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1. Introduction

Let H(U) be the class of functions analytic in U := {z € C : |z| < 1} and H][a, n]
be the subclass of H(U) consisting of functions f(2) = a + anz"™ + apy12" ™+,
with H = H[1,1]. Let f and F be members of H(U). The function f is said to be
subordinate to F', or F is superordinate to f, if there exists a function w analytic
in U with w(0) = 0 and |w(z)| < 1 (2 € U), such that f(z) = F(w(z)). In such
a case we write f(z) < F(z). If F is univalent, then f(z) < F'(z) is equivalent to
f(0) = F(0) and f(U) C F(U). Denote by Q the set of all functions ¢ that are
analytic and injective on U \ E(q) where

E(q)={¢edU: linzq(Z) = oo},
and are such that ¢/(¢) # 0 for ¢ € OU \ E(q). Further let the subclass of Q for

which ¢(0) = a be denoted by Q(a) and O(1) = O;.
The following classes of admissible functions will be required.

Definition 1.1. [17, Definition 2.3a, p. 27] Let Q be a set in C, ¢ € Q and n
be a positive integer. The class of admissible functions ¥,,[Q,q| consists of those
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functions ¢ : C3 x U — C that satisfy the admissibility condition (r,s,t;2) ¢ Q
whenever r = q(¢), s = k(¢ (¢), and
t ¢q" (<) }
RS-+ 1} > k?R{ + 1,
{8 q'(¢)
z€U, (€dU\ E(q) and k > n. We write U1[Q, q] as ¥[Q,q].

In particular, if
Mz+a
= Mi
q(2) Vs
then ¢(U) = Uy :={w : lw| < M}, ¢(0) =a, E(q) =0 and ¢ € Q(a). In this case,
we set U, [Q, M, a] := ¥,[Q,q], and in the special case when the set = Uy, the
class is simply denoted by ¥,,[M, al.

Definition 1.2. [18, Definition 3, p. 817] Let Q be a set in C, q € Hla,n] with
qd'(z) # 0. The class of admissible functions V! [, q] consists of those functions
Y : C* x U — C that satisfy the admissibility condition ) (r,s,t;¢) € Q whenever
r=gq(z),s = z¢' (z)/m, and

s

z€U, (€U and m >n > 1. In particular, we write W[, q] as V'[Q,q].

(M >0, |a] < M),

For the above two classes of admissible functions, Miller and Mocanu proved the
following theorems.

Theorem 1.1. [17, Theorem 2.3b, p. 28] Let ¢p € U,[Q, q] with q(0) = a. If the
analytic function p(z) = a + apz™ + apy12" T + - satisfies

D(p(2), 2 (2), 2°p" (2);2) € Q,
then p(z) < q(2).

Theorem 1.2. [18, Theorem 1, p. 818] Let ¢ € U/ [, q] with q(0) = a. If p € Q(a)
and P(p(2), zp'(2), 220" (2); 2) is univalent in U, then

Q C {p(p(2), 20 (2), 2°p" (2); 2) : 2 € U}
implies q(z) < p(z).
For a fixed p € N:= {1,2,---}, let ¥, denote the class of all p-valent functions

of the form

1 oo
(1.1) f@)==+ > azt (zeU":={zeC:0<|z|<1}).

z k=1-p
For two functions f given by (1.1) and g given by

1 oo
g(Z) = ; + Z bkzkv
k=1-p
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the Hadamard product (or convolution) of f and g is defined by

(P9 = 5+ D abis = (g ))(2)

k=1—p
For aj € C (j =1,2,---,1) and B € C\ {0,-1,-2,---} (k = 1,2,---m), the
generalized hypergeometric function | Fy,(aq, -+ a3 51, , Bm; 2) is defined by the

infinite series

B i) e S o)k () 2
lFm(ala 7ala617 7ﬂmvz) = ];) (ﬁl)k (ﬁm)k k!

