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Abstract. Continuous linear operators from ¢1 (A, X) and ¢ (A, X) into A (4, X),
A =/{1, £so Or o, for a normed space X are investigated. It is shown that such
an operator has an operator matrix form whenever A is the set of positive
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1. Introduction

The space of operators between some classical Banach spaces such as ¢y, {» and £,
is characterized by unit vector bases of ¢y and /£,. For example, a continuous linear
operator T from ¢ into fs is equivalent, by the mapping T — {T (e,)} where
{en} is the unit vector basis of cy, to the sequence {y,} C f such that )y,
is weakly unconditionally Cauchy [7, pp.165-169]. A similar study on the function
spaces {1 (A, X), ¢y (4, X) and £ (4, X) are presented in this work. These spaces
are important generalizations of the classical Banach spaces ¢, {1 and £, and they
have no Schauder bases in general. The problem is solved by a representation of
elements of ¢; (A4, X) and ¢ (A, X) given in [8].

Geometric and other structural properties of these vector-valued function spaces
have been intensively studied in recent years. Some important references on struc-
tural properties of the space £, (A, X) of all bounded X-valued functions 2 : A — X
such that sup {||z (a)|| = ||z.|| : @ € A} < 00 are [2, 3], where A is assumed to be an
infinite set and X is a normed space. It was shown that many elementary properties
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of X such as completeness, separability, barreledness etc. directly effected the struc-
ture of the space. For example, there are many examples [2, 3] of normed spaces of
ls (A, X) which are barreled whenever X is barreled.

Further, Ferrando and Liidkovsky [4] conducted similar investigations for the
function space ¢y (A4, X), the linear space of all functions z : A — X such that for
each € > 0 the set {a € A : ||x4]| > €} is finite or empty. It is a normed space as well
as o (A, X) with the sup norm ||z||,, = sup {||z.]| : a € A}. They also proved that
¢o (A4, X) is either barreled, ultrabornological or unordered Baire-like if and only if
X is, respectively barreled, ultrabornological or unordered Baire-like. An analogous
result for the X-valued sequence space ¢o (X) = ¢o (N, X) was obtained earlier by
Mendoza [6]. In [8], for a locally convex space X, we dealt with the structural prop-
erties of the spaces ¢1 (A, X) and ¢g (A, X) where ¢; (A, X) is defined in the next
section. A basic result in [8] was a lemma introducing a representation for elements
of these spaces, similar to those of spaces possesing a basis. Hence, we can easily
study the separability of the spaces and linear functionals on them. The representa-
tions are given by a family {I, : a € A} of continuous linear functions from X into
A (A, X), XA = {yor ¢g. The family may be unordered and so the representations needs
unordered summations. In another important section of the work we prove that this
representation of bounded linear operator from A (A, X), A = {1 or ¢y, into A (4, X),
A = {1, Lo or ¢p, shows that the operators have to be in just a usual operator matrix
form whenever A = N.

2. Preliminaries

We use the notations N, C and R for the sets of all positive integers, complex numbers
and real numbers. Further, for a fixed normed space X, we denote by Bx and Sx
the closed unit ball and sphere of X. £ (X,Y) denotes the space of all continuous
operators from X into another normed space Y, and X’ denotes the continuous dual
of X.

Let A be a set, {z, : a € A} be a family of vectors in a topological vector space
(TVS, for short) X and let F denote the family of all finite subsets of A. Then F
is directed by the inclusion relation C and, for each F' € F, we can form the finite
sum s (F) = > z4. If the net (s(F'):F) converges to some z in X, then we say

acF
that the family {z,:a € A} is summable, or that the sum > z, exists, and we
acA
write Y x, = x. The definition of summable family does not involve any ordering

a€A
of the index set A, and we may therefore say that the notion of a sum thus defined
is commutative (unconditional). In case A = N, to say that the family {x,, : n € N}
is summable to z is equivalent to saying that the series > x, is unconditionally
neN
convergent to x. Recall that, a series Y x, in a TVS is said to be unconditionally
neN
convergent if and only if for each permutation o of N, 3 x,(,) is convergent. The
neN
definition of a convergent series, essentially, involves the order structure of N. If the
series ) x, is convergent, and if ¢ is a permutation of N, then the series » 25y
neN neN
may not be convergent, that is, {x,, : n € N} may not be summable [1, p. 270].
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Lemma 2.1. Let X be a normed space, A be a set and {x,:a € A} be a family
of vectors in X. Suppose that the net (s (F) : F) converges to some x in X where
S(F)= > x4, F€F. Then (s(F): F) is bounded.
acF

