On Strongly Precontinuous Functions

¹I. ZORLUTUNA, ²T. NOIRI, AND ³M. KÜÇÜK

¹Department of Mathematics, Faculty of Arts and Sciences, Cumhuriyet University, 58140, Sivas, Turkey ²2949-1 Shiokita-Cho, Hinagu, Yatsuhiro-Shi, Kumamoto-Ken 869-5142 Japan ³Department of Mathematics, Faculty of Sciences, Anadolu University, Eskişehir, Turkey ¹izorlu@cumhuriyet.edu.tr; ²t.noiri@nifty.com; ³mkucuk@anadolu.edu.tr

Abstract. In this paper, we give some characterizations of strongly precontinuous functions. Also we investigate some special properties of these functions.

2000 Mathematics Subject Classification: 54C08, 54D10, 54G05

Key words and phrases: Semi-open set, strong precontinuity, extremally disconnected space.

1. Introduction

Mashhour *et al.* [20] introduced the notions of preopen sets and precontinuity in topological spaces. Recently, Beceren and Noiri [8] have introduced the notion of strongly precontinuous functions and studied their properties. The purpose of the present paper is to give a set of further characterizations for these functions, to study a few invariant properties under these functions and to characterize extremally disconnected spaces using these functions.

2. Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated and $f: X \to Y$ denotes a single valued function. Let A be a subset of the space X. The closure and interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be regular open (resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A subset A is called semi-open [17] (resp. preopen [20], α -open [23], β -open [1]) if $A \subset Cl(Int(A))$ (resp. $A \subset Int(Cl(A)), A \subset Int(Cl(Int(A)))$, $A \subset Cl(Int(Cl(A)))$). The complement of a semi-open (resp. preopen) set is called semi-closed (resp. pre-closed). A point x of a space X is said to be in the preclosure [13] (resp. semi-closure [9]) of a subset A of X, denoted by pCl(A) (resp. s Cl(A))

Received: June 5, 2007; Revised: October 22, 2007.

if $A \cap U \neq \emptyset$ for every preopen (resp. semi-open) set containing x. It is known that A is preclosed if and only if $p \operatorname{Cl}(A) = A$ and A is semi-closed if and only if $s \operatorname{Cl}(A) = A$.

The family of all α -open (resp. preopen, semi-open) subsets of (X, τ) is denoted by τ^{α} (resp. PO(X), SO(X)). It is shown in [23] that τ^{α} is a topology for X. Moreover, $\tau \subset \tau^{\alpha} \subset PO(X)$. For a topological space (X, τ) , τ_p means the smallest topology on X containing PO(X) due to Andrijevic [5]. The family of semi-open (resp. preopen) sets of X containing x is denoted by SO(X, x) (resp. PO(X, x)).

Definition 2.1. A function $f : X \to Y$ is called

- (1) irresolute [10] if $f^{-1}(V)$ is semi-open in X for every semi-open set V of Y.
- (2) strongly semi-continuous [2] if $f^{-1}(V)$ is open in X for every semi-open set V of Y.
- (3) precontinuous [20] if $f^{-1}(V)$ is preopen in X for every open set V of Y.
- (4) strongly α -continuous [7] if $f^{-1}(V)$ is α -open in X for every semi-open set V of Y.

Definition 2.2. A function $f : X \to Y$ is said to be strongly precontinuous [8] if $f^{-1}(V)$ is preopen in X for every semi-open set V of Y.

Recall that a space X is called submaximal [6] if each dense subset of X is open in X.

Remark 2.1. If X is a submaximal space and $f : X \to Y$ is a function, then the following are equivalent:

- (i) f is strongly semi-continuous;
- (ii) f is strongly α -continuous;
- (iii) f is strongly precontinuous.

Theorem 2.1. [8] A function $f : X \to Y$ is strongly precontinuous if and only if for each $x \in X$ and each semi-open set V of Y containing f(x), there exists a preopen set U of X containing x such that $f(U) \subset V$.

3. Characterizations

It is shown in [19] that a space X is submaximal if and only if every preopen set of X is open.

A filterbase Γ is said to be *s*-convergent [12] (resp. *p*-convergent [19])to a point x in X, if for any semi-open (resp. preopen) set U containing x, there exists $B \in \Gamma$ such that $B \subset U$.

Proposition 3.1. [19] If Γ is a filterbase in (X, τ) , Γ p-converges to x if and only if Γ converges to x in (X, τ_p) .