(I<m+1;l,meNy:={0,1,2,---}),
where (a),, is the Pochhammer symbol given by
@, . Datn) _ { 1 (n = 0);
['(a) ala+1)(a+2)...(a+n—-1), (neN).
Corresponding to the function
hp(ar, -+ s Brye o By z) =277 Finplan, -+ saus Buy -, B 2),
the Liu-Srivastava operator [15, 16] HI(,l’m) (a1, o B1, - Bm) © By — By I8
defined by the Hadamard product
H™ (o, 003 81,5 Bm) f(2) = hplan, -+ i 81, Bmi 2) * f(2)
(@1)ktp - - - () k4p agz®

1
- o z; (B krp - (Bm)rsp (B + )

k=1—p

For convenience, we write
H},’m[al}f(z) = H1§Z7m)(a17 cear By Bm) f(2)-

Special cases of the Liu-Srivastava linear operator include the meromorphic analogue
of the Carlson-Shaffer linear operator £,(a,c) := ,(;2’1)(1, a;c) (studied among oth-
ers by Liu and Srivastava [13], Liu [14], and Yang [23]), the operator D"+ :=
L,(n+p,1), which is analogous to the Ruscheweyh derivative operator (investigated

by Yang [22]), and the operator

c
2P

Jop = / (0t = Lo(ee+1) (¢> 0)
0

(studied by Uralegaddi and Somanatha [21]). Tt is to be noted that the Liu-Srivastava
operator investigated in [10, 19, 20] is the meromorphic analogue of the Dziok-
Srivastava [9] linear operator.

Aghalary et al. [1, 2], Ali et al. [3, 4, 5, 6], Aouf and Hossen [8] and Kim and
Srivastava [11] obtained sufficient conditions for certain differential subordination
implications to hold. In particular, Liu and Owa [12] investigated a subordination
problem for meromorphic functions defined through a linear operator D™; in fact,
they have determined a class of admissible functions so that

’h< D"f(z) D""f(2) D"“f(Z)) D" f(z)
Dr=1f(z)" Df(z) " D1 f(2) Dr=1f(z)

<1:‘
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In the present investigation, by making use of the differential subordination and
superordination results of Miller and Mocanu [17, Theorem 2.3b, p. 28] and [18,
Theorem 1, p. 818], certain classes of admissible functions are determined so that
subordination as well as superordination implications of functions associated with
the Liu-Srivastava linear operator H,™ hold. Ali et al. [7] have considered a similar
problem for the multiplier transformation on meromorphic functions. Additionally,
several new differential sandwich-type results are obtained.

2. Subordination of the Liu-Srivastava linear operator
The following class of admissible functions is required in our first result.

Definition 2.1. Let Q2 be a set in C and q(z) € Q1 N'H. The class of admissible
functions ®5[Q,q] consists of those functions ¢ : C> x U — C that satisfy the
admissibility condition

d(u,v,w; 2) & Q
whenever
U:q<<), v = qu (C)Oj; alQ(C), (al EC, a; #0,—1)
(1 +1)(w —w) ¢q"(¢)
%{ Dt (2a1+1>} zk?}e{ o +1},

z€U, €U\ E(q) and k > 1.
Theorem 2.1. Let ¢ € ®y[Q,q]. If f € £, satisfies

{o(H [n] £(2)2 Hy o + 1] £(2),

(2.1) sz]l;m[Ozl + 2]f(z),z> P2 € U} c i

then
P H ™ [on]f(2) < q(2).

Proof. Define the analytic function p in U by

(2.2) p(z) = 2P Hy " [oa] f (2).

In view of the relation

(23)  anHy™[on +1]f(2) = 2[Hy " [en] f(2)] + (a1 +p) Hy ™ [en] f(2),
it follows from (2.2) that

(2.4) PHE 0+ 11£(2) = o [aaplz) + 20/(2).