Proof. By the hypothesis there exist some Fy € F such that ||s(F) —=z| < 1 for
every Fy C F. Let n (Fp) be the cardinality of F. The number of subsets of Fj is
27(Fo) < o0 s0 that

sup ||s(F)|| =M < oo.

r

=ro
Further, for every Fy C F,
[s ()| = llzll < [|s (F) — 2| <1< sup [Is(F)]| <1+ |z].
FoCF
Consequently,
sup [|s (F)[| < 1+ [lz] + M. I
FeF

Note that a convergent net may not be bounded in some cases; e.g., x — 0 for
positive real x with reversed usual order: z >y < x < y.

Another important normed linear subspace of X4 other than £, (A4, X) and
co (A, X)is £, (A, X), 1 <p < oo, the set of all functions z : A — X such that the
family {||z.|” : @ € A} is summable in R, i.e.

D lall” < oo,
acA

and it is a normed space with the norm

lll, = (Z |xa||p> 1/,)'

acA
0y (A, X)), oo (A, X) and ¢o (A, X) are Banach spaces iff X is a Banach space. If
A is a directed set, then A (A, X) (A = ls, ¢ or £p) is a linear space of all nets in
X satisfying the corresponding property. They are usually denoted by A (X) in the
case A =N and are called X-valued sequence spaces.

Let us state an important lemma from [8] giving a representation for the elements
of the spaces A (A4, X) (A = ¢g or £,).

Lemma 2.2. Let X be a normed space and A be a set. Then each x € A(A, X)
(A= co or{p) is represented by
x = Z I, (z,)

acA
where I, : X — MN(A, X) defined by I, (t) = y such that y(b) = 0 if b # a and
y(b) =t ifb=a.

More precisely, the representation in the lemma means that the net (7p (x) : F)
converges to x in the norm topology of X where np () = > I, (x,), for F € F.
eF

a
It is easy to see that each linear mapping I, in this Lemma is continuous, and
[Lall = 1.
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For each a € A, the ath projection P, : A (4, X) — X is defined to be P, () =

z (a) . They are continuous since the topology of A (A, X) is stronger than the natural

product topology of X4 which is the weakest topology such that the projections

P,: X4 — X, a € A, are continuous. By the representation let us define projections
r (x) from A (A4, X) into A (4, X) by

=> La(za) =Y (Iao Pu) ()

acF a€F

for each F' € F. These are natural projections corresponding the above representa-
tions and will perform very important roles in this work.

3. Representations of some operator spaces
Let us give the main result of this section.

Theorem 3.1. Let X andY be arbitrary Banach spaces and A = cq or £1. Then the
operator space L (A (A, X),Y) is equivalent by the mapping T — {T oI, : a € A} to
the Banach space

< oo}

Z (XaOPa) (33)

acF

E\ = {x ={Xa} €L(X,Y)" i sup  sup
FG]—‘JJEBMA_X)

which is normed by

Z (Xa © Pa) (z)

acF

(3.1) [xll = sup  sup
EFQ:EB)\(AYX)

Proof. Let us first prove that (3.1) defines a norm. Say
7 () = Y (Xa o Pa) ()
acF
and let ||x|| = 0. Then

sup |7 (2)]| =0
IEBA(AY)()

for each F' € F and in particular, for F = {a} (a € A). This implies

(Xa © Pa) ()] = 0

for each a. Hence, x, = 0 by the definition of P, and so x = 0. Other properties of
norm can easily be verified.
Now let T € L(A(A,X),Y) and say xo =T o I,. Then

Te=T <Z (I, o P,) (x)) =Y (Tol,oP,)(x)

acA acA
—Z (Xa © Pa) —hmwF()
acA

for x € A (A, X), whence, the net (7 () : F) is convergent so is bounded by Lemma
2.1. Hence

Z (Xa OPa) (.Z‘)

acF

<0

sup |7z = sup  sup
FeF FEF 2€By(a,x)
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by the uniform boundedness principle, that is, x = {xa =T ol,:a € A} € E.
Further,

ITz]]

IN

< sup
FeF

Z (Xa OPa) (I)

a€cA

Z (Xa OPa) (I)

acF

sup || (2)]| < sup [lwp|| (] = [IxIl [l«]
FeF FeF

so this implies ||T]] < ||x]| -
On the other hand, for each F' € F,

T (Z (IaOPa) (33)) Z(Iaopa) (Z‘)

a€F acF
=|THme @) < NTHmell =] = 1T ]