Theorem 3.1. For a function $f : X \to Y$, consider the following statements.

- (1) $f: (X, \tau) \to (Y, \sigma)$ is strongly precontinuous;
- (2) $f: (X, \tau_p) \to (Y, \sigma)$ is strongly semi-continuous;
- (3) For each point $x \in X$ and each filterbase Γ in X p-converging to x, the filterbase $f(\Gamma)$ is s-convergent to f(x)

Then $(1) \Rightarrow (2) \Rightarrow (3)$. Moreover if X is submaximal, then (3) implies (1), and hence the above statements are equivalent.

Proof. $(1) \Rightarrow (2)$ Obvious.

 $(2) \Rightarrow (3)$ Suppose that $x \in X$ and Γ is any filterbase in X which p-converges to x. Let V be any semi-open set of Y with $f(x) \in V$. Since f is strongly semi-continuous, $f^{-1}(V) \in \tau_p$ and $x \in f^{-1}(V)$. Since Γ is p-convergent to x, by Proposition 3.1, then there exists $B \in \Gamma$ such that $B \subset f^{-1}(V)$. Therefore, we have $f(B) \subset V$. This shows that $f(\Gamma)$ is s-convergent to f(x).

 $(3) \Rightarrow (1)$ Now suppose that X is submaximal. Let x be a point in X and V be any semi-open set containing f(x). Since X is submaximal, every preopen set is open. If we set $\Gamma = \{U \in PO(X) : x \in U\}$, then Γ will be a filterbase which p-converges to x. So there exists U in Γ such that $f(U) \subset V$. This completes the proof.

Let (Y, σ) be a topological space. σ_{ψ} denotes the topology on Y which has SO(Y) as a subbase [29]. Then, we have the following result.

Proposition 3.2. If Γ is a filterbase in (X, τ) , Γ s-converges to x if and only if Γ converges to x in (X, τ_{ψ}) .

Proof. Proof is similar to that of Proposition 2 in [19].

Theorem 3.2. For a function $f : X \to Y$, consider the following statements.

- (1) $f: (X, \tau) \to (Y, \sigma_{\psi})$ is continuous;
- (2) $f: (X, \tau) \to (Y, \sigma_{\psi})$ is precontinuous;
- (3) $f: (X, \tau) \to (Y, \sigma)$ is strongly precontinuous.

Then we have $(1) \Rightarrow (2) \Rightarrow (3)$. Moreover if X is submaximal, then (3) implies (1), and hence the above statements are equivalent.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (1)$ Now suppose that X is submaximal and $f: (X, \tau) \to (Y, \sigma)$ is strongly precontinuous. A basic open set in σ_{ψ} has the form $V = \bigcap_{k=1}^{n} B_k$ where each $B_k \in SO(Y)$. By strongly precontinuity of $f, f^{-1}(B_k)$ is preopen in X. Since X is submaximal, $f^{-1}(V) = \bigcap_{k=1}^{n} f^{-1}(B_k)$ is open in X.

4. More Properties

We recall that a space X is said to be extremally disconnected (e.d.) if the closure of each open subset of X is open in X. It is shown in [15] that X is e.d. if and only if $SO(X) \subset PO(X)$. Also $\tau^{\alpha} = PO(X) \cap SO(X)$ [30].

Theorem 4.1. The following are equivalent for a topological space (X, τ) ;

- (1) (X, τ) is e.d.;
- (2) For every space (Y, σ) , each irresolute $f : (X, \tau) \to (Y, \sigma)$ is strongly precontinuous:
- (3) The identity function $I: (X, \tau) \to (X, \tau)$ is strongly precontinuous;
- (4) $\tau^{\alpha} = SO(X);$
- (5) For all $A \subseteq X$, $A \operatorname{Cl}(\operatorname{Int}(A)) = \emptyset$ implies $A \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A))) = \emptyset$;
- (6) For all $B \subseteq X$, $B \text{Int}(\text{Cl}(\text{Int}(B)) \neq \emptyset$ implies $B \text{Cl}(\text{Int}(B)) \neq \emptyset$;
- (7) $\tau^{\alpha} = \{R \setminus E : R \in RC(X) \text{ and } E \text{ is nowhere dense}\} = \{R \cap D : R \in RC(X) \text{ and } Int(D) \text{ is dense}\}.$

Proof. $(1) \Rightarrow (2), (2) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ are obvious. $(1) \Leftrightarrow (4)$ In [15].

