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Abstract. The notion of an essentially slant Hankel operator is introduced and

its algebraic properties are studied. The study is further carried to compressions
of such operators. It is proved that a Rhaly operator is the compression of an
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essentially slant Hankel operator.
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1. Introduction

The notion of Toeplitz operators was introduced by O. Toeplitz [13] in the year
1911. The formal companions of Toeplitz operators are the Hankel operators [11].
For basic facts about these classes of operators and the spaces L2, H2, L∞ and
`2, one can refer [4], [9] and [11]. These classes of operators can also be seen as
solutions of some linear operator equations involving the unilateral forward shift
and its adjoint. It is well-known that an operator A on the space H2 is Hankel iff
S∗A = AS and an operator B on the space H2 is Toeplitz iff S∗BS = B, where S
denotes the unilateral forward shift on H2.

In the year 1995, M. C. Ho [8] came up with a new class of operators having
the property that the representation matrices of such operators with respect to the
standard basis could be obtained from those of the matrices of Toeplitz operators
just by eliminating every other row. These operators were termed as slant Toeplitz
operators. Many operator-theorists like Goodman [6], Strang and Strela [7] con-
nected the smoothness of wavelets with the spectral properties of slant Toeplitz
operators. However, Ho made the first attempt to investigate the basic properties of
slant Toeplitz operators and in particular, he gave the following characterization of
slant Toeplitz operators [8]: A bounded operator A on the space L2 is a slant Toeplitz
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operator iff MzA = AMz2 , where Mz denotes the multiplication operator induced by
z on L2.

Motivated by Ho’s work, S. C. Arora [1] along with his research associates intro-
duced the class of slant Hankel operators in the year 2006 and obtained a character-
ization [1] of slant Hankel operators as follows: A bounded operator K on the space
L2 is a slant Hankel operator iff Mz̄K = KMz2 .

Later, the notion of slant Toeplitz operators was generalized to essentially slant
Toeplitz operators [2] by Arora and Bhola.

We begin with the following definitions:

Definition 1.1. [3] A bounded linear operator A on the space H2 is said to be
essentially Hankel if T ∗z A−ATz is compact, where Tz denotes the Toeplitz operator
induced by z.

Definition 1.2. [1] A slant Hankel operator Kφ on the space L2 is defined as

Kφ(zj) =
∞∑

i=−∞
a−2i−jz

i

for all j ∈ Z, where φ =
∑∞

i=−∞ aiz
i is a bounded measurable function on the unit

circle. It may be seen [1] that Kφ = WJMφ where W is defined on L2

W (z2n) = zn

W (z2n−1) = 0

}
for all n ∈ Z,

J is the unitary flip operator on L2 defined as J(f(z)) = f(z̄), Mφ is the multiplica-
tion operator on L2 induced by φ in L∞ and {en : en(z) = zn, n ∈ Z} is the standard
orthonormal basis of L2.

Definition 1.3. [2] A bounded linear operator A on the space L2 is said to be an
essentially slant Toeplitz operator if

MzA−AMz2 = k,

for some compact operator k on L2.

Definition 1.4. [2] An operator B on the space H2 is said to be the compression
of an essentially slant Toeplitz operator to H2 if

TzB −BTz2 = k,

for some compact operator k on H2.

The set of all essentially Hankel operators on H2 is denoted by essHank [3]. The
set of all essentially slant Toeplitz operators on L2 is denoted by ESTO(L2) [2].
The set of all compressions of essentially slant Toeplitz operators to H2 is denoted
by ESTO(H2) [2].

In this paper, we introduce and study the class of essentially slant Hankel
operators. The set of all essentially slant Hankel operators on the space L2 is
denoted by ESHO(L2). It is shown here that, although this set is not an algebra
of operators on L2, it is nevertheless a norm-closed vector subspace of B(L2),the
space of all bounded linear operators on L2. An example of an essentially slant
Hankel operator which is not slant Hankel has also been presented. This paper also
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contains discussion of some conditions under which the product of two operators in
ESHO(L2) is again in ESHO(L2). The second section deals with the counterpart
of such operators on the space H2. The final result of this section relates the class
of Rhaly operators [10, 12], essentially slant Toeplitz operators and essentially slant
Hankel operators on the space H2. Precisely it is proved that the intersection of the
class of Rhaly operators on H2 with the class ESTO(H2) and that with ESHO(H2)
is identical.

2. Essentially Slant Hankel Operators on L2

We introduce the following:

Definition 2.1. A bounded linear operator A on the space L2 is said to be an
essentially slant Hankel operator if

Mz̄A−AMz2 = k,

for some compact operator k on L2.

