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Abstract. Let M̃m(c) be a complex m-dimensional space form of holomorphic
sectional curvature c and Mn be a complex n-dimensional Kaehlerian subman-

ifold of M̃m(c). We prove that if Mn is Ricci generalized pseudo-parallel, then

either Mn is totally geodesic, or ‖h‖2 = − 2
3
(Lτ − 1

2
(n + 2)c), or at some point

x of Mn, ‖h‖2 (x) > − 2
3
(L(x)τ(x)− 1

2
(n + 2)c).
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1. Introduction

Among all submanifolds of an almost Hermitian manifold, there are two typical
classes: one is the class of holomorphic submanifolds and the other is the class of
totally real submanifolds. A submanifold M of an almost Hermitian manifold M̃ is
called holomorphic (resp. totally real) if each tangent space of M is mapped into
itself (resp. the normal space) by the almost complex structure of M̃. There have
been many results in the theory of holomorphic submanifolds.

The class of isometric immersions in a Riemannian manifold with parallel second
fundamental form is very wide, as it is shown, for instance, in the classical Ferus
paper [11]. Certain generalizations of these immersions have been studied, obtaining
classification theorems in some cases.

Given an isometric immersion f : M −→ M̃ , let h be the second fundamental
form and ∇ the van der Waerden-Bortolotti connection of M . Then Deprez defined
the immersion to be semi-parallel if

(1.1) R̄(X, Y ) · h = (∇X∇Y −∇Y ∇X −∇[X,Y ])h = 0,
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holds for any vectors X, Y tangent to M . Deprez mainly paid attention to the case
of semi-parallel immersions in real space forms (see [5] and [6]). Later, Lumiste
showed that a semi-parallel submanifold is the second order envelope of the family
of parallel submanifolds [16]. In the case of hypersurfaces in the sphere and the
hyperbolic space, Dillen show that they are flat surfaces, hypersurfaces with parallel
Weingarten endomorphism or rotation hypersurfaces of certain helices [9].

In [8], the authors obtained some results in hypersurfaces in 4-dimensional space
form N4(c) satisfying the curvature condition

(1.2) R · h = LhQ(g, h).

The submanifolds satisfying the condition (1.2) are called pseudo-parallel (see [1]
and [2]). In [8], the authors obtained some results in hypersurfaces in 4-dimensional
space form N4(c) satisfying the curvature condition

(1.3) R · h = LQ(S, h).

The hypersurfaces satisfying the condition (1.2) are called Ricci generalized pseudo-
parallel (see [1] and [2]). In [2], it has been shown that a pseudo-parallel hyper
surface of a space form is either quasi-umbilical or a cyclic of Dupin.

In [1], Asperti et al. considered the isometric immersions f : M −→ M̃n+d(c) of n-
dimensional Riemannian manifold into (n+d)-dimensional real space form M̃n+d(c)
satisfying the curvature condition (1.2). They have shown that if f is pseudo-parallel
with H(p) = 0 and Lh(p) − c ≥ 0, then the point p is a geodesic point of M , i.e.
the second fundamental form vanishes identically, where H is the mean curvature
vector of M.

They also showed that a pseudo-parallel hypersurfaces of a space form is either
quasi-umbilical or a cyclic of Dupin [2].

The study of complex hypersurfaces was initiated by Smyth [21]. He classified the
complete Kaehler-Einstein manifolds which occur as hypersurfaces in complex space
forms. The corresponding full local classification was given by Chern [4]. Similar
classification under the weaker assumption of parallel Ricci tensor was obtained
by Takahashi [22], and Nomizu and Smyth [19]. A classification of the complete
Kaehler hypersurfaces of space forms which satisfy the condition R · R = 0 and a
partial classification (the case c 6= 0) of such hypersurfaces satisfying the condition
R · S = 0 was given by Ryan in [20]. He also classified the complex hypersurfaces of
Cn+1 having R · S = 0 and constant scalar curvature.

In [7], Deprez et al. presented a new characterization of complex hyperspheres in
complex projective spaces, of complex hypercylinders in complex Euclidean spaces
and of complex hyperplanes in complex space forms in terms of the conditions on
the tensors R, S, C and B, where B is the Bochner tensor which was introduced
as a complex version of the Weyl conformal curvature tensor C of a Riemannian
manifold [3]. In [25], Yaprak studied pseudosymmetry type curvature conditions on
Kaehler hypersurfaces. The submanifolds in a complex space form M̃m(c) n > 2, of
constant holomorphic sectional curvature 4c, parallel second fundamental form were
classified by Naitoh in [18]. Maeda [17] studied semi-parallel real hypersurfaces in a
complex space form M̃m(c) for c > 0 and n > 3. In [15], Lobos and Ortega classify
all connected pseudo-parallel real hypersurfaces in a non-flat complex space form.
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Recently, Yildiz et al. [24] studied C-totally real pseudo-parallel submanifolds in
Sasakian space forms.