 $(4) \Rightarrow (5)$ Let A be a subset of X. If $A - \operatorname{Cl}(\operatorname{Int}(A)) = \emptyset$, then $A \subseteq \operatorname{Cl}(\operatorname{Int}(A))$. By (4), $A \subseteq \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))$ and so $A - \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A))) = \emptyset$.

 $(5) \Rightarrow (6)$ This is trivial.

 $(6) \Rightarrow (4)$ It is known that $\tau^{\alpha} \subset SO(X)$. We will show that the contra inclusion is true. Suppose that $U \notin \tau^{\alpha}$. Then U is not contained in Int(Cl(Int(U))). Hence $U - Int(Cl(Int(U))) \neq \emptyset$. By (6), $U - Cl(Int(U)) \neq \emptyset$. Then we have that U is not contained in Cl(Int(U)) and so $U \notin SO(X)$.

 $(4) \Leftrightarrow (7)$ It follows from Lemma 3.2 in [4].

Definition 4.1. A space X is said to be

(a) semi- T_2 [18] (resp. pre- T_2 [16]) if for each pair of distinct points x and y in X, there exist disjoint semi-open (resp. preopen) sets U and V in X such that $x \in U$ and $y \in V$.

(b) semi compact [11] (resp. strongly compact [21]) if every semi-open (resp. preopen) cover of X has a finite subcover.

Theorem 4.2. If $f : X \to Y$ is a strongly precontinuous injection and Y is semi- T_2 , then X is pre- T_2 .

Proof. Let $x_1, x_2 \in X$ and $x_1 \neq x_2$. Then since f is injective and Y is semi- T_2 , $f(x_1) \neq f(x_2)$ and there exist $V_1, V_2 \in SO(Y)$ such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Since f is strongly precontinuous, $x_i \in f^{-1}(V_i) \in PO(X)$ for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus X is pre- T_2 .

Theorem 4.3. If $f : X \to Y$ is a strongly precontinuous surjection and X is strongly compact, then Y is semi compact.

Proof. Let $\{V_{\alpha} : V_{\alpha} \in SO(Y), \alpha \in I\}$ be a cover of Y. Since f is strongly precontinuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a preopen cover of X and so there is a finite subset I_0 of I such that $X = \bigcup_{\alpha \in I_0} f^{-1}(V_{\alpha})$. Therefore, $Y = \bigcup_{\alpha \in I_0} V_{\alpha}$ since f is surjective. Thus Y is semi compact.

Theorem 4.4. [12] If $f : X \to Y$ is an irresolute injection and Y is semi-T₂, then the graph G(f) of f is semi-closed in the product space $X \times Y$.

A space X is said to be PS-space [3] if $PO(X) \subset SO(X)$.

Corollary 4.1. Let X be a PS-space. If $f : X \to Y$ is a strongly precontinuous injection and Y is semi-T₂, then the graph G(f) of f is semi-closed in the product space $X \times Y$.

Theorem 4.5. Let $f, g : X \to Y$ be functions. If f and g are strongly semicontinuous and if Y is semi- T_2 , then $A = \{x \in X : f(x) = g(x)\}$ is closed in X.

Proof. Let $x \notin A$, then $f(x) \neq g(x)$. Since Y is semi- T_2 , there exist disjoint semiopen sets V_1 and V_2 in Y such that $f(x) \in V_1$ and $g(x) \in V_2$. Since f and g are strongly semi-continuous, $f^{-1}(V_1)$ and $g^{-1}(V_2)$ are open sets in X. Put $U = f^{-1}(V_1) \cap g^{-1}(V_2)$. Then U is an open set with $x \in f^{-1}(V_1) \cap g^{-1}(V_2)$ and $U \cap A = \emptyset$ and so $x \notin Cl A$. This completes the proof.

188

Corollary 4.2. Let $f, g: X \to Y$ be functions. If f and g are strongly precontinuous, Y is semi- T_2 and X is a submaximal space, then $A = \{x \in X : f(x) = g(x)\}$ is closed in X.

Corollary 4.3. Let f, g be strongly precontinuous from a submaximal space X into a semi- T_2 space Y. If f, g agree on a dense set of X, then f = g everywhere.

Theorem 4.6. Let $f, g: X \to Y$ be functions and Y be a semi-T₂ space. If f is strongly α -continuous and g is strongly precontinuous, then the set $A = \{x \in X : f(x) = g(x)\}$ is preclosed in X.