We denote the set of all essentially slant Hankel operators on L2 by ESHO(L2).
It is clear that sum of a slant Hankel operator and a compact operator on L2 is in
ESHO(L2). In particular every slant Hankel operator on L2 is in ESHO(L2). If
K denotes the space of all compact operators on L2, then

ESHO(L2) ∩ K = K .

We now present an example of a non-compact essentially slant Hankel operator
on L2 which is not a slant Hankel operator.

Example 2.1. Let A on L2 be defined as

Aen =


e1 if n = 0
0 if n 6= 0, n is even

em, where m = −
(

n + 1
2

)
, if n is odd

where en(z) = zn for all n ∈ Z. The matrix representation of A with respect to
{en}n∈Z is given by 

...
...

...
...

...
...

...
· · · 0 0 0 0 0 0 1 · · ·
· · · 0 0 0 0 1 0 0 · · ·
· · · 0 0 1 0 0 0 0 · · ·
· · · 1 0 0 1 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 · · ·

...
...

...
...

...
...

...


If W is defined on L2 as

W (zn) =

{
zn/2 if n is even;
0 otherwise;
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for all n ∈ Z and K is defined on L2 as

Ken =

{
e1 if n = 0;
0 otherwise;

for all n ∈ Z, then we have
A = WJMz + K

where J denotes the unitary flip operator on L2. Now

Mz̄A−AMz2 = Mz̄(WJMz + K)− (WJMz + K)Mz2

= Mz̄K −KMz2 ∈ K .

Therefore, A ∈ ESHO(L2) but A is not a slant Hankel operator on L2.

We now discuss some basic properties of the set ESHO(L2).

Theorem 2.1. ESHO(L2) is a norm-closed vector subspace of B(L2), the set of all
bounded linear operators on the space L2.

Proof. For H1,H2 ∈ ESHO(L2) and α, β ∈ C,

Mz̄(αH1 + βH2)− (αH1 + βH2)Mz2

= α(Mz̄H1 −H1Mz2) + β(Mz̄H2 −H2Mz2) ∈ K .

Also, if for each n, Hn is in ESHO(L2) and Hn → H uniformly in B(L2) then

Mz̄Hn −HnMz2 → Mz̄H −HMz2

uniformly in B(L2). Since K is uniformly closed, we have H ∈ ESHO(L2). Thus,
ESHO(L2) is a norm-closed vector subspace of B(L2).

Theorem 2.2. ESHO(L2) is not an algebra of operators on L2.

The result follows since product of two essentially slant Hankel operators on L2

is not necessarily an essentially slant Hankel operator as shown in the following:

Example 2.2. Let
A = B = WJMz + K

where W,J,K are as defined in Example 2.1. Then A,B ∈ ESHO(L2) but C =
AB /∈ ESHO(L2) because

Mz̄C − CMz2 = Mz̄(WJMz + K)(WJMz + K)− (WJMz + K)(WJMz + K)Mz2

= Mz̄(WJMz)(WJMz)− (WJMz)(WJMz)Mz2 (mod K) .

However

(Mz̄(WJMz)2 − (WJMz)2Mz2)en =



0 if n is even
e−1 if n = 1
−e1 if n = 3
e0 if n = 5
−e2 if n = 7
e1 if n = 9

...

Therefore, Mz̄C − CMz2 6∈ K. Hence C = AB /∈ ESHO(L2).

Theorem 2.3. ESHO(L2) is not a self-adjoint set.
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The operator A = WJMz + K, given above, belongs to ESHO(L2) and A∗ /∈
ESHO(L2).

Theorem 2.4. If H1,H2 ∈ ESHO(L2) then H1H2 ∈ ESHO(L2) iff H1Mz̄H2 =
H1Mz2H2(mod K).

Proof. Let H1,H2 ∈ ESHO(L2). Then

Mz̄H1H2 −H1H2Mz2 = H1Mz2H2 −H1H2Mz2 (mod K)
= H1Mz2H2 −H1Mz̄H2 (mod K) .

Therefore, H1H2 ∈ ESHO(L2) iff H1Mz̄H2 = H1Mz2H2 (mod K).

Theorem 2.5. Let A ∈ ESHO(L2) and p ∈ N, p > 1. If n(p) denotes the number
of partitions of p as sum of two natural numbers, p = mi + ni; i = 1, 2, . . . , n(p),
mi, ni ∈ N; Ami , Ani ∈ ESHO(L2), then the following are equivalent:

(a) Ap ∈ ESHO(L2)
(b) AmiMz̄A

ni = AmiMz2Ani (mod K), i = 1, 2, . . . , n(p)
(c) AniMz̄A

mi = AniMz2Ami (mod K), i = 1, 2, . . . , n(p)

In addition to these properties, we have the following:

Theorem 2.6. (i) If H1 is in the essential commutant of Mz̄ and H2 ∈ ESHO(L2),
then H1H2 ∈ ESHO(L2).
(ii) If H1 ∈ ESHO(L2) and H2 is in the essential commutant of Mz2 , then H1H2 ∈
ESHO(L2).