In the present study, we generalize their results for the case of Mn, that is a
Kaehlerian submanifold of complex space form M̃m(c) of holomorphic sectional cur-
vature c. We prove the following main theorem.

Theorem 1.1. Let M̃m(c) be a complex m-dimensional space form of constant
holomorphic sectional curvature c and Mn be a complex n-dimensional Kaehlerian
submanifold of M̃m(c). If Mn is Ricci generalized pseudo-parallel, then either Mn

is totally geodesic, or

‖h‖2 = −2
3
(Lτ − 1

2
(n + 2)c),

or at some point x of Mn,

‖h‖2 (x) > −2
3
(L(x)τ(x)− 1

2
(n + 2)c).

2. Basic Concepts

Let M̃(c) be a non-flat complex space form endowed with the metric g of con-
stant holomorphic sectional curvature c. We denote by ∇, R, S and τ the Levi-
Civita connection, Riemann curvature tensor, the Ricci tensor and scalar curvature
of (M, g), respectively. The Ricci operator S is defined by g(SX, Y ) = S(X, Y ),
where X, Y ∈ χ(M), χ(M) being Lie algebra of vector fields on M . Next, we define
endomorphisms R(X, Y ) and X ∧B Y of χ(M) by

(2.1) R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

(2.2) (X ∧B Y )Z = B(Y, Z)X −B(X, Z)Y,

respectively, where X, Y, Z ∈ χ(M) and B is a symmetric (0, 2)-tensor.
The projective curvature tensor, P , in a Riemannian manifold (Mn, g) is defined

by

(2.3) P (X, Y ) = R(X, Y )− 1
(n− 1)

(X ∧S Y ).

Now, for a (0, k)-tensor field T , k ≥ 1 and a (0, 2)-tensor field B on (M, g), we
define the tensor Q(B, T ) by

Q(B, T )(X1, . . . , Xk;X, Y ) = −T ((X ∧B Y )X1, X2, . . . , Xk)
− · · · − T (X1, . . . , Xk−1, (X ∧B Y )Xk).(2.4)

Putting into the above formula T = h and B = g, we obtain the tensor Q(g, h).
Let f : Mn −→ M̃m(c) be an isometric immersion of an complex n-dimensional

(of real dimension 2n) M into complex m-dimensional (of real dimension 2m) space
form M̃m(c). We denote by ∇ and ∇̃ the Levi-Civita connections of Mn and M̃m(c),
respectively. Then for vector fields X, Y which are tangent to Mn, the second
fundamental form h is given by the formula h(X, Y ) = ∇̃XY −∇XY. Furthermore,
for ξ ∈ N(Mn), Aξ : TM −→ TM will denote the Weingarten operator in the ξ

direction, AξX = ∇⊥Xξ−∇̃Xξ, where ∇⊥ denotes the normal connection of M . The
second fundamental form h and Aξ are related by g̃(h(X, Y ), ξ) = g(AξX, Y ), where
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g is the induced metric of g̃ for any vector fields X, Y tangent to M . The mean
curvature vector H of M is defined to be

H =
1
n

Tr(h).

A submanifold M is said to be minimal if H = 0 identically.
The covariant derivative ∇h of h is defined by

(2.5) (∇Xh)(Y, Z) = ∇⊥X(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ),

where ∇h is a normal bundle valued tensor of type (0, 3) and is called the third
fundamental form of M . If R̃(X, Y )Z is tangent to M, the equation of Codazzi
implies that ∇h is symmetric, hence

(2.6) (∇Xh)(Y, Z) = (∇Y h)(X, Z) = (∇Zh)(X, Y ).

Here ∇ is called the van der Waerden-Bortolotti connection of M . If ∇h = 0, then
f is called parallel [11].

The second covariant derivative ∇2
h of h is defined by

(∇2
h)(Z,W,X, Y ) = (∇X∇Y h)(Z,W )

= ∇⊥X((∇Y h)(Z,W ))− (∇Y h)(∇XZ,W )(2.7)

−(∇Xh)(Z,∇Y W )− (∇∇XY h)(Z,W ).

