# Representations of Operators on Certain Function Spaces and Operator Matrices 

Yilmaz Yilmaz<br>Department of Mathematics, Inonu Universitesi, 44280, Malatya, Turkey<br>yyilmaz44@gmail.com


#### Abstract

Continuous linear operators from $\ell_{1}(A, X)$ and $c_{0}(A, X)$ into $\lambda(A, X)$, $\lambda=\ell_{1}, \ell_{\infty}$ or $c_{0}$, for a normed space $X$ are investigated. It is shown that such an operator has an operator matrix form whenever $A$ is the set of positive integers.


2000 Mathematics Subject Classification: Primary: 46E40, 46B20; Secondary: 46B25, 46B45

Key words and phrases: Representations of operators, vector-valued function spaces, operator matrices.

## 1. Introduction

The space of operators between some classical Banach spaces such as $c_{0}, \ell_{\infty}$ and $\ell_{p}$ is characterized by unit vector bases of $c_{0}$ and $\ell_{p}$. For example, a continuous linear operator $T$ from $c_{0}$ into $\ell_{\infty}$ is equivalent, by the mapping $T \rightarrow\left\{T\left(e_{n}\right)\right\}$ where $\left\{e_{n}\right\}$ is the unit vector basis of $c_{0}$, to the sequence $\left\{y_{n}\right\} \subset \ell_{\infty}$ such that $\sum_{n} y_{n}$ is weakly unconditionally Cauchy [7, pp.165-169]. A similar study on the function spaces $\ell_{1}(A, X), c_{0}(A, X)$ and $\ell_{\infty}(A, X)$ are presented in this work. These spaces are important generalizations of the classical Banach spaces $c_{0}, \ell_{1}$ and $\ell_{\infty}$, and they have no Schauder bases in general. The problem is solved by a representation of elements of $\ell_{1}(A, X)$ and $c_{0}(A, X)$ given in [8].

Geometric and other structural properties of these vector-valued function spaces have been intensively studied in recent years. Some important references on structural properties of the space $\ell_{\infty}(A, X)$ of all bounded $X$-valued functions $x: A \rightarrow X$ such that $\sup \left\{\|x(a)\|=\left\|x_{a}\right\|: a \in A\right\}<\infty$ are $[2,3]$, where $A$ is assumed to be an infinite set and $X$ is a normed space. It was shown that many elementary properties
of $X$ such as completeness, separability, barreledness etc. directly effected the structure of the space. For example, there are many examples [2,3] of normed spaces of $\ell_{\infty}(A, X)$ which are barreled whenever $X$ is barreled.

Further, Ferrando and Lüdkovsky [4] conducted similar investigations for the function space $c_{0}(A, X)$, the linear space of all functions $x: A \rightarrow X$ such that for each $\varepsilon>0$ the set $\left\{a \in A:\left\|x_{a}\right\|>\varepsilon\right\}$ is finite or empty. It is a normed space as well as $\ell_{\infty}(A, X)$ with the sup norm $\|x\|_{\infty}=\sup \left\{\left\|x_{a}\right\|: a \in A\right\}$. They also proved that $c_{0}(A, X)$ is either barreled, ultrabornological or unordered Baire-like if and only if $X$ is, respectively barreled, ultrabornological or unordered Baire-like. An analogous result for the $X$-valued sequence space $c_{0}(X)=c_{0}(\mathbb{N}, X)$ was obtained earlier by Mendoza [6]. In [8], for a locally convex space $X$, we dealt with the structural properties of the spaces $\ell_{1}(A, X)$ and $c_{0}(A, X)$ where $\ell_{1}(A, X)$ is defined in the next section. A basic result in [8] was a lemma introducing a representation for elements of these spaces, similar to those of spaces possesing a basis. Hence, we can easily study the separability of the spaces and linear functionals on them. The representations are given by a family $\left\{I_{a}: a \in A\right\}$ of continuous linear functions from $X$ into $\lambda(A, X), \lambda=\ell_{1}$ or $c_{0}$. The family may be unordered and so the representations needs unordered summations. In another important section of the work we prove that this representation of bounded linear operator from $\lambda(A, X), \lambda=\ell_{1}$ or $c_{0}$, into $\lambda(A, X)$, $\lambda=\ell_{1}, \ell_{\infty}$ or $c_{0}$, shows that the operators have to be in just a usual operator matrix form whenever $A=\mathbb{N}$.