Further computations show that
1
2.5 PH Y™ 0 42 227[22”2—1—2(1 —l—lz’z}—&— z).
(25) 57l +2(2) = s [9(2) + 2o + D2/ ()] +(2)
Define the transformations from C? to C by
u(r, s, t) =,
ar+ s

(2.6) v(r, s, t) = o
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t+2(a; + 1)s+ai(ag + )r

5 7t -
w(r, s,t) (o T D)
Let
P(r, s,t;2) == d(u, v, w; 2)
(2.7) ( arr+s t+2(ar + s+ aj(a + 1)r >
= ¢ T, ) ; .
a1 ar(ag + 1)

The proof will make use of Theorem 1.1. Using equations (2.2), (2.4) and (2.5), it
follows from (2.7) that

P(p(2),20'(2), 2°p"(2); 2)
= ¢ (PHy™ o] f(2), 2" Hy™ [ + 1] f(2), 2P Hy ™ [on + 2] f(2); 2) -

Hence (2.1) becomes

(2.8)

b(p(2), 2/ (2), 20" (2); 2) € Q.
The proof is completed if it can be shown that the admissibility condition for ¢ €
D[, q] is equivalent to the admissibility condition for ¢ as given in Definition 1.1.
Note that . )
ap+ 1)(w—u
,4_1:(1)#_(20[1_&_1)7
s v—u

and hence ¢ € ¥[Q, q]. By Theorem 1.1, p(z) < ¢(z) or

2 Hy™ [en] f(2) < q(2). I

If Q # C is a simply connected domain, then 2 = h(U) for some conformal map
h(z) of U onto Q. In this case the class ®y[h(U),q] is written as ®g[h,q]. The
following result is an immediate consequence of Theorem 2.1.

Theorem 2.2. Let ¢ € ®ylh,q] with ¢(0) = 1. If f € ¥, satisfies
(2.9) ¢ (PHY™[au]f(2), 2P Hy ™ [on +1]f(2), 2P HY ™ o + 2] f(2); 2) < h(2),
then

P HY ] f(2) < q(2).

Our next result is an extension of Theorem 2.1 to the case where the behavior of
q(z) on QU is not known.

Corollary 2.1. Let Q C C and let q(z) be univalent in U, q(0) = 1. Let ¢ €
D[, q,] for some p € (0,1) where q,(z) = q(pz). If f € X, and
0] (szZl,’m[al]f(z), szll,’m[al + l]f(z),szZl;m[al +2]f(2);2) € Q,
then
PH™ o] f(2) < q(2)-

Proof. Theorem 2.1 yields sz]lg7m[a1]f(z) ~< ¢p(%). The result is now deduced from
qp(2) < q(2). 1
Theorem 2.3. Let h(z) and q(z) be univalent in U, with ¢(0) =1 and set q,(z) =
q(pz) and h,(z) = h(pz). Let ¢ : C3 x U — C satisfy one of the following conditions:

(1) ¢ € ®ylh,q,), for some p € (0,1), or
(2) there exists po € (0,1) such that ¢ € ®rlh,,q,], for all p € (po,1).
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If f € £, satisfies (2.9), then
ZHy™on]f(2) < q(2).
Proof. The result is similar to the proof of [17, Theorem 2.3d, p. 30] and is therefore

omitted. 1
The next theorem yields the best dominant of the differential subordination (2.9).

Theorem 2.4. Let h(z) be univalent in U, and ¢ : C3 x U — C. Suppose the
differential equation

(210) & (p<z>, ORECE p'/(z);foffj)”zf"(” (e ) — h(2)

has a solution q(z) with q(0) = 1, and satisfy one of the following conditions:

(1) q(2) € Q1 and ¢ € ®y(h,q|
(2) q(2) is univalent in U and ¢ € ®glh,q,], for some p € (0,1), or
(3) q(z) is univalent in U and there exists po € (0,1) such that ¢ € ®glh,,q,),
for all p € (po,1).
If f € £, satisfies (2.9), then

PHY™ o] f(2) < 4(2),

and q(z) is the best dominant.