Then

(∇X∇Y h)(Z,W )− (∇Y ∇Xh)(Z,W ) = (R(X, Y ) · h)(Z,W )

= R⊥(X, Y )h(Z,W )− h(R(X, Y )Z,W )(2.8)
−h(Z,R(X, Y )W ),

where R is the curvature tensor belonging to the connection ∇.

3. Kaehlerian Submanifolds

Let M̃ be a Kahlerian manifold of complex dimension m (of real dimension 2m)
with almost complex structure J and with Kahlerian metric g. Let M be a complex
n-dimensional analytic submanifold of M̃ , that is, the immersion f : M −→ M̃ is
holomorphic, i.e., J · f∗ = f∗ · J , where f∗ is the differential of the immersion f and
we denote by the same J the induced complex structure on M. Then the Riemannian
metric g, which will be denoted by the same letter of M̃ , induced on M is Hermitian.
It is easy to see that the fundamental 2-form with this Hermitian metric g is the
restriction of the fundamental 2-form of M̃ and hence is closed. This shows that
every complex analytic submanifold M a Kaehlerian manifold M̃ is also a Kaehlerian
manifold with respect to the induced structure. We call such a submanifold M of a
Kaehlerian manifold M̃ a Kaehlerian submanifold. In the other words, a Kaehlerian
submanifold M of a Kaehlerian manifold M̃ is an invariant submanifold under the
action of the complex structure J of M̃ , i.e., JTx(M) ⊂ Tx(M) for every point x of
M [23].

For each plane p in the tangent space Tx(M), the sectional curvature K(p) is define
to be K(p) = R(X, Y,X, Y ) = g(R(X, Y )Y, X), where {X, Y } is an orthonormal
basis for p. If p is invariant by J , then K(p) is called holomorphic sectional curvature
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by p. If K(p) is a constant for all J-invariant planes p in Tx(M) and for all points
x ∈ M is called a space of constant holomorphic sectional curvature or a complex
space form. A complex space form is defined to be a simply connected complete
Kaehlerian manifold of constant holomorphic sectional curvature as defined by [23]:

R̃(X, Y )Z =
1
4
c {g(X, Z)Y − g(Y,Z)X + g(JX,Z)JY

−g(JY, Z)JX + 2g(JX, Y )JZ} ,

for any vector fields X, Y and Z on M. If this space is complete and simply con-
nected, it is well-known that it is isometric to

(i) a complex projective space CPm(c), if c > 0;
(ii) the complex Euclidean space Cm , if c = 0;
(iii) a complex hyperbolic space CHm, if c < 0.
The equations of Gauss and Ricci are

g(R(X, Y )Z,W ) =
1
4
c[g(Y,Z)g(X, W )− g(X, Z)g(Y, W ) + g(JY, Z)g(JX,W )

−g(JX,Z)g(JY,W ) + 2g(X, JY )g(JZ, W )](3.1)
+g(h(Y, Z), h(X, W ))− g(h(X, Z), h(Y,W )),

and

(3.2) g(R(X, Y )U, V ) + g([AV , AU ]X, Y ) =
1
2
cg(X, JY )g(JU, V ),

respectively. For an orthonormal frame field {e1, e2, . . . , en} of M , the Ricci tensor
S is defined by

(3.3) S(X, Y ) =
n∑

k=1

g(R(ek, X)Y, ek).

From (3.1) and (3.3) the Ricci tensor S and the scalar curvature τ of M are respec-
tively given by

(3.4) S(X, Y ) =
1
2
(n + 1)cg(X, Y )−

∑
i

g(h(X, ei), h(Y, ei)),

(3.5) τ = n(n + 1)c−
∑

i

g(h(ei, ej), h(ei, ej)).

Lemma 3.1. [23] The second fundamental form h of a Kaehlerian submanifold M
satisfies

h(JX, Y ) = h(X, JY ) = Jh(X, Y ),
or equivalently

JAV X = −AV JX = AJV X.

Lemma 3.2. [23] Let Mn be a complex n-dimensional Kaehlerian submanifold of a
complex m-dimensional Kaehlerian manifold M̃m. Then

(3.6)
1
n
‖h‖4 ≤

m−n∑
α,β=1

‖[Aα, Aβ ]‖2 ≤ ‖h‖4
,
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(3.7)
1

2(m− n)
‖h‖4 ≤

m−n∑
α,β=1

(TrAαAβ)2 ≤ 1
2
‖h‖4

.

