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1. Introduction

The space of operators between some classical Banach spaces such as c0, `∞ and `p

is characterized by unit vector bases of c0 and `p. For example, a continuous linear
operator T from c0 into `∞ is equivalent, by the mapping T → {T (en)} where
{en} is the unit vector basis of c0, to the sequence {yn} ⊂ `∞ such that

∑
n yn

is weakly unconditionally Cauchy [7, pp.165–169]. A similar study on the function
spaces `1 (A,X), c0 (A,X) and `∞ (A,X) are presented in this work. These spaces
are important generalizations of the classical Banach spaces c0, `1 and `∞, and they
have no Schauder bases in general. The problem is solved by a representation of
elements of `1 (A,X) and c0 (A,X) given in [8].

Geometric and other structural properties of these vector-valued function spaces
have been intensively studied in recent years. Some important references on struc-
tural properties of the space `∞ (A,X) of all bounded X-valued functions x : A → X
such that sup {‖x (a)‖ = ‖xa‖ : a ∈ A} < ∞ are [2, 3], where A is assumed to be an
infinite set and X is a normed space. It was shown that many elementary properties
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of X such as completeness, separability, barreledness etc. directly effected the struc-
ture of the space. For example, there are many examples [2, 3] of normed spaces of
`∞ (A,X) which are barreled whenever X is barreled.

Further, Ferrando and Lüdkovsky [4] conducted similar investigations for the
function space c0 (A,X) , the linear space of all functions x : A → X such that for
each ε > 0 the set {a ∈ A : ‖xa‖ > ε} is finite or empty. It is a normed space as well
as `∞ (A,X) with the sup norm ‖x‖∞ = sup {‖xa‖ : a ∈ A} . They also proved that
c0 (A,X) is either barreled, ultrabornological or unordered Baire-like if and only if
X is, respectively barreled, ultrabornological or unordered Baire-like. An analogous
result for the X-valued sequence space c0 (X) = c0 (N, X) was obtained earlier by
Mendoza [6]. In [8], for a locally convex space X, we dealt with the structural prop-
erties of the spaces `1 (A,X) and c0 (A,X) where `1 (A,X) is defined in the next
section. A basic result in [8] was a lemma introducing a representation for elements
of these spaces, similar to those of spaces possesing a basis. Hence, we can easily
study the separability of the spaces and linear functionals on them. The representa-
tions are given by a family {Ia : a ∈ A} of continuous linear functions from X into
λ (A,X), λ = `1or c0. The family may be unordered and so the representations needs
unordered summations. In another important section of the work we prove that this
representation of bounded linear operator from λ (A,X), λ = `1 or c0, into λ (A,X),
λ = `1, `∞ or c0, shows that the operators have to be in just a usual operator matrix
form whenever A = N.

2. Preliminaries

We use the notations N, C and R for the sets of all positive integers, complex numbers
and real numbers. Further, for a fixed normed space X, we denote by BX and SX

the closed unit ball and sphere of X. L (X, Y ) denotes the space of all continuous
operators from X into another normed space Y, and X ′ denotes the continuous dual
of X.

Let A be a set, {xa : a ∈ A} be a family of vectors in a topological vector space
(TVS, for short) X and let F denote the family of all finite subsets of A. Then F
is directed by the inclusion relation ⊆ and, for each F ∈ F , we can form the finite
sum s (F ) =

∑
a∈F

xa. If the net (s (F ) : F) converges to some x in X, then we say

that the family {xa : a ∈ A} is summable, or that the sum
∑

a∈A

xa exists, and we

write
∑

a∈A

xa = x. The definition of summable family does not involve any ordering

of the index set A, and we may therefore say that the notion of a sum thus defined
is commutative (unconditional). In case A = N, to say that the family {xn : n ∈ N}
is summable to x is equivalent to saying that the series

∑
n∈N

xn is unconditionally

convergent to x. Recall that, a series
∑

n∈N
xn in a TVS is said to be unconditionally

convergent if and only if for each permutation σ of N,
∑

n∈N
xσ(n) is convergent. The

definition of a convergent series, essentially, involves the order structure of N. If the
series

∑
n∈N

xn is convergent, and if σ is a permutation of N, then the series
∑

n∈N
xσ(n)

may not be convergent, that is, {xn : n ∈ N} may not be summable [1, p. 270].
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Lemma 2.1. Let X be a normed space, A be a set and {xa : a ∈ A} be a family
of vectors in X. Suppose that the net (s (F ) : F) converges to some x in X where
s (F ) =

∑
a∈F

xa, F ∈ F . Then (s (F ) : F) is bounded.