Proof. (i) Let H1 commute essentially with Mz̄ and H2 ∈ ESHO(L2). Then

Mz̄H1H2 −H1H2Mz2 = H1Mz̄H2 −H1H2Mz2 (mod K)
= H1(Mz̄H2 −H2Mz2) (mod K) ∈ K .

Therefore H1H2 ∈ ESHO(L2) .
(ii) Let H1 ∈ ESHO(L2) and H2 commute essentially with Mz2 . Then

Mz̄H1H2 −H1H2Mz2 = Mz̄H1H2 −H1Mz2H2 (mod K)
= (Mz̄H1 −H1Mz2)H2 (mod K) ∈ K .

Therefore H1H2 ∈ ESHO(L2) .

Theorem 2.7. If Mφ is a multiplication operator on L2 induced by φ in L∞ and
H ∈ ESHO(L2) then HMφ and MφH both are in ESHO(L2).

Proof. Let H ∈ ESHO(L2) and Mφ be the multiplication operator on L2 induced
by φ in L∞. Then

Mz̄(HMφ)− (HMφ)Mz2 = (Mz̄H −HMz2)Mφ ∈ K .

Also

Mz̄(MφH)− (MφH)Mz2 = Mφ(Mz̄H −HMz2) ∈ K .

Therefore HMφ, MφH ∈ ESHO(L2).

Theorem 2.8. If A,A∗ ∈ ESHO(L2) then A∗T = T ∗A∗(mod K) where

T = Mz(I + Mz).
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Proof. Let A,A∗ ∈ ESHO(L2). Then

Mz̄A−AMz2 = k1(2.1)

and

Mz̄A
∗ −A∗Mz2 = k2(2.2)

where k1, k2 ∈ K. Taking adjoints on both sides of equation (2.1) and subtracting
equation (2.2), we have

A∗(Mz + Mz2) = (Mz̄ + Mz̄2)A∗ (mod K) .

Therefore A∗T = T ∗A∗ (mod K), where T = Mz(I + Mz).

Corollary 2.1. A necessary condition for an operator A ∈ ESHO(L2) to be self-
adjoint is that AT is essentially self-adjoint, where T = Mz(I + Mz).

3. Compressions of Essentially Slant Hankel Operators

In 2001, Arora and Zegeye [14] obtained a characterization of the compression of
a slant Hankel operator to H2 as follows: An operator A on H2 is the compression
of a slant Hankel operator to H2 iff Tz̄A = ATz2 , where Tz is the Toeplitz operator
induced by z.

Motivated by this, we define the compression of an essentially slant Hankel oper-
ator as follows:

Definition 3.1. An operator A on the space H2 is termed as the compression of an
essentially slant Hankel operator if Tz̄A − ATz2 = k, for some compact operator k
on H2.

We denote by ESHO(H2), the set of all compressions of essentially slant Hankel
operators to H2. The set ESHO(H2) has the following properties:

Theorem 3.1. ESHO(H2) is a norm-closed vector subspace of B(H2) containing
all the compressions of slant Hankel operators to H2.

Theorem 3.2. ESHO(H2) is not an algebra of operators on H2.

Theorem 3.3. ESHO(H2) is not a self-adjoint set.

Theorem 3.4. If K(H2) denotes the space of all compact operators on H2, then

ESHO(H2) ∩ K(H2) = K(H2).

Theorem 3.5. If A,B ∈ ESHO(H2), then
AB ∈ ESHO(H2) iff ATz̄B = ATz2B (mod K(H2)).

Theorem 3.6. (i) If A is in the essential commutant of Tz̄ and B ∈ ESHO(H2),
then AB ∈ ESHO(H2).
(ii) If A ∈ ESHO(H2) and B is in the essential commutant of Tz2 , then AB ∈
ESHO(H2).

Theorem 3.7. A necessary condition for an operator A ∈ ESHO(H2) to be self-
adjoint is that AT is essentially self-adjoint where T = Tz(I + Tz).
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Note 3.1. Using the fact that any two multiplication operators commute, we have
shown that if Mφ is any multiplication operator on L2 and H ∈ ESHO(L2) then
HMφ and MφH both are in ESHO(L2). Since two Toeplitz operators do not
commute in general [5, 9] therefore for any A ∈ ESHO(H2) we immediately have
the following:

(i) If φ is analytic then ATφ ∈ ESHO(H2).
(ii) If φ is co-analytic then TφA ∈ ESHO(H2).

However using the fact that the commutator of any Toeplitz operator Tφ with Tz

and that with Tz2 is compact, one can show that for A ∈ ESHO(H2), ATφ and TφA
are in ESHO(H2) for any Toeplitz operator Tφ.

