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1. Introduction

Mashhour et al. [20] introduced the notions of preopen sets and precontinuity
in topological spaces. Recently, Beceren and Noiri [8] have introduced the notion
of strongly precontinuous functions and studied their properties. The purpose of
the present paper is to give a set of further characterizations for these functions, to
study a few invariant properties under these functions and to characterize extremally
disconnected spaces using these functions.

2. Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y ) denote
topological spaces on which no separation axioms are assumed unless explicitly stated
and f : X → Y denotes a single valued function. Let A be a subset of the space
X. The closure and interior of A are denoted by Cl(A) and Int(A), respectively. A
subset A is said to be regular open (resp. regular closed) if A = Int(Cl(A)) (resp.
A = Cl(Int(A))). A subset A is called semi-open [17] (resp. preopen [20], α-open
[23], β-open [1]) if A ⊂ Cl(Int(A)) (resp. A ⊂ Int(Cl(A)), A ⊂ Int(Cl(Int(A))),
A ⊂ Cl(Int(Cl(A)))). The complement of a semi-open (resp. preopen) set is called
semi-closed (resp. pre-closed). A point x of a space X is said to be in the preclosure
[13] (resp. semi-closure [9]) of a subset A of X, denoted by p Cl(A) (resp. sCl(A))
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if A ∩ U 6= ∅ for every preopen (resp. semi-open) set containing x. It is known
that A is preclosed if and only if p Cl(A) = A and A is semi-closed if and only if
sCl(A) = A.

The family of all α-open (resp. preopen, semi-open) subsets of (X, τ) is denoted
by τα (resp. PO(X), SO(X)). It is shown in [23] that τα is a topology for X.
Moreover, τ ⊂ τα ⊂ PO(X). For a topological space (X, τ), τp means the smallest
topology on X containing PO(X) due to Andrijevic [5]. The family of semi-open
(resp. preopen) sets of X containing x is denoted by SO(X, x) (resp. PO(X, x)).

Definition 2.1. A function f : X → Y is called
(1) irresolute [10] if f−1(V ) is semi-open in X for every semi-open set V of Y .
(2) strongly semi-continuous [2] if f−1(V ) is open in X for every semi-open set

V of Y .
(3) precontinuous [20] if f−1(V ) is preopen in X for every open set V of Y .
(4) strongly α-continuous [7] if f−1(V ) is α-open in X for every semi-open set

V of Y .

Definition 2.2. A function f : X → Y is said to be strongly precontinuous [8] if
f−1(V ) is preopen in X for every semi-open set V of Y .

Recall that a space X is called submaximal [6] if each dense subset of X is open
in X.

Remark 2.1. If X is a submaximal space and f : X → Y is a function, then the
following are equivalent:

(i) f is strongly semi-continuous;
(ii) f is strongly α-continuous;
(iii) f is strongly precontinuous.

Theorem 2.1. [8] A function f : X → Y is strongly precontinuous if and only if for
each x ∈ X and each semi-open set V of Y containing f(x), there exists a preopen
set U of X containing x such that f(U) ⊂ V .

3. Characterizations

It is shown in [19] that a space X is submaximal if and only if every preopen set
of X is open.

A filterbase Γ is said to be s-convergent [12] (resp. p-convergent [19])to a point
x in X, if for any semi-open (resp. preopen) set U containing x, there exists B ∈ Γ
such that B ⊂ U .

Proposition 3.1. [19] If Γ is a filterbase in (X, τ), Γ p-converges to x if and only
if Γ converges to x in (X, τp).

Theorem 3.1. For a function f : X → Y , consider the following statements.
(1) f : (X, τ) → (Y, σ) is strongly precontinuous;
(2) f : (X, τp) → (Y, σ) is strongly semi-continuous;
(3) For each point x ∈ X and each filterbase Γ in X p-converging to x, the

filterbase f(Γ) is s-convergent to f(x)
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Then (1)⇒(2)⇒(3). Moreover if X is submaximal, then (3) implies (1), and hence
the above statements are equivalent.