Proof. Following the same arguments in [17, Theorem 2.3e, p. 31], we deduce that
q(z) is a dominant from Theorems 2.2 and 2.3. Since ¢(z) satisfies (2.10), it is also a
solution of (2.9) and therefore ¢(z) will be dominated by all dominants. Hence ¢(z)
is the best dominant. 1

In the particular case ¢(z) =1+ Mz, M > 0, and in view of Definition 2.1, the
class of admissible functions ®g[, ¢], denoted by @[, M], can be expressed in
the following form:

Definition 2.2. Let Q) be a set in C and M > 0. The class of admissible functions
O [Q, M| consists of those functions ¢ : C> x U — C such that

211) & (1 e g Rty e L (2k + a;)(1 +o<1)Mei9.Z> ‘o
' ’ a1 ’ 041(1+011) ’

whenever z € U, § e R, R (Le*w) > (k—1)kM for all real 8, oy € C (a7 #0,—1)
and k > 1.

Corollary 2.2. Let ¢ € Dy [Q, M. If f € ¥, satisfies
& (P HE™ o] (=), 2 HE™ [ + 1]£(2), 27 HE™ [y + 2] (2); 2) € 2,

then
|2PHY™ [an] f(2) — 1] < M.

In the special case Q@ = q(U) = {w : |w — 1| < M}, the class @[, M] is simply
denoted by @ [M]. Corollary 2.2 can now be written in the following form:
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Corollary 2.3. Let ¢ € ®y[M]. If f € ¥, satisfies
| (szIl;m[al]f(z), szZl;m[al + 1] f(2), sz]f;m[al +2]f(2);2) — 1| < M,

then

|2PHL™ [an] f(z) — 1] < M.
Corollary 2.4. If Ray > —1/2 and f € ¥, satisfies

|szIl,’m[a1 +1]f(z) — 1] < M,

then

|szzl,’m[a1]f(z) -1 < M.
Proof. This follows from Corollary 2.3 by taking ¢(u, v, w; z) = v. 1
Corollary 2.5. Let M >0 and 0 # oy € C. If f € X, satisfies

M

—, then |2PHL™[aq]f(2) — 1] < M.
|| ?

Proof. Let ¢(u,v,w;z) = v —u and Q = h(U) where h(z) = aﬂlz, M > 0. To
use Corollary 2.2, we need to show that ¢ € @[, M], that is, the admissibility
condition (2.11) is satisfied. This follows since

k+a; L+ (2k + a1)(1 + ay)Me'? )

1+ M 1+ 22— Me? 1+ :
(b( o 061(14—041)

|szZl;m[a1 +1)f(z) — szzl;m[al]f(z)| <

kM M
= —_— 2 —_—
ln| ™ o]

whenever z € U, § € R, a; € C (a7 #0,—1), and k > 1. The required result now
follows from Corollary 2.2.
Theorem 2.4 shows that the result is sharp. The differential equation

zq'(z M
E) M (o] < M)
(65} (65}
has a univalent solution ¢(z) = 1+ Mz. It follows from Theorem 2.4 that ¢(z)
14 Mz is the best dominant.

Next, let us note that

HEPV(LL1)f(z) = [(2)
HPYR, 150 f(2) = 2f'(2) + (1 +p)f(2)
]1(1()2,1)(37 L1)f(z) = %[zzf”(z) +2(p+2)z2f'(2)+ (p+ D(p+2)f(2)].