Theorem 3.8. There is no invertible operator in the set ESHO(H2).

Proof. If possible suppose A ∈ ESHO(H2) be invertible. Then

Tz̄A−ATz2 = k1 for some k1 ∈ K(H2).

Post multiplying both sides by A−1 we have,

Tz̄ = k2 + ATz2A−1 where k2 ∈ K(H2).

Now Tz̄ is a Fredholm operator of index 1 and k2 +ATz2A−1 is a Fredholm operator
of index −2. Therefore, we have 1 = −2 which is absurd.

Hence there is no invertible operator in the set ESHO(H2).
More generally, the set ESHO(H2) does not contain any Fredholm operator.

Theorem 3.9. If A ∈ essHank and B ∈ ESHO(H2) then AB ∈ ESTO(H2).

Proof. Let A ∈ essHank. Then

T ∗z A−ATz = k1,

where k1 ∈ K(H2). As Tz is unitary in the Calkin algebra B(H2)/K(H2), we have

AT ∗z − TzA ∈ K(H2).

Also B ∈ ESHO(H2). Therefore

T ∗z B −BTz2 = k2,

for some k2 ∈ K(H2). Consider

TzAB −ABTz2 = TzAB −AT ∗z B (mod K(H2))
= (TzA−AT ∗z )B (mod K(H2))
∈ K(H2) .

Therefore AB ∈ ESTO(H2) .

Definition 3.2. An infinite matrix of the form

R =


a0 0 0 0 · · ·
a1 a1 0 0 · · ·
a2 a2 a2 0 · · ·
a3 a3 a3 a3 · · ·
...

...
...

...
...
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for some complex sequence {an}∞n=0 ∈ `2, is called a Rhaly matrix (or a terraced
matrix) (see [10, 12] for more on this topic). It is known that a Rhaly matrix
determines a bounded operator on H2 if {nan} is bounded [10], while a Rhaly matrix
determines a compact operator if {nan} → 0 [12]. If the infinite matrix R determines
a bounded operator on H2 then the corresponding operator is called a Rhaly operator
on H2. We denote by R, the set of all Rhaly operators on the space H2.

Our next result shows that a Rhaly operator on H2 is the compression of an
essentially slant Toeplitz operator iff it is the compression of an essentially slant
Hankel operator on H2. Precisely, we prove the following:

Theorem 3.10. R∩ESTO(H2) = R∩ESHO (H2).

Proof. Let R be a Rhaly operator on H2 corresponding to the complex sequence
{an}∞n=0 ∈ `2. Then

Ren =
∞∑

i=n

aiei for all n = 0, 1, 2, 3, . . .

where {en}∞n=0 is the standard basis of H2.
Define the infinite matrix A as

0 0 0 0 · · ·
0 0 0 0 · · ·

a3 − a2 0 0 0 · · ·
a4−a3 a4 − a3 0 0 · · ·
a5−a4 a5−a4 a5 − a4 0 · · ·
· · · · · · · · · · · · · · ·


Calculations show that the matrix of TzR − RTz2 with respect to {en}∞n=0 is given
by



0 0 0 0 0 · · ·
a0 0 0 0 0 · · ·

a1−a2 a1 0 0 0 · · ·
a2−a3 a2−a3 a2 0 0 · · ·
a3−a4 a3−a4 a3−a4 a3 0 · · ·
a4−a5 a4−a5 a4−a5 a4−a5 a4 · · ·
· · · · · · · · · · · · · · · · · ·


Therefore,

TzR−RTz2 = Tz diag{a0, a1, a2, · · · }+ Tz2 diag{a1 − a2, a2 − a3, · · · } − TzA

Since diag{a0, a1, a2, · · · } and diag{a1 − a2, a2 − a3, · · · } are compact operators on
H2, it follows that R ∈ ESTO(H2) iff TzA is compact. Therefore, R ∈ ESTO(H2)
iff A ∈ K(H2). Analogously, the matrix of Tz̄R − RTz2 with respect to {en}∞n=0 is
given by
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a1 a1 0 0 0 · · ·
a2 a2 a2 0 0 · · ·

a3−a2 a3 a3 a3 0 · · ·
a4−a3 a4−a3 a4 a4 a4 · · ·
a5−a4 a5−a4 a5−a4 a5 a5 · · ·
· · · · · · · · · · · · · · · · · ·


Therefore

Tz̄R−RTz2 = A + diag{a1, a2, a3, · · · }+ Tz diag{a2, a3, a4, · · · }
+Tz̄ diag{a1, a2, a3 · · · }

Thus, R ∈ ESHO(H2) iff A ∈ K(H2). This concludes the proof.
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