Proof. By the hypothesis there exist some F0 ∈ F such that ‖s (F )− x‖ ≤ 1 for
every F0 ⊆ F. Let n (F0) be the cardinality of F0. The number of subsets of F0 is
2n(F0) < ∞ so that

sup
F⊆F0

‖s (F )‖ = M < ∞.

Further, for every F0 ⊆ F,

‖s (F )‖ − ‖x‖ ≤ ‖s (F )− x‖ ≤ 1 ⇔ sup
F0⊆F

‖s (F )‖ ≤ 1 + ‖x‖ .

Consequently,
sup
F∈F

‖s (F )‖ ≤ 1 + ‖x‖+ M.

Note that a convergent net may not be bounded in some cases; e.g., x → 0 for
positive real x with reversed usual order: x � y ⇔ x ≤ y.

Another important normed linear subspace of XA other than `∞ (A,X) and
c0 (A,X) is `p (A,X) , 1 ≤ p < ∞, the set of all functions x : A → X such that the
family {‖xa‖p : a ∈ A} is summable in R, i.e.∑

a∈A

‖xa‖p
< ∞,

and it is a normed space with the norm

‖x‖p =

(∑
a∈A

‖xa‖p

)1/p

.

`p (A,X) , `∞ (A,X) and c0 (A,X) are Banach spaces iff X is a Banach space. If
A is a directed set, then λ (A,X) (λ = `∞, c0 or `p) is a linear space of all nets in
X satisfying the corresponding property. They are usually denoted by λ (X) in the
case A = N and are called X-valued sequence spaces.

Let us state an important lemma from [8] giving a representation for the elements
of the spaces λ (A,X) (λ = c0 or `p).

Lemma 2.2. Let X be a normed space and A be a set. Then each x ∈ λ (A,X)
(λ = c0 or `p) is represented by

x =
∑
a∈A

Ia (xa)

where Ia : X → λ (A,X) defined by Ia (t) = y such that y (b) = 0 if b 6= a and
y (b) = t if b = a.

More precisely, the representation in the lemma means that the net (πF (x) : F)
converges to x in the norm topology of X where πF (x) =

∑
a∈F

Ia (xa), for F ∈ F .

It is easy to see that each linear mapping Ia in this Lemma is continuous, and
‖Ia‖ = 1.
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For each a ∈ A, the ath projection Pa : λ (A,X) → X is defined to be Pa (x) =
x (a) . They are continuous since the topology of λ (A,X) is stronger than the natural
product topology of XA which is the weakest topology such that the projections
Pa : XA → X, a ∈ A, are continuous. By the representation let us define projections
πF (x) from λ (A,X) into λ (A,X) by

πF (x) =
∑
a∈F

Ia (xa) =
∑
a∈F

(Ia ◦ Pa) (x)

for each F ∈ F . These are natural projections corresponding the above representa-
tions and will perform very important roles in this work.

3. Representations of some operator spaces

Let us give the main result of this section.

Theorem 3.1. Let X and Y be arbitrary Banach spaces and λ = c0 or `1. Then the
operator space L (λ (A,X) , Y ) is equivalent by the mapping T → {T ◦ Ia : a ∈ A} to
the Banach space

Eλ =

{
χ = {χa} ∈ L (X, Y )A : sup

F∈F
sup

x∈Bλ(A,X)

∥∥∥∥∥∑
a∈F

(χa ◦ Pa) (x)

∥∥∥∥∥ < ∞

}
which is normed by

(3.1) ‖χ‖ = sup
F∈F

sup
x∈Bλ(A,X)

∥∥∥∥∥∑
a∈F

(χa ◦ Pa) (x)

∥∥∥∥∥ .

Proof. Let us first prove that (3.1) defines a norm. Say

π′F (x) =
∑
a∈F

(χa ◦ Pa) (x)

and let ‖χ‖ = 0. Then
sup

x∈Bλ(A,X)

‖π′F (x)‖ = 0

for each F ∈ F and in particular, for F = {a} (a ∈ A) . This implies

‖(χa ◦ Pa) (x)‖ = 0

for each a. Hence, χa = 0 by the definition of Pa and so χ = 0. Other properties of
norm can easily be verified.