Proof. (1)⇒(2) Obvious.
(2)⇒(3) Suppose that x ∈ X and Γ is any filterbase in X which p-converges to x.

Let V be any semi-open set of Y with f(x) ∈ V . Since f is strongly semi-continuous,
f−1(V ) ∈ τp and x ∈ f−1(V ). Since Γ is p-convergent to x, by Proposition 3.1, then
there exists B ∈ Γ such that B ⊂ f−1(V ). Therefore, we have f(B) ⊂ V . This
shows that f(Γ) is s-convergent to f(x).

(3)⇒(1) Now suppose that X is submaximal. Let x be a point in X and V be any
semi-open set containing f(x). Since X is submaximal, every preopen set is open.
If we set Γ = {U ∈ PO(X) : x ∈ U}, then Γ will be a filterbase which p-converges
to x. So there exists U in Γ such that f(U) ⊂ V . This completes the proof.

Let (Y, σ) be a topological space. σψ denotes the topology on Y which has SO(Y )
as a subbase [29]. Then, we have the following result.

Proposition 3.2. If Γ is a filterbase in (X, τ), Γ s-converges to x if and only if Γ
converges to x in (X, τψ).

Proof. Proof is similar to that of Proposition 2 in [19].

Theorem 3.2. For a function f : X → Y , consider the following statements.
(1) f : (X, τ) → (Y, σψ) is continuous;
(2) f : (X, τ) → (Y, σψ) is precontinuous;
(3) f : (X, τ) → (Y, σ) is strongly precontinuous.

Then we have (1)⇒(2)⇒(3). Moreover if X is submaximal, then (3) implies (1),
and hence the above statements are equivalent.

Proof. (1)⇒(2)⇒(3) are obvious.
(3)⇒(1) Now suppose that X is submaximal and f : (X, τ) → (Y, σ) is strongly

precontinuous. A basic open set in σψ has the form V = ∩nk=1Bk where each
Bk ∈ SO(Y ). By strongly precontinuity of f , f−1(Bk) is preopen in X. Since X is
submaximal, f−1(V ) = ∩nk=1f

−1(Bk) is open in X.

4. More Properties

We recall that a space X is said to be extremally disconnected (e.d.) if the closure
of each open subset of X is open in X. It is shown in [15] that X is e.d. if and only
if SO(X) ⊂ PO(X). Also τα = PO(X) ∩ SO(X) [30].

Theorem 4.1. The following are equivalent for a topological space (X, τ);
(1) (X, τ) is e.d.;
(2) For every space (Y, σ), each irresolute f : (X, τ) → (Y, σ) is strongly precon-

tinuous;
(3) The identity function I : (X, τ) → (X, τ) is strongly precontinuous;
(4) τα = SO(X);
(5) For all A ⊆ X, A− Cl(Int(A)) = ∅ implies A− Int(Cl(Int(A))) = ∅;
(6) For all B ⊆ X, B − Int(Cl(Int(B)) 6= ∅ implies B − Cl(Int(B)) 6= ∅;
(7) τα = {R\E : R ∈ RC(X) and E is nowhere dense} = {R ∩D : R ∈ RC(X)

and Int(D) is dense}.
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Proof. (1)⇒(2), (2)⇒(3) and (3)⇒(1) are obvious.
(1)⇔(4) In [15].
(4)⇒(5) Let A be a subset of X. If A−Cl(Int(A)) = ∅, then A ⊆ Cl(Int(A)). By

(4), A ⊆ Int(Cl(Int(A))) and so A− Int(Cl(Int(A))) = ∅.
(5)⇒(6) This is trivial.
(6)⇒(4) It is known that τα ⊂ SO(X). We will show that the contra inclusion

is true. Suppose that U /∈ τα. Then U is not contained in Int(Cl(Int(U))). Hence
U − Int(Cl(Int(U))) 6= ∅. By (6), U − Cl(Int(U)) 6= ∅. Then we have that U is not
contained in Cl(Int(U)) and so U /∈ SO(X).