By taking Il =2, m =1, ay = ag = 31 = 1, Corollary 2.5 shows that for f € X,
if  2P[zf'(2) + pf(2)] < Mz, then 2Pf(z) <1+ Mz.
Definition 2.3. Let 2 be a set in C and q(z) € Q1 N'H. The class of admissible

functions ®p1[Q,q] consists of those functions ¢ : C* x U — C that satisfy the
admissibility condition

P(u, v, w;2) ¢ Q
whenever
U = q(C)v U= oy ¥ 1 (1 + 011(](0 + ki%g()<)> ) (al € (C7 aq 7é Oa _17 _21 Q(C) 7é 0)7
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(1+a)v](ag +2)w—1— (14 ay)v)]
%{ (1+anv— (1 +aru) +(1+a)u—(1 +2a1u>}

20 G )

z€U, (€0U\ E(q) and k> 1.
Theorem 2.5. Let ¢ € @y 1[Q,q]. If f € Z, satisfies
{gb(H;l{m[Oél‘f'l]f( z) H™[ar +2]f(2)

[ ]
l,m l,m
(2.12) Hp™[a1]f(2) H;lvm[al +1]f(z)
H;m[al + 3]f(z),z> 1z € U} c Q,
Hp™ a1 +2]f(z)
then

Hy™ o +1]f(2)

Hy™on] f(2)
Proof. Define the analytic function p in U by
HY™ o + 11f(2)

2.13 z) =
(219) P T 1)
Then
o 6) A U )
p(z) H ’m[Oq +1]f () Hp’m[aﬂf(z)
By making use of (2.3) in (2.14), it follows that
Hrla 2/ 1 ()
(2.15) ey 1 107() o111 ( w(z) +1+ ) )

Differentiating logarithmically (2.15), further computations show that

HY™ oy +3 1 '
,;m[al 1) 2+ aup(z) + 2 (2)
H)™ay +2)f(z)  a1+2 p(2)
(2.16) o (= o (=
kA - G+ )>
1 onp(e) + 55

Define the transformations from C3 to C by

1
u=r, v= (1—&-a17“-i-§)7
2.17) o +1 r
(2 1 s ons+2— (2241
w = 24 oagr+ -+ ,
ay +2 T I1+or+2
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and let
D0r5,152) = 0w, 032) = 6 1, —— [arr +1+ ]
r,8,t;2) == ¢(u,v,w; z) = r,a1+1 oqr K
(2.18) .
1 +Eo(8)24 1L
2t S S TGl )
g + 2 T I+air+2

Using the equations (2.13), (2.15) and (2.16), from (2.18), it follows that
D(p(2), 2p'(2), 2°p" (2); 2)
(219) (Hy"oa +1]f(2) Hy™loa +2]f(2) Hp™[on +3]f(2)
N ( Hy"oa]f(2) ~ Hp™[on +1]f(2) " Hy™ [en +2]f(2)’z> '

Hence (2.12) implies 1 (p(2), zp'(2), 2%p" (2); z) € Q. The proof is completed if it can
be shown that the admissibility condition for ¢ € @y 1[f,¢] is equivalent to the
admissibility condition for ¢ as given in Definition 1.1. For this purpose, note that

; = (a1 +1)v—(1+ar),
; = (I+a)vf(m+2)w—1—=(1+a1)v)] - ; {(1 +ay)v— 2:'} ’
and thus
¢ (14 a)v (e +2)w—1— (1+a1)v)]
st (+aw—(1+auw Fragu 2w,

Hence ¢ € ¥[Q, q] and by Theorem 1.1, p(z) < ¢(z) or
Himlon +101() :
Hy™ o] f(2)
In the case  # C is a simply connected domain with = h(U) for some conformal

map h(z) of U onto Q, the class ®p1[h(U), ¢] is written as @ 1[h, g]. The following
result is an immediate consequence of Theorem 2.5.