Proof. Let $x \notin A$, then $f(x) \neq g(x)$. Since Y is semi- T_2 , there exist disjoint semiopen sets V_1 and V_2 in Y such that $f(x) \in V_1$ and $g(x) \in V_2$. Since f is strongly α -continuous and g is strongly precontinuous, $f^{-1}(V_1)$ is α -open in X and $g^{-1}(V_2) \in$ PO(X). By Lemma 4.1 of [27], $x \in f^{-1}(V_1) \cap g^{-1}(V_2) \in PO(X)$. Put U = $f^{-1}(V_1) \cap g^{-1}(V_2)$. Then $U \cap A = \emptyset$ and so $x \notin p \operatorname{Cl}(A)$. This completes the proof.

A subset of a space X is said to be predense if its preclosure equals X.

Corollary 4.4. Let $f, g: X \to Y$ be functions and Y be a semi-T₂ space. If f is strongly α -continuous and g is strongly precontinuous, and if f, g agree on a predense set of X, then f = g everywhere.

Theorem 4.7. If $f : X \to Y$ is a strongly precontinuous and Y is semi-T₂, then $A = \{(x_1, x_2) : f(x_1) = f(x_2)\}$ is preclosed in the product space $X \times X$.

Proof. Let $(x_1, x_2) \notin A$, then $f(x_1) \neq f(x_2)$. Since Y is semi- T_2 , there exist V_1 , $V_2 \in SO(Y)$ such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Since f is strongly precontinuous, $x_i \in f^{-1}(V_i) \in PO(X)$ for i = 1, 2. Therefore, $(f^{-1}(V_1) \times f^{-1}(V_2)) \cap A = \emptyset$. Since $(x_1, x_2) \in (f^{-1}(V_1) \times f^{-1}(V_2)) \in PO(X \times X)$, we obtain $(x_1, x_2) \notin p\operatorname{Cl}(A)$.

Definition 4.2. Let A be a subset of X. A mapping $r : X \to A$ is called a strongly precontinuous retraction if r is strongly precontinuous and the restriction $r \mid_A$ is the identity mapping on A.

In [24], it is shown that for a topological space (X, τ) , if $U \in SO(X)$ and $A \in PO(X)$, then $U \cap A \in SO(A)$.

Theorem 4.8. Let A be a preopen subset of X and $r : X \to A$ be a strongly precontinuous retraction. If X is semi-T₂ and e.d., then A is a preclosed set of X.

Proof. Suppose that A is not preclosed. Then there exists a point x in X such that $x \in p \operatorname{Cl}(A)$ but $x \notin A$. It follows that $r(x) \neq x$ because r is a strongly precontinuous retraction. Since X is semi- T_2 , there exist disjoint semi-open sets U and V such that $x \in U$ and $r(x) \in V$. By hypothesis, there exists a preopen set $W \subset X$ containing x such that $r(W) \subset V$. Since X is e.d., U is an α -open set in X and by Lemma 4.1 of [27], $W \cap U$ is a preopen set containing x and since $x \in p \operatorname{Cl}(A)$, we have $(W \cap U) \cap A \neq \emptyset$. Let $y \in (W \cap U) \cap A$. Then we have $r(y) = y \in U$, and hence $r(y) \in X - V$. This shows that r(W) is not contained in V. This is a contradiction. Consequently, A is preclosed.

A topological space X is said to be semipreconnected [3] or β -connected [28] (resp. semiconnected [25], preconnected [26]) if X can not be expressed as the union of two non-empty disjoint β -open (resp. semi-open, preopen) sets of X. It is shown in [14] that X is semipreconnected if and only if pclV = X for each non-empty $V \in PO(X)$.

Theorem 4.9. If X is preconnected, $f : X \to Y$ is strongly precontinuous and surjective, then Y is semiconnected.

Proof. This is clear.

Definition 4.3. The graph G(f) of a function $f : X \to Y$ is said to be p-s-closed if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in PO(X, x)$ and $V \in SO(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 4.1. The graph G(f) of a function $f : X \to Y$ is p-s-closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in PO(X, x)$ and $V \in SO(Y, y)$ such that $f(U) \cap V = \emptyset$.

Proof. It follows immediately from the definition.

Theorem 4.10. If $f : X \to Y$ is strongly precontinuous and Y is semi-T₂, then the graph G(f) of f is p-s-closed in $X \times Y$.