## 2. Preliminaries

We use the notations $\mathbb{N}, \mathbb{C}$ and $\mathbb{R}$ for the sets of all positive integers, complex numbers and real numbers. Further, for a fixed normed space $X$, we denote by $B_{X}$ and $S_{X}$ the closed unit ball and sphere of $X . \mathcal{L}(X, Y)$ denotes the space of all continuous operators from $X$ into another normed space $Y$, and $X^{\prime}$ denotes the continuous dual of $X$.

Let $A$ be a set, $\left\{x_{a}: a \in A\right\}$ be a family of vectors in a topological vector space (TVS, for short) $X$ and let $\mathcal{F}$ denote the family of all finite subsets of $A$. Then $\mathcal{F}$ is directed by the inclusion relation $\subseteq$ and, for each $F \in \mathcal{F}$, we can form the finite $\operatorname{sum} s(F)=\sum_{a \in F} x_{a}$. If the net $(s(F): \mathcal{F})$ converges to some $x$ in $X$, then we say that the family $\left\{x_{a}: a \in A\right\}$ is summable, or that the sum $\sum_{a \in A} x_{a}$ exists, and we write $\sum_{a \in A} x_{a}=x$. The definition of summable family does not involve any ordering of the index set $A$, and we may therefore say that the notion of a sum thus defined is commutative (unconditional). In case $A=\mathbb{N}$, to say that the family $\left\{x_{n}: n \in \mathbb{N}\right\}$ is summable to $x$ is equivalent to saying that the series $\sum_{n \in \mathbb{N}} x_{n}$ is unconditionally convergent to $x$. Recall that, a series $\sum_{n \in \mathbb{N}} x_{n}$ in a TVS is said to be unconditionally convergent if and only if for each permutation $\sigma$ of $\mathbb{N}, \sum_{n \in \mathbb{N}} x_{\sigma(n)}$ is convergent. The definition of a convergent series, essentially, involves the order structure of $\mathbb{N}$. If the series $\sum_{n \in \mathbb{N}} x_{n}$ is convergent, and if $\sigma$ is a permutation of $\mathbb{N}$, then the series $\sum_{n \in \mathbb{N}} x_{\sigma(n)}$ may not be convergent, that is, $\left\{x_{n}: n \in \mathbb{N}\right\}$ may not be summable [1, p. 270].

Lemma 2.1. Let $X$ be a normed space, $A$ be a set and $\left\{x_{a}: a \in A\right\}$ be a family of vectors in $X$. Suppose that the net $(s(F): \mathcal{F})$ converges to some $x$ in $X$ where $s(F)=\sum_{a \in F} x_{a}, F \in \mathcal{F}$. Then $(s(F): \mathcal{F})$ is bounded.

Proof. By the hypothesis there exist some $F_{0} \in \mathcal{F}$ such that $\|s(F)-x\| \leq 1$ for every $F_{0} \subseteq F$. Let $n\left(F_{0}\right)$ be the cardinality of $F_{0}$. The number of subsets of $F_{0}$ is $2^{n\left(F_{0}\right)}<\infty$ so that

$$
\sup _{F \subseteq F_{0}}\|s(F)\|=M<\infty
$$

Further, for every $F_{0} \subseteq F$,

$$
\|s(F)\|-\|x\| \leq\|s(F)-x\| \leq 1 \Leftrightarrow \sup _{F_{0} \subseteq F}\|s(F)\| \leq 1+\|x\| .
$$

Consequently,

$$
\sup _{F \in \mathcal{F}}\|s(F)\| \leq 1+\|x\|+M .
$$

Note that a convergent net may not be bounded in some cases; e.g., $x \rightarrow 0$ for positive real $x$ with reversed usual order: $x \succeq y \Leftrightarrow x \leq y$.