Now let T ∈ L (λ (A,X) , Y ) and say χa = T ◦ Ia. Then

Tx = T

(∑
a∈A

(Ia ◦ Pa) (x)

)
=
∑
a∈A

(T ◦ Ia ◦ Pa) (x)

=
∑
a∈A

(χa ◦ Pa) (x) = lim
F∈F

π′F (x)

for x ∈ λ (A,X) , whence, the net (π′F (x) : F) is convergent so is bounded by Lemma
2.1. Hence

sup
F∈F

‖π′F ‖ = sup
F∈F

sup
x∈Bλ(A,X)

∥∥∥∥∥∑
a∈F

(χa ◦ Pa) (x)

∥∥∥∥∥ < ∞
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by the uniform boundedness principle, that is, χ = {χa = T ◦ Ia : a ∈ A} ∈ E.
Further,

‖Tx‖ ≤

∥∥∥∥∥∑
a∈A

(χa ◦ Pa) (x)

∥∥∥∥∥ ≤ sup
F∈F

∥∥∥∥∥∑
a∈F

(χa ◦ Pa) (x)

∥∥∥∥∥
= sup

F∈F
‖π′F (x)‖ ≤ sup

F∈F
‖π′F ‖ ‖x‖ = ‖χ‖ ‖x‖

so this implies ‖T‖ ≤ ‖χ‖ .
On the other hand, for each F ∈ F ,∥∥∥∥∥∑

a∈F

(χa ◦ Pa) (x)

∥∥∥∥∥ =

∥∥∥∥∥T
(∑

a∈F

(Ia ◦ Pa) (x)

)∥∥∥∥∥ ≤ ‖T‖

∥∥∥∥∥∑
a∈F

(Ia ◦ Pa) (x)

∥∥∥∥∥
= ‖T‖ ‖πF (x)‖ ≤ ‖T‖ ‖πF ‖ ‖x‖ = ‖T‖ ‖x‖

hence, ‖χ‖ ≤ ‖T‖ . This means we can set an isometry Λ from L (λ (A,X) , Y ) into
Eλ. In fact, Λ is an equivalence since it is onto. Let us prove this. Pick some χ ∈ Eλ

and define Tx =
∑

a∈A

(χa ◦ Pa) (x) . We must show first that T is well-defined. This,

obviously, is equivalent to the summability of the family {(χa ◦ Pa) (x) : a ∈ A} to
Tx, and so is equivalent to the convergence of the net (π′F (x) : F ∈ F) to Tx for
each x ∈ λ (A,X) . For each G ∈ F

π′G∪F (πF (x)) = π′F (πF (x))

since Pa ◦ Ia = idX , (identity on X) if a = b and Pa ◦ Ib = 0, (zero operator on X)
if a 6= b. This implies the net (π′G (πF (x)) : G ∈ F) converges in Y. This means that
for each element z of the dense subspace

{πF (x) : F ∈ F , x ∈ λ (A,X)}

of λ (A,X) , the net (π′G (z) : G ∈ F) converges in Y . Since Y is complete, for each
x ∈ λ (A,X) we have (π′F (x) : F) is convergent (necessarily to Tx). Hence, T is
well-defined and, furthermore, T is continuous because ‖T‖ ≤ ‖χ‖ .

Theorem 3.1 can also be stated as follows:

Theorem 3.2. Let X and Y be two Banach spaces and λ = c0 or `1. Then the
operator space L (λ (A,X) , Y ) is equivalent to the Banach space

Eλ =
{

χ = {χa} ∈ L (X, Y )A : {(χa ◦ Pa) (x) : a ∈ A} is summable, ∀x ∈ X
}

equipped with the norm

‖χ‖ = sup
F∈F

sup
x∈Bλ(A,X)

∥∥∥∥∥∑
a∈F

(χa ◦ Pa) (x)

∥∥∥∥∥ .

Remark 3.1. It is important to realize that

(3.2) `1 (A,L (X, Y )) ⊆ Ec0
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in Theorem 3.1. Indeed, if χ ∈ `1 (A,L (X, Y )) then

sup
F∈F

sup
x∈Bc0(A,X)

∥∥∥∥∥∑
a∈F

(χa ◦ Pa) (x)

∥∥∥∥∥ ≤ sup
F∈F

sup
x∈Bc0(A,X)

∑
a∈F

‖χa‖ ‖xa‖

= sup
F∈F

∑
a∈F

‖χa‖ =
∑
a∈A

‖χa‖ < ∞.