Theorem 2.6. Let ¢ € @y 1[h,q] with ¢(0) =1. If f € ¥, satisfies

) (Hé’";[sl FUFE) Bl A1) Hlo 1) ) b
Hy™"[ea]f(z)  Hpy™lar +1]f(2) Hp™la1 +2]f(z)

then .
H)™[on 4+ 1]f(2)

Hy™ [on]f(2)

In the particular case ¢(z) = 14+ Mz, M > 0, the class of admissible functions
D18, ¢, is simply denoted by ®p 1[Q, M].
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Definition 2.4. Let Q) be a set in C and M > 0. The class of admissible functions
®y 1[Q, M] consists of those functions ¢ : C3 x U — C such that

k+ a1 (1+ Me®) k+ap(1+ Me")
(14 a1)(1+ Me®) (24 a1)(1+ Me?)
(M + e [Le ™ + kEM(1 + ay + a3 Me®)] — k2 M? Z) ¢Q
(a1 +2)(M + e~ ) [(M + e~ )1 + a1 + oy Me®) + kM|’
whenever z € U, § € R and R(Le™ ) > kM (k — 1) for all real §, oy € C (o #
0,—-1,-2) and k > 1.
Corollary 2.6. Let ¢ € @y 1[Q, M]. If f € ¥, satisfies

[ H5mlon+ 1) Hirlon +207() Bl +31() )

Hy"[on]f(2) " Hy™lon +11f(z) Hy™on +2f(2)] ’

Me? 1+ Me®

¢>(1+Mei9,1+
(2.20)

then

— 1< M.

Hy™" [oa]f(2)

In the special case Q = ¢(U) = {w : |w—1| < M}, the class @y 12, M] is denoted
by ®p1[M], and Corollary 2.6 takes the following form:

Corollary 2.7. Let ¢ € Dy 1[M]. If f € 3, satisfies

|H;;m[a1 +1]£(2)

S (Hre + 0G) Hon+27() Byl 3 |
HE™[alf () BY"on + () HE"[an + 20f () ’
then l
Hy ™o + 1
i U5 |,
Hy"[aa]f(2)
Corollary 2.8. Let M >0, a1 € C (a1 #0,—-1), and f € ¥, satisfies
Himfor +2)f(z)  HE™[or +1)£(2) M2
Hy™ o + 1] £(2) Hy™ ] £(2) 1+ aa|(1+ M)’
then
Hl,m +1
prie 0G|
Hy™" [oa]f(2)
Proof. This follows from Corollary 2.6 by taking ¢(u,v,w;z) = v —u and Q = h(U)
where h(z) = %z, M > 0. To use Corollary 2.6, we need to show that

¢ € Oy 1[M], that is, the admissibility condition (2.20) is satisfied. This follows
since
kE+ai (14 Me)

;2)] = |1 ~Me" —1— Me"
|¢(u,v,w,z)| ’ + (1+a1)(1+M610) € €
B M |k—1-— Me? M |k-1-M
14+ai|| 1+Me? |~ |14+ai]| 1+ M
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M I ! - M?
14+ a1l |14+ M 14+ ai|(1+ M)’
ze€U, 0eR, a1 €C (a1 #0,-1), k# 1+ M and k > 1. Hence the result is easily
deduced from Corollary 2.6. 1

Forl=2, m=1, a1 = as = 1 = 1, Corollary 2.8 reduces to the following form:
Example 2.1. If f € 3, then
zf'(2) [Zf (2) _ 9zf'(z) —p}

z (z z M2 '
) ZJ:C/((:) ) s R NS V.
e tptl LM fz)

3. Superordination of the Liu-Srivastava linear operator

The dual problem of differential subordination, that is, differential superordina-
tion of the Liu-Srivastava linear operator is investigated in this section. For this
purpose the class of admissible functions is given in the following definition.