Another important normed linear subspace of $X^{A}$ other than $\ell_{\infty}(A, X)$ and $c_{0}(A, X)$ is $\ell_{p}(A, X), 1 \leq p<\infty$, the set of all functions $x: A \rightarrow X$ such that the family $\left\{\left\|x_{a}\right\|^{p}: a \in A\right\}$ is summable in $\mathbb{R}$, i.e.

$$
\sum_{a \in A}\left\|x_{a}\right\|^{p}<\infty
$$

and it is a normed space with the norm

$$
\|x\|_{p}=\left(\sum_{a \in A}\left\|x_{a}\right\|^{p}\right)^{1 / p}
$$

$\ell_{p}(A, X), \ell_{\infty}(A, X)$ and $c_{0}(A, X)$ are Banach spaces iff $X$ is a Banach space. If $A$ is a directed set, then $\lambda(A, X)\left(\lambda=\ell_{\infty}, c_{0}\right.$ or $\left.\ell_{p}\right)$ is a linear space of all nets in $X$ satisfying the corresponding property. They are usually denoted by $\lambda(X)$ in the case $A=\mathbb{N}$ and are called $X$-valued sequence spaces.

Let us state an important lemma from [8] giving a representation for the elements of the spaces $\lambda(A, X)\left(\lambda=c_{0}\right.$ or $\left.\ell_{p}\right)$.

Lemma 2.2. Let $X$ be a normed space and $A$ be a set. Then each $x \in \lambda(A, X)$ ( $\lambda=c_{0}$ or $\ell_{p}$ ) is represented by

$$
x=\sum_{a \in A} I_{a}\left(x_{a}\right)
$$

where $I_{a}: X \rightarrow \lambda(A, X)$ defined by $I_{a}(t)=y$ such that $y(b)=0$ if $b \neq a$ and $y(b)=t$ if $b=a$.

More precisely, the representation in the lemma means that the net $\left(\pi_{F}(x): \mathcal{F}\right)$ converges to $x$ in the norm topology of $X$ where $\pi_{F}(x)=\sum_{a \in F} I_{a}\left(x_{a}\right)$, for $F \in \mathcal{F}$.

It is easy to see that each linear mapping $I_{a}$ in this Lemma is continuous, and $\left\|I_{a}\right\|=1$.

For each $a \in A$, the $a$ th projection $P_{a}: \lambda(A, X) \rightarrow X$ is defined to be $P_{a}(x)=$ $x(a)$. They are continuous since the topology of $\lambda(A, X)$ is stronger than the natural product topology of $X^{A}$ which is the weakest topology such that the projections $P_{a}: X^{A} \rightarrow X, a \in A$, are continuous. By the representation let us define projections $\pi_{F}(x)$ from $\lambda(A, X)$ into $\lambda(A, X)$ by

$$
\pi_{F}(x)=\sum_{a \in F} I_{a}\left(x_{a}\right)=\sum_{a \in F}\left(I_{a} \circ P_{a}\right)(x)
$$

for each $F \in \mathcal{F}$. These are natural projections corresponding the above representations and will perform very important roles in this work.

## 3. Representations of some operator spaces

Let us give the main result of this section.
Theorem 3.1. Let $X$ and $Y$ be arbitrary Banach spaces and $\lambda=c_{0}$ or $\ell_{1}$. Then the operator space $\mathcal{L}(\lambda(A, X), Y)$ is equivalent by the mapping $T \rightarrow\left\{T \circ I_{a}: a \in A\right\}$ to the Banach space

$$
E_{\lambda}=\left\{\chi=\left\{\chi_{a}\right\} \in \mathcal{L}(X, Y)^{A}: \sup _{F \in \mathcal{F}} \sup _{x \in B_{\lambda(A, X)}}\left\|\sum_{a \in F}\left(\chi_{a} \circ P_{a}\right)(x)\right\|<\infty\right\}
$$

which is normed by

$$
\begin{equation*}
\|\chi\|=\sup _{F \in \mathcal{F}} \sup _{x \in B_{\lambda(A, X)}}\left\|\sum_{a \in F}\left(\chi_{a} \circ P_{a}\right)(x)\right\| . \tag{3.1}
\end{equation*}
$$

Proof. Let us first prove that (3.1) defines a norm. Say

$$
\pi_{F}^{\prime}(x)=\sum_{a \in F}\left(\chi_{a} \circ P_{a}\right)(x)
$$

and let $\|\chi\|=0$. Then

$$
\sup _{x \in B_{\lambda(A, X)}}\left\|\pi_{F}^{\prime}(x)\right\|=0
$$

for each $F \in \mathcal{F}$ and in particular, for $F=\{a\}(a \in A)$. This implies

$$
\left\|\left(\chi_{a} \circ P_{a}\right)(x)\right\|=0
$$

for each $a$. Hence, $\chi_{a}=0$ by the definition of $P_{a}$ and so $\chi=0$. Other properties of norm can easily be verified.