Proof. Let $(x, y) \notin G(f)$, then $y \neq f(x)$. Since Y is semi- T_2 , there exist semi-open sets V_1 and V_2 containing f(x) and y, respectively, such that $V_1 \cap V_2 = \emptyset$. Since f is strongly precontinuous, there exists a preopen set U containing x such that $f(U) \subseteq V_1$. Therefore, $f(U) \cap V_2 = \emptyset$ and G(f) is p-s-closed in $X \times Y$.

Definition 4.4. The graph G(f) of a function $f: X \to Y$ is said to be s-closed if for each $(x, y) \in (X \times Y) - G(f)$, there exist an open set U in $X, x \in U$ and $V \in SO(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$, or equivalently, if for each $(x, y) \in (X \times Y) - G(f)$, there exist an open set U in $X, x \in U$ and $V \in SO(Y, y)$ such that $f(U) \cap V = \emptyset$.

Let $A \subset X$. A is called semi-compact set of X [29] if every cover of A by semi-open sets of X has a finite subcover.

Theorem 4.11. If a function $f : X \to Y$ has an s-closed graph, then $f^{-1}(K)$ is closed in X for each semi-compact set K of Y

Proof. Let K be a semi-compact set of Y and $x \notin f^{-1}(K)$. Then for each $y \in K$, we have $(x, y) \notin G(f)$ and by s-closedness of G(f), there exist $U_y \in O(X, x)$ and $V_y \in SO(Y, y)$ such that $f(U_y) \cap V_y = \emptyset$. The family $\{V_y : y \in K\}$ is a semi-open cover of K and there exists a finite subset K_* of K such that $K \subseteq \bigcup_{y \in K_*} V_y$. Set $U = \bigcap_{y \in K_*} U_y$. Then U is an open set containing x and $f(U) \cap K \subseteq \bigcup_{y \in K_*} [f(U) \cap V_y] = \emptyset$. Therefore we have $U \cap f^{-1}(K) = \emptyset$ and hence $x \notin Cl(f^{-1}(K))$.

Corollary 4.5. Let X be a submaximal space. If a function $f : X \to Y$ has a p-s-closed graph, then $f^{-1}(K)$ is closed in X for each semi-compact set K of Y.

Theorem 4.12. Let X be a submaximal space and Y be a semi- T_2 semi compact space. Then the following properties are equivalent.

(1) f is strongly precontinuous;

- (2) G(f) is p-s-closed in $X \times Y$;
- (3) f is strongly semi-continuous;
- (4) f is strongly α -continuous.

Proof. $(1) \Rightarrow (2)$ This is obvious from Theorem 4.18.

 $(2) \Rightarrow (3)$ Let K be a semi-closed subset of Y. Since every semi-closed subset of a semi compact space is semi compact [Proposition 4, [29]], $f^{-1}(K)$ is a closed set in X by Corollary 4.21. This shows that f is strongly semi-continuous.

 $(3) \Rightarrow (4)$ Clear.

(4) \Rightarrow (1) Since every α -open set is preopen, this is obvious.

Theorem 4.13. Let X be semipreconnected. If $f : X \to Y$ is a strongly precontinuous function with a p-s-closed graph, then f is constant.

Proof. Suppose that f is not constant. Then there exist two points x and y of X such that $f(x) \neq f(y)$. Then we have $(x, f(y)) \notin G(f)$. Since G(f) is p-s-closed, there exist $U \in PO(X, x)$ and $V \in SO(Y, f(y))$ such that $f(U) \cap V = \emptyset$; hence $U \cap f^{-1}(V) = \emptyset$. This is a contradiction with the semipreconnectedness of X.

The following corollary follows immediately from Theorem 4.18.

Corollary 4.6. If X is semipreconnected, Y is semi- T_2 and $f: X \to Y$ is strongly precontinous, then f is constant.

Definition 4.5. [22] Let X be a topological space and let A be a subset of X. The prefrontier of A is defined by $pFr(A) = p \operatorname{Cl}(A) \cap p \operatorname{Cl}(X-A) = (p \operatorname{Cl}(A)) - (p \operatorname{Int}(A))$.

Theorem 4.14. A function $f : X \to Y$ is not strongly precontinuous at a point $x \in X$ if and only if there exist a semi-open subset V of Y such that $f(x) \in V$ and x belongs to the prefrontier of $f^{-1}(V)$.