Definition 3.1. Let Q be a set in C, q(z) € H with zq'(z) # 0. The class of
admissible functions ®; [, q] consists of those functions ¢ : C* x U — C that satisfy
the admissibility condition

P(u,v,w;¢) € Q
whenever
u=q(z), v="4 ) +ma1q(z), (1 €C, y #0,-1)
mao
m{(al—i_l)(w_u) _ (2@1 + 1)} < 1%{261,”(2) + 1} ,
V—U m q(2)

zeU, C€edU and m > 1.
Theorem 3.1. Let ¢ € O, q]. If f € 5y, 2PH)™[0n]f(2) € Q1 and
& (P HL™[n] £(2), 2P HE™ oy + 1] (2), 2P HE™ g +2)f(2); 2)

is univalent in U, then
@ C {6 (= By o) f(2), 2 Hy™ o + 1)1 (2),

(3.) PHY oy +20f(2)i7) 12 € U)

implies

q(z) < 2 Hy™[ea] f(2)-
Proof. Let p be defined by (2.2) and v by (2.7). Since ¢ € 5[, ¢], (2.8) and (3.1)
yield

Qc {v (p(z),20'(2),2°p"(2);2) 1 2 € U}

From (2.6), the admissibility condition for ¢ € ®';[Q, ¢] is equivalent to the admissi-
bility condition for ¢ as given in Definition 1.2. Hence ¢ € ¥’[Q, g], and by Theorem
1.2, q(z) < p(z) or

q(2) < 2P Hy™[ea] f(2)- I
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If Q # C is a simply connected domain, and 2 = h(U) for some conformal map-
ping h(z) of U onto Q, then the class @/, [h(U), q] is written as &/, [h, ¢]. Proceeding
similarly as in the previous section, the following result is an immediate consequence
of Theorem 3.1.

Theorem 3.2. Let q(z) € H, h(z) be analytic in U and ¢ € 'y [h,q]. If f € X,
ZpH:é’m[Oq]f(Z) € Q1 and ¢ (ZPH;,’m[ocl]f(Z), PHE™[on + 1) f(2), 2P HE™ [0n + 2] f(2); z)
18 univalent in U, then
(3.2) hz) < ¢ (ZPHY™[0n]f(2), 2P HY ™ [an + 1] f(2), 2P HE ™ o + 2] f(2); 2)
implies
q(z) < 2P Hy™[ea] f(2)-
Theorems 3.1 and 3.2 can only be used to obtain subordinants of differential su-

perordination of the form (3.1) or (3.2). The following theorem proves the existence
of the best subordinant of (3.2) for an appropriate ¢.

Theorem 3.3. Let h(z) be analytic in U, and ¢ : C> x U — C. Suppose that the
differential equation

& <p(z) a1p(z) +z2p'(2) 220" (2) + 2(c1 + 1)zp/(2) + a1 (a1 + 1)p(2)

)

(65} 041(041 —+ 1) ;Z> - h<Z)
has a solution g € Q1. If ¢ € ®y[h,q], f € %), szll;m[al]f(z) € Q; and
0] (sz]f;m[al]f(z), szll;m[al +1]f(2), szZl,’m[al +2]f(2); 2)
is univalent in U, then
h(z) < ¢ (PHy™aa] f(2), 2P Hy™ [on + 1] f(2), 2P Hy™ [en + 2] f(2); 2)

implies
q(2) < 2P Hy™ [ea] f(2),
and q(z) is the best subordinant.
Proof. The proof is similar to the proof of Theorem 2.4 and is omitted. 1
Combining Theorems 2.2 and 3.2, we obtain the following sandwich-type theorem.

Corollary 3.1. Let hi(z) and q1(z) be analytic functions in U, ha(z) be univalent
inU, ¢ € Q1 with ¢1(0) = ¢2(0) =1, and ¢ € Pylha, g2 N Py [ha, qu]. If f € X,
ZPH)™[0n]f(2) € HN Q1 and
0] (szIl,’m[al]f(z), sz]f;m[al + 1]f(2), sz[l;m[al + 2] f(2); 2)
is univalent in U, then
hi(2) < ¢ (PHY™ o] f(2), 2P HY ™ [y + 1] f(2), 2P H ™ [ + 2] f(2); 2) < ha(2),
implies
q(z) < ZpH,l)’m[Oél]f(z) < q2(2).
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Definition 3.2. Let Q be a set in C, and q(z) € H with zq'(z) # 0. The class
of admissible functions ®% [, q] consists of those functions ¢ : C?* xU — C that
satisfy the admissibility condition