(4)⇔(7) It follows from Lemma 3.2 in [4].

Definition 4.1. A space X is said to be
(a) semi-T2 [18] (resp. pre-T2 [16]) if for each pair of distinct points x and y in

X, there exist disjoint semi-open (resp. preopen) sets U and V in X such
that x ∈ U and y ∈ V .

(b) semi compact [11] (resp. strongly compact [21]) if every semi-open (resp.
preopen) cover of X has a finite subcover.

Theorem 4.2. If f : X → Y is a strongly precontinuous injection and Y is semi-T2,
then X is pre-T2.

Proof. Let x1, x2 ∈ X and x1 6= x2. Then since f is injective and Y is semi-T2,
f(x1) 6= f(x2) and there exist V1, V2 ∈ SO(Y ) such that f(x1) ∈ V1 and f(x2) ∈ V2

and V1 ∩ V2 = ∅. Since f is strongly precontinuous, xi ∈ f−1(Vi) ∈ PO(X) for
i = 1, 2 and f−1(V1) ∩ f−1(V2) = ∅. Thus X is pre-T2.

Theorem 4.3. If f : X → Y is a strongly precontinuous surjection and X is strongly
compact, then Y is semi compact.

Proof. Let {Vα : Vα ∈ SO(Y ), α ∈ I} be a cover of Y . Since f is strongly precon-
tinuous, {f−1(Vα) : α ∈ I} is a preopen cover of X and so there is a finite subset
I0 of I such that X = ∪α∈I0f−1(Vα). Therefore, Y = ∪α∈I0Vα since f is surjective.
Thus Y is semi compact.

Theorem 4.4. [12] If f : X → Y is an irresolute injection and Y is semi-T2, then
the graph G(f) of f is semi-closed in the product space X × Y .

A space X is said to be PS-space [3] if PO(X) ⊂ SO(X).

Corollary 4.1. Let X be a PS-space. If f : X → Y is a strongly precontinuous
injection and Y is semi-T2, then the graph G(f) of f is semi-closed in the product
space X × Y .

Theorem 4.5. Let f , g : X → Y be functions. If f and g are strongly semi-
continuous and if Y is semi-T2, then A = {x ∈ X : f(x) = g(x)} is closed in
X.

Proof. Let x /∈ A, then f(x) 6= g(x). Since Y is semi-T2, there exist disjoint semi-
open sets V1 and V2 in Y such that f(x) ∈ V1 and g(x) ∈ V2. Since f and g
are strongly semi-continuous, f−1(V1) and g−1(V2) are open sets in X. Put U =
f−1(V1)∩g−1(V2). Then U is an open set with x ∈ f−1(V1)∩g−1(V2) and U ∩A = ∅
and so x /∈ Cl A. This completes the proof.
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Corollary 4.2. Let f , g : X → Y be functions. If f and g are strongly precontin-
uous, Y is semi-T2 and X is a submaximal space, then A = {x ∈ X : f(x) = g(x)}
is closed in X.

Corollary 4.3. Let f , g be strongly precontinuous from a submaximal space X into
a semi-T2 space Y . If f , g agree on a dense set of X, then f = g everywhere.

Theorem 4.6. Let f , g : X → Y be functions and Y be a semi-T2 space. If f is
strongly α-continuous and g is strongly precontinuous, then the set A = {x ∈ X :
f(x) = g(x)} is preclosed in X.