Proof. Suppose that f is not strongly precontinuous at $x \in X$. Then there exists a semi-open set V in Y containing f(x) such that f(U) is not contained in V for every $U \in PO(X, x)$. Then $U \cap (X - f^{-1}(V)) \neq \emptyset$ for every $U \in PO(X, x)$. Hence $x \in p \operatorname{Cl}(X - f^{-1}(V))$. On the other hand, we have $x \in f^{-1}(V) \subset p \operatorname{Cl}(f^{-1}(V))$ and hence $x \in pFr(f^{-1}(V))$.

Conversely, suppose that f is strongly precontinuous at $x \in X$ and let V be any semi-open set in Y containing f(x). Then we have $x \in f^{-1}(V) \in PO(X)$. Therefore, $x \notin pFr(f^{-1}(V))$ for each semi-open sets V containing f(x). This completes the proof.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12(1983), 77–90.
- [2] M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, Strongly semi-continuous functions, Arab J. Math. 11(1990).
- [3] T. Aho and T. Nieminen, Spaces in which preopen subsets are semiopen, *Ricerche Mat.* 43(1994), 45–59.
- [4] B. Al-Nashef, A decomposition of α-continuity and semi-continuity, Acta Math. Hungar. 97(1-2)(2002), 115–120.
- [5] D. Andrijevic, On the topology generated by preopen sets, Mat. Vesnik 39 (1987), 367-376.
- [6] N. Baurbaki, General Topology, Part I, Adison-Wesley Publishing Company, 1966.

- [7] Y. Beceren, On strongly α-continuous functions, Far East J. Math. Sci. (FJMS) 2000, Special Volume, Part I, 51–58.
- [8] Y. Beceren and T. Noiri, Strongly precontinuous functions, Acta Math. Hungar. 108(1-2)(2005), 47–53.
- [9] S. G. Crossely and S.K. Hildebrand, Semi-closure, Texas J. Sci. 22(1971), 99–112.
- [10] S. G. Crossely and S.K. Hildebrand, Semi-topological properties, Fund. Math. 74(1972), 233– 254.
- [11] C. Dorsett, Semi-compactness, semi-seperation axioms, and product spaces, Bull. Malaysian Math. Soc. (2) 4(1981), 21–28.
- [12] K. K. Dube, J. Y. Lee and O. S. Panwar, A note on semiclosed graph, Ulsan Inst. Tech. Rep. 14(2)(1983), 379–383.
- [13] N. El-Deeb et al., On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 27(75) (1983), 311–315.
- [14] S. Jafari and T. Noiri, Properties of β-connected spaces, Acta Math. Hungar. 101(3)(2003), 227–236.
- [15] D.S. Jankovic, On locally irreducible spaces, Ann. Soc. Sci. Bruxelles 97(1983), 59–72.
- [16] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc. 82(1990), 415–422.
- [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36–41.
- [18] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles 89(3)(1975), 395–407.
- [19] R. A. Mahmoud, Between SMPC-functions and submaximal spaces, Indian J. Pure Appl. Math. 32(3)(2001), 325–330.
- [20] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Equpt 53(1982), 47–53.
- [21] A. S. Mashhour, M. E. El-Monsef, I. A. Hasanein and T. Noiri, Strongly compact spaces, *Delta J. Sci.* 8(1984), 30–46.
- [22] G. B. Navalagi, Pre-neighbourhoods, Math. Ed. (Siwan) 32 (1998), 201–206.
- [23] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961–970.
- [24] T. Noiri and B. Ahmad, A note on semi-open functions, Math. Sem. Notes, Kobe Univ. 10(1982), 437–441.
- [25] V. Pipitone and G. Russo, Spazi semiconnesi e spazi semiaperti, Rend. Circ. Mat. Palermo 24(2)(1975), 273–285.
- [26] V Popa, Properties of H-almost continuous functions, Bull. Math. Soc. Sci. Math. R.S. Roumanie (NS) 31(79)(1987), 163–168.
- [27] V. Popa and T. Noiri, Almost weakly continuous functions, Demonstratio Math. 25(1-2)(1992), 241–251.
- [28] V. Popa and T. Noiri, Weakly β-continuous functions, An. Univ. Timişoara Ser. Mat. Inform. 32(1994), 83–92.
- [29] I. L. Reilly and M. K. Vamanamurthy, On semi compact spaces, Bull. Malaysian Math. Soc. (2) 7(1984), 61–67.
- [30] I. L. Reilly and M. K. Vamanamurthy, On some questions concerning preopen sets. Kyungpook Math. J. 30(1)(1990), 87–93.