¢(u,v,w; C) € Q
whenever
u=gq(z), v= 0[114_ T <1 +a1q(z) + ;jq((z;) (a1 €C, a1 #0,—-1,-2, ¢q(2) #0)

R { (A +avflen +2)w—1—(1+a)v)] + (1 +a)v—(1+ 2011U)}

(
<1y { Zs(g) + 1} :

zeU, (€ dU and m > 1.

Now we will give the dual result of Theorem 2.5 for differential superordination.

HL™[an+1]£(2)
Hy™ 1] f(2)

i’ (Hgm[al +1f(2) Hyloa +2)f(2) Hy™loa +3)f(2) >
Hy™onf(2) " Hy™on +11f () Hy™[or +2]f(2)]

is univalent in U, then

Theorem 3.4. Let ¢ € & [, q]. If f €%, € Q; and

0c {¢<H},’"Il[no;1 + l]f(z)7H%:[a1 27
. Hy"onlf(z)  Hy™[aq +1)f(z)
e ) )
p"lon +2]f(2)
implies

Himloy + 11£(2)
Hy™[oa]f(2)
Proof. Let p be defined by (2.13) and ¥ by (2.18). Since ¢ € CI>’H71[Q,q], it follows
from (2.19) and (3.3) that
QC {¢ (p(z),zp'(z),zzp”(z);z) 1z € U} .
From (2.17), the admissibility condition for ¢ € <I>’H’1[Q,q] is equivalent to the ad-

missibility condition for ¢ as given in Definition 1.2. Hence ¢ € ¥’[Q, q], and by
Theorem 1.2, q(z) < p(z) or

q(z) <

Hy™og +1]f(2)

a(2) < = -
Hp™[a1]f(2)

If Q@ # C is a simply connected domain, and Q = h(U) for some conformal

mapping h(z) of U onto 2, then the class ®y [h(U),q] is written as @[k, q].

Proceeding similarly, the following result is an immediate consequence of Theorem
3.4.
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Theorem 3.5. Let q(2) € H, h(z) be analytic in U and ¢ € @y, [h,q]. If f €

Hy™ aa+1]1(2) Hy™[aa+1]f(2) Hy™ea+2)f(z) Hp™[01+3]/(2) | .
Al & 2L ond ¢< H anlf () By 111 () By ot 2lf ()2 ) "

univalent in U, then

Hp™on +11f(2) Hy™[on +2)f(z) Hy™loa +3]f(2) .
Hy™on]f(z)  Hy™on +10f(2) Hy™[oa +2)f(2)

Xp,

h(z) < ¢

implies

HYman + 1]£(2)
Hy™ ] f (2)
Theorems 2.6 and 3.5 give the following sandwich-type theorem.

q(z) <

Corollary 3.2. Let hi(z) and q1(z) be analytic functions in U, ha(z) be univalent
in U, q2(2) € Q1 with ¢:(0) = q2(0) = 1, and ¢ € Py 1[ha, go] N Py [h1, qu]. If

Hp™ [a1+1]f(2)
f € Ep; Hé‘m[al]if(z) S H n Ql, and

H;vm[al +1]f(2) Hzl;m[al +2]f(2) Hll;m[ozl +3]f(2)

P\ TH i) B e+ 15G) B e 1 20fG)
is univalent in U, then
lm l,m I,m
h1(2)<¢ HP l[i‘l‘i’l]f(z)’H;;)m[a1+2]f(z),H1l7m[al+3}f(z)7z <h2(z),
Hy™ea]f(2)  Hy"[en +1]f(2) Hp™[oa +2]f(2)
implies

Him [0y + 1]£(2)
Hy™ ] £ (2)
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