Proposition 3.1. [23] Any Kaehlerian submanifold Mn is a minimal submanifold.

Theorem 3.1. [23](pp.188) Let Mn be a complex n-dimensional Kaehlerian sub-
manifold of a complex space form M̃m(c) (c > 0). If ‖h‖2 = 1

3 (n + 2)c, then Mn is
an Einstein manifold of complex dimension 1.

Theorem 3.2. [23] (pp.188) Let Mn be a Kaehlerian hypersurface of a complex
space form M̃n+1(c). Then the following conditions are equivalent:

(i) The Ricci tensor S of Mn is parallel;
(ii) The second fundamental form of Mn is parallel;
(iii) M is an Einstein manifold.

4. Proof of the Theorem 1.1

Let Mn be a complex n-dimensional (of real dimensional 2n) Kaehlerian sub-
manifold with complex structure J of a complex m-dimensional (of real dimensional
2m) space form M̃m(c) of constant holomorphic sectional curvature c. Take an
orthonormal basis e1, e2, . . . , e2n in TX(M) such that en+t = Jet (t = 1, . . . , n) and
an orthonormal basis v1, . . . , v2p for TX(M)⊥ such that vp+s = Jvs (s = 1, . . . , p),
where we have put p = m− n. Then for 1 ≤ i, j ≤ n, 1 ≤ α ≤ p, the components of
the second fundamental form h are given by

(4.1) hα
ij = g(h(ei, ej), eα).

Similarly, the components of the first and the second covariant derivative of h are
given by

(4.2) hα
ijk = g((∇ek

h)(ei, ej), eα) = ∇ek
hα

ij ,

and

hα
ijkl = g((∇el

∇ek
h)(ei, ej), eα)

= ∇el
hα

ijk(4.3)

= ∇el
∇ek

hα
ij ,

respectively.
If f is Ricci generalized pseudo-parallel, then by definition, the condition

(4.4) R(el, ek) · h = L[(el ∧S ek)]h

is fulfilled, where

(4.5) [(el ∧S ek)h] (ei, ej) = −h((el ∧S ek)ei, ej)− h(ei, (el ∧S ek)ej)

for 1 ≤ i, j, k, l ≤ n. Substituting (2.2) into (4.5), we get

[(el ∧S ek)h](ei, ej) = −S(ek, ei)h(el, ei) + S(el, ei)h(ek, ei)
−S(ek, ej)h(el, ei) + S(el, ej)h(ek, ei).(4.6)
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By (2.8), we have

(4.7) (R(el, ek) · h)(ei, ej) = (∇el
∇ek

h)(ei, ej)− (∇ek
∇el

h)(ei, ej).

Making use of (4.1), (4.3), (4.6) and (4.7), the pseudo-parallelity condition (4.4)
turns into

(4.8) hα
ijkl = hα

ijlk − L{Skih
α
lj − Slih

α
kj + Skjh

α
il − Sljh

α
ki},

where S(ei, ej) = Sij and 1 ≤ i, j, k, l ≤ n, 1 ≤ α ≤ p.
Recall that the Laplacian ∆hα

ij of hα
ij is defined by

(4.9) ∆hα
ij =

n∑
i,j,k=1

hα
ijkk.

Then, we obtain

(4.10)
1
2
∆(‖h‖2) =

n∑
i,j,k=1

p∑
α=1

hα
ijh

α
ijkk +

∥∥∇h
∥∥2

,

where

(4.11) ‖h‖2 =
n∑

i,j,k=1

p∑
α=1

(hα
ij)

2,

and

(4.12)
∥∥∇h

∥∥2
=

n∑
i,j,k=1

p∑
α=1

(hα
ijkk)2,

are the square of the length of second and the third fundamental forms of Mn,
respectively. In addition, making use of (4.1) and (4.3), we obtain

hα
ijh

α
ijkk = g(h(ei, ej), eα)g((∇ek

∇ek
h)(ei, ej), eα)

= g((∇ek
∇ek

h)(ei, ej)g(h(ei, ej), eα), eα)(4.13)

= g((∇ek
∇ek

h)(ei, ej), h(ei, ej)).

Therefore, due to (4.13), the equation (4.10) becomes

(4.14)
1
2
∆(‖h‖2) =

n∑
i,j,k=1

g((∇ek
∇ek

h)(ei, ej), h(ei, ej)) +
∥∥∇h

∥∥2
.