Now let $T \in \mathcal{L}(\lambda(A, X), Y)$ and say $\chi_{a}=T \circ I_{a}$. Then

$$
\begin{aligned}
T x & =T\left(\sum_{a \in A}\left(I_{a} \circ P_{a}\right)(x)\right)=\sum_{a \in A}\left(T \circ I_{a} \circ P_{a}\right)(x) \\
& =\sum_{a \in A}\left(\chi_{a} \circ P_{a}\right)(x)=\lim _{F \in \mathcal{F}} \pi_{F}^{\prime}(x)
\end{aligned}
$$

for $x \in \lambda(A, X)$, whence, the net $\left(\pi_{F}^{\prime}(x): \mathcal{F}\right)$ is convergent so is bounded by Lemma 2.1. Hence

$$
\sup _{F \in \mathcal{F}}\left\|\pi_{F}^{\prime}\right\|=\sup _{F \in \mathcal{F}} \sup _{x \in B_{\lambda(A, X)}}\left\|\sum_{a \in F}\left(\chi_{a} \circ P_{a}\right)(x)\right\|<\infty
$$

by the uniform boundedness principle, that is, $\chi=\left\{\chi_{a}=T \circ I_{a}: a \in A\right\} \in E$. Further,

$$
\begin{aligned}
\|T x\| & \leq\left\|\sum_{a \in A}\left(\chi_{a} \circ P_{a}\right)(x)\right\| \leq \sup _{F \in \mathcal{F}}\left\|\sum_{a \in F}\left(\chi_{a} \circ P_{a}\right)(x)\right\| \\
& =\sup _{F \in \mathcal{F}}\left\|\pi_{F}^{\prime}(x)\right\| \leq \sup _{F \in \mathcal{F}}\left\|\pi_{F}^{\prime}\right\|\|x\|=\|\chi\|\|x\|
\end{aligned}
$$

so this implies $\|T\| \leq\|\chi\|$.
On the other hand, for each $F \in \mathcal{F}$,

$$
\begin{aligned}
\left\|\sum_{a \in F}\left(\chi_{a} \circ P_{a}\right)(x)\right\| & =\left\|T\left(\sum_{a \in F}\left(I_{a} \circ P_{a}\right)(x)\right)\right\| \leq\|T\|\left\|\sum_{a \in F}\left(I_{a} \circ P_{a}\right)(x)\right\| \\
& =\|T\|\left\|\pi_{F}(x)\right\| \leq\|T\|\left\|\pi_{F}\right\|\|x\|=\|T\|\|x\|
\end{aligned}
$$

hence, $\|\chi\| \leq\|T\|$. This means we can set an isometry $\Lambda$ from $\mathcal{L}(\lambda(A, X), Y)$ into $E_{\lambda}$. In fact, $\Lambda$ is an equivalence since it is onto. Let us prove this. Pick some $\chi \in E_{\lambda}$ and define $T x=\sum_{a \in A}\left(\chi_{a} \circ P_{a}\right)(x)$. We must show first that $T$ is well-defined. This, obviously, is equivalent to the summability of the family $\left\{\left(\chi_{a} \circ P_{a}\right)(x): a \in A\right\}$ to $T x$, and so is equivalent to the convergence of the net $\left(\pi_{F}^{\prime}(x): F \in \mathcal{F}\right)$ to $T x$ for each $x \in \lambda(A, X)$. For each $G \in \mathcal{F}$

$$
\pi_{G \cup F}^{\prime}\left(\pi_{F}(x)\right)=\pi_{F}^{\prime}\left(\pi_{F}(x)\right)
$$

since $P_{a} \circ I_{a}=i d_{X}$, (identity on $X$ ) if $a=b$ and $P_{a} \circ I_{b}=0$, (zero operator on $X$ ) if $a \neq b$. This implies the net $\left(\pi_{G}^{\prime}\left(\pi_{F}(x)\right): G \in \mathcal{F}\right)$ converges in $Y$. This means that for each element $z$ of the dense subspace

$$
\left\{\pi_{F}(x): F \in \mathcal{F}, x \in \lambda(A, X)\right\}
$$

of $\lambda(A, X)$, the net $\left(\pi_{G}^{\prime}(z): G \in \mathcal{F}\right)$ converges in $Y$. Since $Y$ is complete, for each $x \in \lambda(A, X)$ we have $\left(\pi_{F}^{\prime}(x): \mathcal{F}\right)$ is convergent (necessarily to $T x$ ). Hence, $T$ is well-defined and, furthermore, $T$ is continuous because $\|T\| \leq\|\chi\|$.