Example 3.1. The inclusion relation (3.2) may be strict. Indeed; let X = Y = c0

and A = N. Take χ = (χn) as sequence of infinite matrices such that χn =
(
an

ij

)
:

an
nn = 1, an

ij = 0 otherwise. By the characterization of the matrix classes (c0, c0) ,
obviously each χn ∈ (c0, c0) = L (c0, c0) . Further, for some x = (xn) ∈ c0 (c0)

χn (xn) = (0, ..., 0, xn
n, 0, ...) = xn

nen, n ∈ N,

where xn =
(
xk

n

)∞
k=1

∈ c0. Hence, for each finite F = (n1, n2, · · · , nm) ⊂ N,

∑
ni∈F

χni
(xni

) =
m∑

i=1

xni
ni

eni
.

This means

sup
x∈Bc0(c0)

∥∥∥∥∥∑
ni∈F

χni
(xni

)

∥∥∥∥∥ = sup
sup‖xn‖∞≤1

∥∥∥∥∥
m∑

i=1

xni
ni

eni

∥∥∥∥∥ = 1,

hence,

sup
F∈F

sup
x∈Bc0(c0)

∥∥∥∥∥∑
n∈F

χn (xn)

∥∥∥∥∥ = 1.

This shows χ ∈ Ec0 . However,
∑
‖χn‖ = ∞, that is, χ /∈ `1 (L (c0, c0)) , because

each ‖χn‖ = supi

∑
j

∣∣an
ij

∣∣ = 1.

Example 3.2. If Y = C in the above example then the inclusion relation (3.2) is
an equality. Hence,

c0 (A,X)′ = `1 (A,X ′) .

This was also shown in [8] but we mention it again for greater understanding of
the relation. Let χ ∈ E

(
= c0 (A,X)′

)
, F ∈ F and ε > 0 be arbitrary. Consider

a function ς ∈ `1 (A, C) . For each a ∈ F, by the definition of ‖χa‖ , we can find a
function ξ : A → SX such that

(3.3) ‖χa‖ < |χa (ξa)|+ ε |ςa| .

Write χa (ξa) in the polar form , i.e.,

χa (ξa) = eiθa |χa (ξa)| ,

and define the function x from A to X by

xa =
{

e−iθaξ (a) , if a ∈ F and χa (ξa) 6= 0
0, if a /∈ F or χa (ξa) = 0 .
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Then obviously x ∈ c0 (A,X) and ‖x‖∞ ≤ 1. Therefore, for this x, we have∣∣∣∣∣∑
a∈A

χa (xa)

∣∣∣∣∣ =
∣∣∣∣∣∑
a∈F

e−iθaχa (ξa)

∣∣∣∣∣ = ∑
a∈F

|χa (ξa)| ≤ ‖χ‖

This implies, by the inequality (3.3), that∑
a∈A

‖χa‖ ≤ ‖χ‖+ ε ‖ς‖1 ,

hence,
∑

a∈A ‖χa‖ ≤ ‖χ‖; that is, χ ∈ `1 (A,X ′) .
We don’t know whether this equality exist for an arbitrary finite-dimensional

Banach space Y or not.

Corollary 3.1. E`1 = `∞ (A,L (X, Y ))

Proof. For each v ∈ SX and each a ∈ A consider the functions va = Ia (v). Hence
for va ∈ S`1(A,X) we have∑

b∈F

(χb ◦ Pb) (va) =
{

χa (v) , if a ∈ F
0, if a /∈ F

,

and so

sup
F∈F

sup
x∈B`1(A,X)

∥∥∥∥∥∑
a∈F

(χa ◦ Pa) (x)

∥∥∥∥∥ = sup
F∈F

sup
v∈SX

∥∥∥∥∥∑
b∈F

(χb ◦ Pb) (va)

∥∥∥∥∥
= sup

a∈A
sup

v∈SX

‖χa (v)‖ = sup
a∈A

‖χa‖ .

This implies the equality.
Hence we have the equality `1 (A,X)′ = `∞ (A,X ′) of [8] as a corollary of this

result with Y = C.