Z (Xa OPa) (l‘)

acF

<7l

hence, ||x|| < ||T||. This means we can set an isometry A from £ (A (A4,X),Y) into
E). In fact, A is an equivalence since it is onto. Let us prove this. Pick some x € E)

and define Tz = > (xq 0 P,) (z). We must show first that 7" is well-defined. This,
acA

obviously, is equivalent to the summability of the family {(xq o P,) (z) : a € A} to

Tz, and so is equivalent to the convergence of the net (7 (z): F € F) to Tz for

each z € A(A, X). For each G € F

Tour (TF (%)) = 7p (TF (2))
since P, o I, = idx, (identity on X) if a = b and P, o I, = 0, (zero operator on X)
if a # b. This implies the net (7, (7p (z)) : G € F) converges in Y. This means that
for each element z of the dense subspace
{rp(x): FeF, zer(4,X)}

of A(A, X), the net (7, (2) : G € F) converges in Y. Since Y is complete, for each
x € AM(A,X) we have (7 (z) : F) is convergent (necessarily to T'z). Hence, T is
well-defined and, furthermore, T is continuous because ||T|| < x| - 1

Theorem 3.1 can also be stated as follows:

Theorem 3.2. Let X and Y be two Banach spaces and A = co or £1. Then the
operator space L (A (A, X),Y) is equivalent to the Banach space

E, = {X ={xa} €LX, V)" : {(xa 0 P,) (z): a € A} is summable, Vo € X}

equipped with the norm

Y (Xao Pa) ()

acF

x|l = sup  sup
FeF z€By(a,x)

Remark 3.1. It is important to realize that

(3.2) 0 (A L(X,Y)CE

Co
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in Theorem 3.1. Indeed, if x € ¢; (A, £ (X,Y)) then

<sup  sup |l llzall
FeF x€B.j(a,x)

Z (XaOPa) (33)

sup sup
FeF z€B.ja,x)

a€F acF
= sup Y [Ixall = Y lIxall < 0.
Fer i cr acA

Example 3.1. The inclusion relation (3.2) may be strict. Indeed; let X =Y = ¢
and A = N. Take x = (x») as sequence of infinite matrices such that y, = (a?j) :
ap, = 1, aj; = 0 otherwise. By the characterization of the matrix classes (co, co),
obviously each x, € (co,co) = L (¢g, ¢o) . Further, for some z = (z,,) € ¢o (¢o)

Xn (n) = (0,...,0,2,0,...) = ale,, n €N,

o0 .
where z, = (2}),_ € co. Hence, for each finite F = (n1,ng,--+ ,nm) C N,
m
Mg
n,eF =1
This means
m
Sup an (xnb) = SU.p xntenb = 1?
mGBCU(C(]) nEF sup||z,,,|\00§1 i—1
hence,
sup  sup E Xn (zn)|| = L.
FeF x€Bey(cy) neF

This shows x € E.,. However, > ||xn| = oo, that is, x ¢ ¢1 (L (co,¢o)), because
each ||xn| = supiz ’a%’ =1.
J

Example 3.2. If Y = C in the above example then the inclusion relation (3.2) is
an equality. Hence,

Co (AvX)/ =1 (Aa X,) .

This was also shown in [8] but we mention it again for greater understanding of
the relation. Let x € F (: Co (A7X)/) , FF € F and € > 0 be arbitrary. Consider
a function ¢ € ¢; (A,C). For each a € F, by the definition of || x|, we can find a
function £ : A — Sx such that

(3.3) IXall < IXa (€a)| + € l<al -
Write x, (£,) in the polar form | i.e.,

Xa (§a) = et 1Xa (§a)l
and define the function x from A to X by

[ g (a), ifaeF and yo () #0
Yo = 0, ifag¢ Forx,(&)=0
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Then obviously z € ¢o (4, X) and [|z|| < 1. Therefore, for this =, we have

D o (@a)| =D e xa (6a)

a€A a€EF

This implies, by the inequality (3.3), that
> lxall < lixll+elislly »
a€A

hence, 37, 4 [Ixall < [[x[; that is, x € £1 (4, X").
We don’t know whether this equality exist for an arbitrary finite-dimensional
Banach space Y or not.