Theorem 3.1 can also be stated as follows:
Theorem 3.2. Let $X$ and $Y$ be two Banach spaces and $\lambda=c_{0}$ or $\ell_{1}$. Then the operator space $\mathcal{L}(\lambda(A, X), Y)$ is equivalent to the Banach space

$$
E_{\lambda}=\left\{\chi=\left\{\chi_{a}\right\} \in \mathcal{L}(X, Y)^{A}:\left\{\left(\chi_{a} \circ P_{a}\right)(x): a \in A\right\} \text { is summable, } \forall x \in X\right\}
$$

equipped with the norm

$$
\|\chi\|=\sup _{F \in \mathcal{F}} \sup _{x \in B_{\lambda(A, X)}}\left\|\sum_{a \in F}\left(\chi_{a} \circ P_{a}\right)(x)\right\|
$$

Remark 3.1. It is important to realize that

$$
\begin{equation*}
\ell_{1}(A, \mathcal{L}(X, Y)) \subseteq E_{c_{0}} \tag{3.2}
\end{equation*}
$$

in Theorem 3.1. Indeed, if $\chi \in \ell_{1}(A, \mathcal{L}(X, Y))$ then

$$
\begin{aligned}
\sup _{F \in \mathcal{F}} \sup _{x \in B_{c_{0}(A, X)}}\left\|\sum_{a \in F}\left(\chi_{a} \circ P_{a}\right)(x)\right\| & \leq \sup _{F \in \mathcal{F}} \sup _{x \in B_{c_{0}(A, X)}} \sum_{a \in F}\left\|\chi_{a}\right\|\left\|x_{a}\right\| \\
& =\sup _{F \in \mathcal{F}} \sum_{a \in F}\left\|\chi_{a}\right\|=\sum_{a \in A}\left\|\chi_{a}\right\|<\infty .
\end{aligned}
$$

Example 3.1. The inclusion relation (3.2) may be strict. Indeed; let $X=Y=c_{0}$ and $A=\mathbb{N}$. Take $\chi=\left(\chi_{n}\right)$ as sequence of infinite matrices such that $\chi_{n}=\left(a_{i j}^{n}\right)$ : $a_{n n}^{n}=1, a_{i j}^{n}=0$ otherwise. By the characterization of the matrix classes $\left(c_{0}, c_{0}\right)$, obviously each $\chi_{n} \in\left(c_{0}, c_{0}\right)=\mathcal{L}\left(c_{0}, c_{0}\right)$. Further, for some $x=\left(x_{n}\right) \in c_{0}\left(c_{0}\right)$

$$
\chi_{n}\left(x_{n}\right)=\left(0, \ldots, 0, x_{n}^{n}, 0, \ldots\right)=x_{n}^{n} e_{n}, n \in \mathbb{N}
$$

where $x_{n}=\left(x_{n}^{k}\right)_{k=1}^{\infty} \in c_{0}$. Hence, for each finite $F=\left(n_{1}, n_{2}, \cdots, n_{m}\right) \subset \mathbb{N}$,

$$
\sum_{n_{i} \in F} \chi_{n_{i}}\left(x_{n_{i}}\right)=\sum_{i=1}^{m} x_{n_{i}}^{n_{i}} e_{n_{i}} .
$$

This means

$$
\sup _{x \in B_{c_{0}\left(c_{0}\right)}}\left\|\sum_{n_{i} \in F} \chi_{n_{i}}\left(x_{n_{i}}\right)\right\|=\sup _{\sup \left\|x_{n}\right\|_{\infty} \leq 1}\left\|\sum_{i=1}^{m} x_{n_{i}}^{n_{i}} e_{n_{i}}\right\|=1,
$$

hence,

$$
\sup _{F \in \mathcal{F}} \sup _{x \in B_{c_{0}\left(c_{0}\right)}}\left\|\sum_{n \in F} \chi_{n}\left(x_{n}\right)\right\|=1 .
$$

This shows $\chi \in E_{c_{0}}$. However, $\sum\left\|\chi_{n}\right\|=\infty$, that is, $\chi \notin \ell_{1}\left(\mathcal{L}\left(c_{0}, c_{0}\right)\right)$, because each $\left\|\chi_{n}\right\|=\sup _{i} \sum_{j}\left|a_{i j}^{n}\right|=1$.