Further, by the use of (4.4), (4.6) and (4.7), we get

g((∇ek
∇ek

h)(ei, ej), h(ei, ej) = g((∇ek
∇eih)(ek, ej), h(ei, ej))

= g((∇ei∇ek
h)(ej , ek), h(ei, ej))

− L{S(ei, ej)g(h(ek, ek), h(ei, ej))(4.15)

− S(ek, ej)g(h(ek, ei), h(ei, ej))

+ S(ek, ei)g(h(ej , ek), h(ei, ej))

− S(ek, ek)g(h(ei, ej), h(ei, ej))}.
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Substituting (4.15) into (4.14), we have

1
2
∆(‖h‖2) =

n∑
i,j,k=1

[g((∇ei∇ej h)(ek, ek), h(ei, ej))

−L{S(ei, ej)g(h(ek, ek), h(ei, ej))
−S(ek, ej)g(h(ek, ei), h(ei, ej))(4.16)
+S(ek, ei)g(h(ej , ek), h(ei, ej))

−S(ek, ek)g(h(ei, ej), h(ei, ej))}] +
∥∥∇h

∥∥2

Furthermore, by definition

(4.17) ‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)),

Hα =
n∑

k=1

hα
kk,

‖H‖2 =
1
n2

p∑
α=1

(Hα)2.

and after some calculations, we get

1
2
∆(‖h‖2) =

n∑
i,j=1

p∑
α=1

hα
ij(∇ei∇ej H

α)

−L{n2 ‖H‖2 − τ ‖h‖2}+
∥∥∇h

∥∥2
.(4.18)

Using Proposition 3.1, the equation (4.18) reduces to

(4.19)
1
2
∆(‖h‖2) = Lτ ‖h‖2 +

∥∥∇h
∥∥2

.

Yano and Kon have shown in [23] that

1
2
∆(‖h‖2) =

∥∥∇h
∥∥2 −

p∑
α,β=1

{[Tr(Aα ◦Aβ)]2 + ‖[Aα, Aβ ]‖2

+
1
2
(n + 2)c ‖h‖2

.(4.20)

Hence comparing the equation (4.19) with (4.20), we get

0 = (Lτ − 1
2
(n + 2)c) ‖h‖2

+
p∑

α,β=1

{
[Tr (Aα ◦Aβ)]2 + ‖[Aα, Aβ ]‖2

}
.(4.21)

Using equations (3.6) and (3.7) in (4.21), we have

(4.22) ‖h‖2 [(Lτ − 1
2
(n + 2)c) +

3
2
‖h‖2] ≥ 0.
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Suppose

‖h‖2 ≤ −2
3
(Lτ − 1

2
(n + 2)c)

everywhere on Mn. Then

‖h‖2 = −2
3
(Lτ − 1

2
(n + 2)c)

or ‖h‖2 = 0. Except for these possibilities, we obtain

‖h‖2 (x) > −2
3
(L(x)τ(x)− 1

2
(n + 2)c)

at some point x of Mn.

Using equation (4.21) we get the following:

Corollary 4.1. Let M̃m(c) be a complex m-dimensional space form of constant
holomorphic sectional curvature c and Mn be a complex n-dimensional Kaehlerian
submanifold of M̃(c). If Mn is Ricci generalized pseudo-parallel and Lτ− 1

2 (n+2)c >
0, then Mn is totally geodesic.

Corollary 4.2. Let M̃m(c) be a complex m-dimensional space form of constant
holomorphic sectional curvature c and Mn be a complex n-dimensional Kaehlerian
submanifold of M̃m(c). If P (X, Y ) · h = 0 and τ

(n−1) −
1
2 (n + 2)c ≥ 0, then M is

totally geodesic.

We recall the well-known following theorem ([4], [19], [22]):

Theorem 4.1. ([4], [19], [22]) Let Mn be a Kaehlerian hypersurface of a complex
space form M̃n+1(c) with parallel Ricci tensor. If c ≤ 0, then Mnis totally geodesic.
If c > 0, then either M is totally geodesic, or an Einstein manifold |A|2 = nc and
hence τ = n2c.

Using Theorem 3.2 and Theorem 4.1, we can easily obtain the following:

Corollary 4.3. Let Mn be a Kaehlerian hypersurface of a complex space form
M̃n+1(c) with parallel second fundamental form. If c ≤ 0, then Mn is totally geo-
desic.

Using the equation (4.21), we get the following corollary.

Corollary 4.4. Let Mn be a complex n-dimensional Kaehlerian submanifold of
M̃(c) with semi-parallel. If c ≤ 0, then Mn is totally geodesic.