Proof. Let x /∈ A, then f(x) 6= g(x). Since Y is semi-T2, there exist disjoint semi-
open sets V1 and V2 in Y such that f(x) ∈ V1 and g(x) ∈ V2. Since f is strongly
α-continuous and g is strongly precontinuous, f−1(V1) is α-open in X and g−1(V2) ∈
PO(X). By Lemma 4.1 of [27], x ∈ f−1(V1) ∩ g−1(V2) ∈ PO(X). Put U =
f−1(V1) ∩ g−1(V2). Then U ∩ A = ∅ and so x /∈ p Cl(A). This completes the
proof.

A subset of a space X is said to be predense if its preclosure equals X.

Corollary 4.4. Let f , g : X → Y be functions and Y be a semi-T2 space. If f
is strongly α-continuous and g is strongly precontinuous, and if f , g agree on a
predense set of X, then f = g everywhere.

Theorem 4.7. If f : X → Y is a strongly precontinuous and Y is semi-T2, then
A = {(x1, x2) : f(x1) = f(x2)} is preclosed in the product space X ×X.

Proof. Let (x1, x2) /∈ A, then f(x1) 6= f(x2). Since Y is semi-T2, there exist V1,
V2 ∈ SO(Y ) such that f(x1) ∈ V1 and f(x2) ∈ V2 and V1 ∩ V2 = ∅. Since f is
strongly precontinuous, xi ∈ f−1(Vi) ∈ PO(X) for i = 1, 2. Therefore, (f−1(V1) ×
f−1(V2)) ∩ A = ∅. Since (x1, x2) ∈ (f−1(V1) × f−1(V2)) ∈ PO(X ×X), we obtain
(x1, x2) /∈ p Cl(A).

Definition 4.2. Let A be a subset of X. A mapping r : X → A is called a strongly
precontinuous retraction if r is strongly precontinuous and the restriction r |A is the
identity mapping on A.

In [24], it is shown that for a topological space (X, τ), if U ∈ SO(X) and A ∈
PO(X), then U ∩A ∈ SO(A).

Theorem 4.8. Let A be a preopen subset of X and r : X → A be a strongly
precontinuous retraction. If X is semi-T2 and e.d., then A is a preclosed set of X.

Proof. Suppose that A is not preclosed. Then there exists a point x in X such that
x ∈ p Cl(A) but x /∈ A. It follows that r(x) 6= x because r is a strongly precontinuous
retraction. Since X is semi-T2, there exist disjoint semi-open sets U and V such that
x ∈ U and r(x) ∈ V . By hypothesis, there exists a preopen set W ⊂ X containing
x such that r(W ) ⊂ V . Since X is e.d., U is an α-open set in X and by Lemma
4.1 of [27], W ∩ U is a preopen set containing x and since x ∈ p Cl(A), we have
(W ∩ U) ∩ A 6= ∅. Let y ∈ (W ∩ U) ∩ A. Then we have r(y) = y ∈ U , and hence
r(y) ∈ X −V . This shows that r(W ) is not contained in V . This is a contradiction.
Consequently, A is preclosed.
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A topological space X is said to be semipreconnected [3] or β-connected [28] (resp.
semiconnected [25], preconnected [26]) if X can not be expressed as the union of
two non-empty disjoint β-open (resp. semi-open, preopen) sets of X. It is shown
in [14] that X is semipreconnected if and only if pclV = X for each non-empty
V ∈ PO(X).

Theorem 4.9. If X is preconnected, f : X → Y is strongly precontinuous and
surjective, then Y is semiconnected.

Proof. This is clear.

Definition 4.3. The graph G(f) of a function f : X → Y is said to be p-s-closed if
for each (x, y) ∈ (X × Y )−G(f), there exist U ∈ PO(X, x) and V ∈ SO(Y, y) such
that (U × V ) ∩G(f) = ∅.

Lemma 4.1. The graph G(f) of a function f : X → Y is p-s-closed in X×Y if and
only if for each (x, y) ∈ (X×Y )−G(f), there exist U ∈ PO(X, x) and V ∈ SO(Y, y)
such that f(U) ∩ V = ∅.