Example 3.2. If $Y=\mathbb{C}$ in the above example then the inclusion relation (3.2) is an equality. Hence,

$$
c_{0}(A, X)^{\prime}=\ell_{1}\left(A, X^{\prime}\right)
$$

This was also shown in [8] but we mention it again for greater understanding of the relation. Let $\chi \in E\left(=c_{0}(A, X)^{\prime}\right), F \in \mathcal{F}$ and $\varepsilon>0$ be arbitrary. Consider a function $\varsigma \in \ell_{1}(A, \mathbb{C})$. For each $a \in F$, by the definition of $\left\|\chi_{a}\right\|$, we can find a function $\xi: A \rightarrow S_{X}$ such that

$$
\begin{equation*}
\left\|\chi_{a}\right\|<\left|\chi_{a}\left(\xi_{a}\right)\right|+\varepsilon\left|\varsigma_{a}\right| . \tag{3.3}
\end{equation*}
$$

Write $\chi_{a}\left(\xi_{a}\right)$ in the polar form, i.e.,

$$
\chi_{a}\left(\xi_{a}\right)=e^{i \theta_{a}}\left|\chi_{a}\left(\xi_{a}\right)\right|
$$

and define the function $x$ from $A$ to $X$ by

$$
x_{a}=\left\{\begin{array}{cc}
e^{-i \theta_{a}} \xi(a), & \text { if } a \in F \text { and } \chi_{a}\left(\xi_{a}\right) \neq 0 \\
0, & \text { if } a \notin F \text { or } \chi_{a}\left(\xi_{a}\right)=0
\end{array} .\right.
$$

Then obviously $x \in c_{0}(A, X)$ and $\|x\|_{\infty} \leq 1$. Therefore, for this $x$, we have

$$
\left|\sum_{a \in A} \chi_{a}\left(x_{a}\right)\right|=\left|\sum_{a \in F} e^{-i \theta_{a}} \chi_{a}\left(\xi_{a}\right)\right|=\sum_{a \in F}\left|\chi_{a}\left(\xi_{a}\right)\right| \leq\|\chi\|
$$

This implies, by the inequality (3.3), that

$$
\sum_{a \in A}\left\|\chi_{a}\right\| \leq\|\chi\|+\varepsilon\|\varsigma\|_{1},
$$

hence, $\sum_{a \in A}\left\|\chi_{a}\right\| \leq\|\chi\|$; that is, $\chi \in \ell_{1}\left(A, X^{\prime}\right)$.
We don't know whether this equality exist for an arbitrary finite-dimensional Banach space $Y$ or not.

Corollary 3.1. $E_{\ell_{1}}=\ell_{\infty}(A, \mathcal{L}(X, Y))$
Proof. For each $v \in S_{X}$ and each $a \in A$ consider the functions $v^{a}=I_{a}(v)$. Hence for $v^{a} \in S_{\ell_{1}(A, X)}$ we have

$$
\sum_{b \in F}\left(\chi_{b} \circ P_{b}\right)\left(v^{a}\right)=\left\{\begin{array}{ll}
\chi_{a}(v), & \text { if } a \in F \\
0, & \text { if } a \notin F
\end{array},\right.
$$

and so

$$
\begin{aligned}
\sup _{F \in \mathcal{F}} \sup _{x \in B_{\ell_{1}(A, X)}}\left\|\sum_{a \in F}\left(\chi_{a} \circ P_{a}\right)(x)\right\| & =\sup _{F \in \mathcal{F}} \sup _{v \in S_{X}}\left\|\sum_{b \in F}\left(\chi_{b} \circ P_{b}\right)\left(v^{a}\right)\right\| \\
& =\sup _{a \in A} \sup _{v \in S_{X}}\left\|\chi_{a}(v)\right\|=\sup _{a \in A}\left\|\chi_{a}\right\| .
\end{aligned}
$$

This implies the equality.
Hence we have the equality $\ell_{1}(A, X)^{\prime}=\ell_{\infty}\left(A, X^{\prime}\right)$ of [8] as a corollary of this result with $Y=\mathbb{C}$.

