 25–29.

[8] J. B. Conway, A course in functional analysis, Second edition, Springer, New York, 1990.
[9] B. P. Duggal, Quasi-similar p-hyponormal operators, Integral Equations Operator Theory 26

(1996), no. 3, 338–345.

[10] B. C. Gupta and P. B. Ramanujan, On k-quasihyponormal operators. II, Bull. Austral. Math.
Soc. 24 (1981), no. 1, 61–67.

[11] T. Huruya, A note on p-hyponormal operators, Proc. Amer. Math. Soc. 125 (1997), no. 12,

3617–3624.
[12] I. H. Jeon and B. P. Duggal, p-hyponormal operators and quasisimilarity, Integral Equations

Operator Theory 49 (2004), no. 3, 397–403.

[13] A.-H. Kim and I. H. Kim, Essential spectra of quasisimilar (p, k)-quasihyponormal operators,
J. Inequal. Appl. 2006, Art. ID 72641, 7 pp.

[14] I. H. Kim, On (p, k)-quasihyponormal operators, Math. Inequal. Appl. 7 (2004), no. 4, 629–

638.
[15] M. O. Otieno, On intertwining and w-hyponormal operators, Opuscula Math. 25 (2005), no. 2,

275–285.
[16] J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant

operators, Indiana Univ. Math. J. 25 (1976), no. 4, 359–365.
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[21] Y. Yang, On a class of operators, Glasgow Math. J. 40 (1998), no. 2, 237–240.

[22] R. Yingbin and Y. Zikun, Spectral structure and subdecomposability of p-hyponormal opera-

tors, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2069–2074.