Proof. It follows immediately from the definition.

Theorem 4.10. If f : X → Y is strongly precontinuous and Y is semi-T2, then the
graph G(f) of f is p-s-closed in X × Y .

Proof. Let (x, y) /∈ G(f), then y 6= f(x). Since Y is semi-T2, there exist semi-open
sets V1 and V2 containing f(x) and y, respectively, such that V1 ∩ V2 = ∅. Since
f is strongly precontinuous, there exists a preopen set U containing x such that
f(U) ⊆ V1. Therefore, f(U) ∩ V2 = ∅ and G(f) is p-s-closed in X × Y .

Definition 4.4. The graph G(f) of a function f : X → Y is said to be s-closed if for
each (x, y) ∈ (X×Y )−G(f), there exist an open set U in X, x ∈ U and V ∈ SO(Y, y)
such that (U × V ) ∩G(f) = ∅, or equivalently, if for each (x, y) ∈ (X × Y )−G(f),
there exist an open set U in X, x ∈ U and V ∈ SO(Y, y) such that f(U) ∩ V = ∅.

Let A ⊂ X. A is called semi-compact set of X [29] if every cover of A by semi-open
sets of X has a finite subcover.

Theorem 4.11. If a function f : X → Y has an s-closed graph, then f−1(K) is
closed in X for each semi-compact set K of Y

Proof. Let K be a semi-compact set of Y and x /∈ f−1(K). Then for each y ∈ K,
we have (x, y) /∈ G(f) and by s-closedness of G(f), there exist Uy ∈ O(X, x) and
Vy ∈ SO(Y, y) such that f(Uy) ∩ Vy = ∅. The family {Vy : y ∈ K} is a semi-open
cover of K and there exists a finite subset K∗ of K such that K ⊆ ∪y∈K∗Vy. Set U =
∩y∈K∗Uy. Then U is an open set containing x and f(U)∩K ⊆ ∪y∈K∗ [f(U)∩Vy] = ∅.
Therefore we have U ∩ f−1(K) = ∅ and hence x /∈ Cl(f−1(K)).

Corollary 4.5. Let X be a submaximal space. If a function f : X → Y has a
p-s-closed graph, then f−1(K) is closed in X for each semi-compact set K of Y .

Theorem 4.12. Let X be a submaximal space and Y be a semi-T2 semi compact
space. Then the following properties are equivalent.

(1) f is strongly precontinuous;
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(2) G(f) is p-s-closed in X × Y ;
(3) f is strongly semi-continuous;
(4) f is strongly α-continuous.

Proof. (1)⇒(2) This is obvious from Theorem 4.18.
(2)⇒(3) Let K be a semi-closed subset of Y . Since every semi-closed subset of a

semi compact space is semi compact [Proposition 4, [29]], f−1(K) is a closed set in
X by Corollary 4.21. This shows that f is strongly semi-continuous.

(3)⇒(4) Clear.
(4)⇒(1) Since every α-open set is preopen, this is obvious.

Theorem 4.13. Let X be semipreconnected. If f : X → Y is a strongly precontin-
uous function with a p-s-closed graph, then f is constant.

Proof. Suppose that f is not constant. Then there exist two points x and y of X
such that f(x) 6= f(y). Then we have (x, f(y)) /∈ G(f). Since G(f) is p-s-closed,
there exist U ∈ PO(X, x) and V ∈ SO(Y, f(y)) such that f(U) ∩ V = ∅; hence
U ∩ f−1(V ) = ∅. This is a contradiction with the semipreconnectedness of X.

The following corollary follows immediately from Theorem 4.18.

Corollary 4.6. If X is semipreconnected, Y is semi-T2 and f : X → Y is strongly
precontinous, then f is constant.

Definition 4.5. [22] Let X be a topological space and let A be a subset of X. The
prefrontier of A is defined by pFr(A) = p Cl(A)∩p Cl(X−A) = (p Cl(A))−(p Int(A)).