## 4. The operator matrix representation

Let $A=\mathbb{N}$ and $X, Y$ be arbitrary Banach spaces. In the classical sequence space theory, each bounded linear operator from $\ell_{1}$ or $c_{0}$ into another BK-space have to be given an infinite matrix of scalar terms. Is there such a useful representation of every operator from $\ell_{1}(X)$ or $c_{0}(X)$ into another $Y$-valued BK-spaces $\eta(Y)$ ? We mean by $Y$-valued BK-spaces a Banach space $\eta(Y)$ of $Y$-valued sequences $y=\left(y_{n}\right)$ such that all coordinate projections $Q_{n}: \eta(Y) \rightarrow Y, Q_{n}(y)=y_{n}, n=1,2, \ldots$ are continuous under the norm topology. The representations presented in Lemma 2.2 helps to give us an affirmative answer to this question. A deep investigation of operator matrices between Banach space-valued sequence spaces was given by Maddox [5]. Now let us record some fundamental notations on operator matrices from this paper.

Let $X$ and $Y$ be Banach space and $A=\left(A_{n k}\right)_{n, k \in \mathbb{N}}$ an infinite matrix of linear, bounded operators $A_{n k}$ on $X$ into $Y$. Suppose $\zeta(X)$ and $\eta(Y)$ be nonempty sets of $X$ and $Y$-valued sequences respectively. Then we define the matrix class $(\zeta(X), \eta(Y))$ by saying that $A \in(\zeta(X), \eta(Y))$ iff, for every $x=\left(x_{k}\right) \in \zeta(X)$

$$
A_{n}(x)=\sum_{k=1}^{\infty} A_{n k} x_{k}
$$

converges in the norm of $Y$, for each $n$, and the sequence

$$
A x=\left(\sum_{k=1}^{\infty} A_{n k} x_{k}\right)_{n=1}^{\infty}
$$

belongs to $\eta(Y)$.
Now, we are ready to prove one of our main results.
Theorem 4.1. Let $X$ and $Y$ be arbitrary Banach spaces and $\eta(Y)$ be a $Y$-valued $B K$-space. Then each continuous linear operator $T$ from $\lambda(X)\left(\lambda=c_{0}\right.$ or $\left.\ell_{1}\right)$ into $\eta(Y)$ can be given by an infinite operator matrix. More precisely; for each $T \in$ $\mathcal{L}(\lambda(X), \eta(Y))$, there exist an infinite matrix $A=\left(A_{n k}\right)_{n, k \in \mathbb{N}}$ of continuous linear operators $A_{n k}$ on $X$ into $Y$ such that for each $n \in \mathbb{N}$ and each $x \in \lambda(X)$ the series $\sum_{k=1}^{\infty} A_{n k} x_{k}$ converges in $Y$ and

$$
A x=\left(\sum_{k=1}^{\infty} A_{n k} x_{k}\right)_{n=1}^{\infty} \in \eta(Y) .
$$

Conversely, if $A=\left(A_{n k}\right)_{n, k \in \mathbb{N}}$ is any infinite matrix of continuous linear operators $A_{n k}$ on $X$ into $Y$ such that

$$
\left(\sum_{k=1}^{\infty} A_{n k} x_{k}\right)_{n=1}^{\infty} \in \eta(Y), \text { for each } x \in \lambda(X)
$$

then

$$
\begin{equation*}
T x=\left(\sum_{k=1}^{\infty} A_{n k} x_{k}\right)_{n=1}^{\infty} \tag{4.1}
\end{equation*}
$$

defines an operator $T \in \mathcal{L}(\lambda(X), \eta(Y))$.
Proof. Let $T \in \mathcal{L}(\lambda(X), \eta(Y))$, then since each $x \in \lambda(X)$ has the representation $x=\sum_{k=1}^{\infty} I_{k}\left(x_{k}\right)$, we can write