Corollary 3.1. Ey, = (5 (A, L(X,Y))

=3 Ixa (€l < I

acF

Proof. For each v € Sx and each a € A consider the functions v® = I, (v). Hence
for v* € Sy, (a,x) we have

> (xwoRy) (v“){ g " llffczzegzl; 7

beF
and so
sup  sup Z (Xa © P,) (x)|| = sup sup Z (xp 0 Py) (v4)
Fej:xEBll(A,X) aeF FeFveSx beF
= sup sup [|xa (v)[| = sup [|xall -
acAveESx acA
This implies the equality. 1

Hence we have the equality ¢; (4, X) = £ (A, X’) of [8] as a corollary of this
result with ¥ = C.

4. The operator matrix representation

Let A =N and X, Y be arbitrary Banach spaces. In the classical sequence space
theory, each bounded linear operator from ¢; or ¢y into another BK-space have to be
given an infinite matrix of scalar terms. Is there such a useful representation of every
operator from ¢; (X) or ¢ (X) into another Y-valued BK-spaces 7 (Y)? We mean by
Y-valued BK-spaces a Banach space 7 (Y) of Y-valued sequences y = (y,,) such that
all coordinate projections @Q,, : n(Y) =Y, Q. (y) = yn, n = 1,2,... are continuous
under the norm topology. The representations presented in Lemma 2.2 helps to give
us an affirmative answer to this question. A deep investigation of operator matrices
between Banach space-valued sequence spaces was given by Maddox [5]. Now let us
record some fundamental notations on operator matrices from this paper.

Let X and Y be Banach space and A = (Ank),, yen an infinite matrix of linear,
bounded operators A, on X into Y. Suppose ¢ (X) and 1 (Y) be nonempty sets of X
and Y-valued sequences respectively. Then we define the matrix class (¢ (X),n(Y))
by saying that A € (¢ (X),n(Y)) iff, for every « = (x) € ¢ (X)

Ap () =) Angap
k=1
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converges in the norm of Y, for each n, and the sequence

Ax = (i Ank$k>
n=1

k=1

belongs to 7 (Y) .
Now, we are ready to prove one of our main results.

Theorem 4.1. Let X and Y be arbitrary Banach spaces and n(Y) be a Y -valued
BK-space. Then each continuous linear operator T' from A (X) (A = co or ¢1) into
n(Y) can be given by an infinite operator matriz. More precisely; for each T €
L(A(X),n(Y)), there exist an infinite matriz A = (Ank),, yen of continuous linear
operators Api, on X into Y such that for each n € N and each x € A (X)) the series

> Apkxy converges in'Y and
k=1

Ax = (Z Ankxk> en(y).
k=1 n=1

Conversely, if A= (Ank), ey 5 any infinite matriz of continuous linear operators
A, on X into Y such that

(Z Ankxk> en(Y), for each x € X\ (X)
k=1 n=1

then
(4.1) Tx = (Z An}g.%‘k>
k=1 n=1
defines an operator T € L (A (X),n(Y)).
Proof. Let T € L(A(X),n(Y)), then since each z € A (X) has the representation

x =Y Iy (x) , we can write
k=1

oo
Z (ToI)(
k=1

Say

Ank:QnOTOIk

where @,,’s are coordinate projections on 1 (Y) and are continuous since 1 (V) is a
Y-valued BK-space. This means each A, € £L(X,Y). Let us write Tx =y = (y,) .
o0

We must show that, for each n, the series > A,rxz) converges to y, in Y. For some
k=1

ZAnkxk —ZQn Ik (zr)) <ZT Iy, (k) )

m €N,
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m

Letting m — oo, we have > T (I} (zx)) converges to Tx = y and hence by the
k=1

continuity of @,

Qn ZT Uk (zx)) | = Qn (Y) = Yn-

Conversely, suppose A = Ank)n,keN is any infinite operator matrix such that
%) o0
ZAnkxk en(Y), for each z € A (X).
k=1 n=1

Let us define the operator T' by (4.1). It is clear that T is linear. For each n, the
operator

[oe]
T, : A(X) = Y; Toz = Apgai
k=1
is continuous. This is a consequence of Banach-Steinhaus theorem. Since

Tm (x) = Zlk (zx)
k=1

converges to x in A(X), we have (T,, omy,) (z) — Tnx as m — oo. Suppose
(T o m) () — y. We note that

QmoT omy =Ty 0Ty,

and so
(Q’m oT o 7T7n) (-’1)) = (Tm o 7T7n) (1’) - Q"L (y) = Ym-

That is T;,x = y,, for each m, whence Tx = y. This means T is continuous by the
closed graph theorem. 1
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