4. The operator matrix representation

Let A = N and X, Y be arbitrary Banach spaces. In the classical sequence space
theory, each bounded linear operator from `1 or c0 into another BK-space have to be
given an infinite matrix of scalar terms. Is there such a useful representation of every
operator from `1 (X) or c0 (X) into another Y -valued BK-spaces η (Y )? We mean by
Y -valued BK-spaces a Banach space η (Y ) of Y -valued sequences y = (yn) such that
all coordinate projections Qn : η (Y ) → Y, Qn (y) = yn, n = 1, 2, . . . are continuous
under the norm topology. The representations presented in Lemma 2.2 helps to give
us an affirmative answer to this question. A deep investigation of operator matrices
between Banach space-valued sequence spaces was given by Maddox [5]. Now let us
record some fundamental notations on operator matrices from this paper.

Let X and Y be Banach space and A = (Ank)n,k∈N an infinite matrix of linear,
bounded operators Ank on X into Y. Suppose ζ (X) and η (Y ) be nonempty sets of X
and Y -valued sequences respectively. Then we define the matrix class (ζ (X) , η (Y ))
by saying that A ∈ (ζ (X) , η (Y )) iff, for every x = (xk) ∈ ζ (X)

An (x) =
∞∑

k=1

Ankxk
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converges in the norm of Y, for each n, and the sequence

Ax =

( ∞∑
k=1

Ankxk

)∞
n=1

belongs to η (Y ) .
Now, we are ready to prove one of our main results.

Theorem 4.1. Let X and Y be arbitrary Banach spaces and η (Y ) be a Y -valued
BK-space. Then each continuous linear operator T from λ (X) (λ = c0 or `1) into
η (Y ) can be given by an infinite operator matrix. More precisely; for each T ∈
L (λ (X) , η (Y )) , there exist an infinite matrix A = (Ank)n,k∈N of continuous linear
operators Ank on X into Y such that for each n ∈ N and each x ∈ λ (X) the series
∞∑

k=1

Ankxk converges in Y and

Ax =

( ∞∑
k=1

Ankxk

)∞
n=1

∈ η (Y ) .

Conversely, if A = (Ank)n,k∈N is any infinite matrix of continuous linear operators
Ank on X into Y such that( ∞∑

k=1

Ankxk

)∞
n=1

∈ η (Y ) , for each x ∈ λ (X)

then

(4.1) Tx =

( ∞∑
k=1

Ankxk

)∞
n=1

defines an operator T ∈ L (λ (X) , η (Y )) .

Proof. Let T ∈ L (λ (X) , η (Y )) , then since each x ∈ λ (X) has the representation

x =
∞∑

k=1

Ik (xk) , we can write

Tx =
∞∑

k=1

(T ◦ Ik) (xk) .

Say
Ank = Qn ◦ T ◦ Ik

where Qn’s are coordinate projections on η (Y ) and are continuous since η (Y ) is a
Y -valued BK-space. This means each Ank ∈ L (X, Y ) . Let us write Tx = y = (yn) .

We must show that, for each n, the series
∞∑

k=1

Ankxk converges to yn in Y. For some

m ∈ N,
m∑

k=1

Ankxk =
m∑

k=1

Qn (T (Ik (xk))) = Qn

(
m∑

k=1

T (Ik (xk))

)
.
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Letting m → ∞, we have
m∑

k=1

T (Ik (xk)) converges to Tx = y and hence by the

continuity of Qn

Qn

(
m∑

k=1

T (Ik (xk))

)
→ Qn (y) = yn.

Conversely, suppose A = (Ank)n,k∈N is any infinite operator matrix such that( ∞∑
k=1

Ankxk

)∞
n=1

∈ η (Y ) , for each x ∈ λ (X) .

Let us define the operator T by (4.1). It is clear that T is linear. For each n, the
operator

Tn : λ (X) → Y ; Tnx =
∞∑

k=1

Ankxk

is continuous. This is a consequence of Banach-Steinhaus theorem. Since

πm (x) =
m∑

k=1

Ik (xk)

converges to x in λ (X) , we have (Tm ◦ πm) (x) → Tmx as m → ∞. Suppose
(T ◦ πm) (x) → y. We note that

Qm ◦ T ◦ πm = Tm ◦ πm,

and so
(Qm ◦ T ◦ πm) (x) = (Tm ◦ πm) (x) → Qm (y) = ym.

That is Tmx = ym for each m, whence Tx = y. This means T is continuous by the
closed graph theorem.
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