$$
T x=\sum_{k=1}^{\infty}\left(T \circ I_{k}\right)\left(x_{k}\right) .
$$

Say

$$
A_{n k}=Q_{n} \circ T \circ I_{k}
$$

where $Q_{n}$ 's are coordinate projections on $\eta(Y)$ and are continuous since $\eta(Y)$ is a $Y$-valued BK-space. This means each $A_{n k} \in \mathcal{L}(X, Y)$. Let us write $T x=y=\left(y_{n}\right)$. We must show that, for each $n$, the series $\sum_{k=1}^{\infty} A_{n k} x_{k}$ converges to $y_{n}$ in $Y$. For some $m \in \mathbb{N}$,

$$
\sum_{k=1}^{m} A_{n k} x_{k}=\sum_{k=1}^{m} Q_{n}\left(T\left(I_{k}\left(x_{k}\right)\right)\right)=Q_{n}\left(\sum_{k=1}^{m} T\left(I_{k}\left(x_{k}\right)\right)\right) .
$$

Letting $m \rightarrow \infty$, we have $\sum_{k=1}^{m} T\left(I_{k}\left(x_{k}\right)\right)$ converges to $T x=y$ and hence by the continuity of $Q_{n}$

$$
Q_{n}\left(\sum_{k=1}^{m} T\left(I_{k}\left(x_{k}\right)\right)\right) \rightarrow Q_{n}(y)=y_{n}
$$

Conversely, suppose $A=\left(A_{n k}\right)_{n, k \in \mathbb{N}}$ is any infinite operator matrix such that

$$
\left(\sum_{k=1}^{\infty} A_{n k} x_{k}\right)_{n=1}^{\infty} \in \eta(Y), \text { for each } x \in \lambda(X)
$$

Let us define the operator $T$ by (4.1). It is clear that $T$ is linear. For each $n$, the operator

$$
T_{n}: \lambda(X) \rightarrow Y ; T_{n} x=\sum_{k=1}^{\infty} A_{n k} x_{k}
$$

is continuous. This is a consequence of Banach-Steinhaus theorem. Since

$$
\pi_{m}(x)=\sum_{k=1}^{m} I_{k}\left(x_{k}\right)
$$

converges to $x$ in $\lambda(X)$, we have $\left(T_{m} \circ \pi_{m}\right)(x) \rightarrow T_{m} x$ as $m \rightarrow \infty$. Suppose $\left(T \circ \pi_{m}\right)(x) \rightarrow y$. We note that

$$
Q_{m} \circ T \circ \pi_{m}=T_{m} \circ \pi_{m},
$$

and so

$$
\left(Q_{m} \circ T \circ \pi_{m}\right)(x)=\left(T_{m} \circ \pi_{m}\right)(x) \rightarrow Q_{m}(y)=y_{m}
$$

That is $T_{m} x=y_{m}$ for each $m$, whence $T x=y$. This means $T$ is continuous by the closed graph theorem.

Acknowledgements. The author thanks the referee for the invaluable comments that help improved the paper.

## References

[1] N. Bourbaki, General Topology, Reading Mass., Addison-Wesley, 1966.
[2] J. C. Ferrando, On the barrelledness of the vector-valued bounded function space, J. Math. Anal. Appl. 184 (1994), no. 3, 437-440.
[3] J. C. Ferrando, On some spaces of vector-valued bounded functions, Math. Scand. 84 (1999), no. 1, 71-80.
[4] J. C. Ferrando and S. V. Lüdkovsky, Some barrelledness properties of $c_{0}(\Omega, X)$, J. Math. Anal. Appl. 274 (2002), no. 2, 577-585.
[5] I. J. Maddox, Infinite matrices of operators, Lecture Notes in Math., 786, Springer, Berlin, 1980.
[6] J. Mendoza, A barrelledness criterion for $C_{0}(E)$, Arch. Math. (Basel) 40 (1983), no. 2, 156-158.
[7] I. Singer, Bases in Banach Spaces. I, Springer, New York, 1970.
[8] Y. Yılmaz, Structural properties of some function spaces, Nonlinear Anal. 59 (2004), no. 6, 959-971.
[9] Y. Yılmaz, Characterizations of some operator spaces by relative adjoint operators, Nonlinear Anal. 65 (2006), no. 10, 1833-1842.