Theorem 4.14. A function f : X → Y is not strongly precontinuous at a point
x ∈ X if and only if there exist a semi-open subset V of Y such that f(x) ∈ V and
x belongs to the prefrontier of f−1(V ).

Proof. Suppose that f is not strongly precontinuous at x ∈ X. Then there exists
a semi-open set V in Y containing f(x) such that f(U) is not contained in V for
every U ∈ PO(X, x). Then U ∩ (X − f−1(V )) 6= ∅ for every U ∈ PO(X, x). Hence
x ∈ p Cl(X−f−1(V )). On the other hand, we have x ∈ f−1(V ) ⊂ p Cl(f−1(V )) and
hence x ∈ pFr(f−1(V )).

Conversely, suppose that f is strongly precontinuous at x ∈ X and let V be any
semi-open set in Y containing f(x). Then we have x ∈ f−1(V ) ∈ PO(X). Therefore,
x /∈ pFr(f−1(V )) for each semi-open sets V containing f(x). This completes the
proof.
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[7] Y. Beceren, On strongly α-continuous functions, Far East J. Math. Sci. (FJMS) 2000, Special

Volume, Part I, 51–58.

[8] Y. Beceren and T. Noiri, Strongly precontinuous functions, Acta Math. Hungar. 108(1-
2)(2005), 47–53.

[9] S. G. Crossely and S.K. Hildebrand, Semi-closure, Texas J. Sci. 22(1971), 99–112.
[10] S. G. Crossely and S.K. Hildebrand, Semi-topological properties, Fund. Math. 74(1972), 233–

254.

[11] C. Dorsett, Semi-compactness, semi-seperation axioms, and product spaces, Bull. Malaysian
Math. Soc. (2) 4(1981), 21–28.

[12] K. K. Dube, J. Y. Lee and 0. S. Panwar, A note on semiclosed graph, Ulsan Inst. Tech. Rep.

14(2)(1983), 379–383.
[13] N. El-Deeb et al., On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.)

27(75) (1983), 311–315.

[14] S. Jafari and T. Noiri, Properties of β-connected spaces, Acta Math. Hungar. 101(3)(2003),
227–236.

[15] D.S. Jankovic, On locally irreducible spaces, Ann. Soc. Sci. Bruxelles 97(1983), 59–72.

[16] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc. 82(1990),
415–422.

[17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly
70(1963), 36–41.

[18] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles

89(3)(1975), 395–407.
[19] R. A. Mahmoud, Between SMPC-functions and submaximal spaces, Indian J. Pure Appl.

Math. 32(3)(2001), 325–330.

[20] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak pre-
continuous mappings, Proc. Math. Phys. Soc. Egypt 53(1982), 47–53.

[21] A. S. Mashhour, M. E. El-Monsef, I. A. Hasanein and T. Noiri, Strongly compact spaces, Delta

J. Sci. 8(1984), 30–46.
[22] G. B. Navalagi, Pre-neighbourhoods, Math. Ed. (Siwan) 32 (1998), 201–206.

[23] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961–970.

[24] T. Noiri and B. Ahmad, A note on semi-open functions, Math. Sem. Notes, Kobe Univ.
10(1982), 437–441.

[25] V. Pipitone and G. Russo, Spazi semiconnesi e spazi semiaperti, Rend. Circ. Mat. Palermo

24(2)(1975), 273–285.
[26] V Popa, Properties of H-almost continuous functions, Bull. Math. Soc. Sci. Math. R.S.

Roumanie (NS) 31(79)(1987), 163–168.
[27] V. Popa and T. Noiri, Almost weakly continuous functions, Demonstratio Math. 25(1-2)(1992),

241–251.
[28] V. Popa and T. Noiri, Weakly β-continuous functions, An. Univ. Timişoara Ser. Mat. Inform.
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