Remark 4.1.
(i) Corollary 4.1 is a generalization of Corollary 4.3 and Corollary 4.4.
(ii) If the second fundamental form of Mn is parallel, then it is semi-parallel.

The converse does not necessarily hold.

Remark 4.2. Let M̃m(c) be a complex m-dimensional space form of constant holo-
morphic sectional curvature c and Mn be a Ricci generalized pseudo-parallel Kaehle-
rian submanifold of M̃m(c) satisfying ‖h‖2 = − 2

3 (Lτ − 1
2 (n + 2)c).

(i) If L = 0, then by Theorem 3.1, Mn is an Einstein manifold of complex
dimension 1.
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(ii) If τ = 0, then c = 0 by equation (3.5). Thus Mn is a totally geodesic
submanifold (the complex Euclidean space Cn) of the complex Euclidean
space Cm.

5. A Geometrical Interpretation of the Q(S, h)

Let Mn be an n-dimensional submanifold of an n + m-dimensional Riemannian
manifold M̃n+m. Let{x, y, e3, . . . , en} be an orthonormal basis of TpM. Then z ∈
TpM can be decomposed by an orthonormal expansion as

z = g(z, x)x + g(z, y)y +
n∑

i=3

g(z, ei)ei.

By rotating the projection of onto the plane π spanned by x and y over an infini-
tesimal angle ε, while keeping the projection of z onto the (n− 2)-plane spanned by
e3, . . . , en fixed, a new vector z̃ is obtained, namely

ẑ = z + ε{g(z, y)x− g(z, x)y}+ O(ε2)
= z + ε(x ∧g y)z + O(ε2).(5.1)

Thus the vector (x ∧g y)z measures the first-order change of the vector z after an
infinitesimal rotation in the plane π at point p [12], [13].

Taking z = S̃z in the equation (5.1),we obtain̂̃Sz = S̃z + ε{g(S̃z, y)x− g(S̃z, x)y}+ O(ε2)

= S̃z + ε(x ∧S y)z + O(ε2)(5.2)

= S̃z + ε(x ∧g y)S̃z + O(ε2)

where S̃ is a Ricci operator of Mn. Thus the vector (x∧S y)z = (x∧g y)S̃z measures
the first order change of the vector S̃z after an infinitesimal rotation in the plane π
at point p.

In [10], Dillen et al. gave a geometrical interpretation of Q(g, h).Now we will use
the same method to give a geometrical interpretation of Q(S, h). Let z, w be vectors
of TpM. From equation (5.3) we have

h(̂̃Sz,w) = h(S̃z, w) + εh((x ∧S y)z, w) + O(ε2),(5.3)

h(z, ̂̃Sw) = h(z, S̃w) + εh(z, (x ∧S y)w) + O(ε2).(5.4)

Using equations (5.3), (5.4), we get

h(S̃z − ̂̃Sz,w) + h(z, S̃w − ̂̃Sw) = −ε{h((x ∧S y)z, w) + h(z, (x ∧S y)w)}+ O(ε2)
= εQ(S, h)(z, w;x, y) + O(ε2).(5.5)

The left side of equation (5.5) possesses a geometrical meaning. Thus the first-
order geometrical interpretation for Q(S, h)(z, w;x, y) is obtained.
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[16] Ü. Lumiste, Semi-symmetric submanifolds as the second order envelope of symmetric subman-

ifolds, Proc. Estonian Acad. Sci. Phys. Math. 39(1990), 1–8.
[17] S. Maeda, Real hypersurfaces of a complex projective spaces, Math. Ann. 263(1983), 473–478.

[18] H. Naitoh, Parallel submanifolds of complex space forms I and II, Nagoya Math. J. I 90(1983),

85–117., II 91(1983), 119–149.
[19] K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces, II, J. Math. Soc.,

Japan 20(1968), 498–521.

[20] P. J. Ryan, A class of complex hypersurfaces, Colloqium Math. J. 26(1972), 175–182.
[21] J. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan 20(1968), 643–647.

[22] T. Takahashi, Hypersurfaces with parallel Ricci tensor in a space of constant holomorphic
sectional curvature, J. Math. Soc. Japan 19(1967), 199–204.

[23] K. Yano and M. Kon, Structures on manifolds, World Scientific, (1984), p. 508.

[24] A. Yıldız, C. Murathan, K. Arslan and R. Ezentaş, C-totally real pseudo parallel submanifolds
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