BULLETIN of the Bull. Malays. Math. Sci. Soc. (2) 32(2) (2009), 187-210
MALAYSIAN MATHEMATICAL
SCIENCES SOCIETY
http://math.usm.my/bulletin

On Perfect-Like Binary and Non-Binary Linear Codes
— A Brief Survey

IBAL KisHAN DAss AND 2PANKAJ KUMAR Das

IDepartment of Mathematics, University of Delhi,
Delhi-110 007, India
2Department of Mathematics, Shivaji College
(University of Delhi), Delhi-110 027, India
Ldassbk@rediffmail.com, 2pankaj4thapril@yahoo.co.in
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1. Introduction

One of the problems in coding theory is the study of perfect codes with respect
to Hamming metric. It is known that perfect codes emerge from the well known
Rao-Hamming Bound with equality viz.

t

1.1 @k = <”) g—1)

(1) > (7)a-v

where the parameters have the usual meanings e.g. the code is an (n, k) linear code
over GF(q) and t denotes the number of errors which the code is capable to correct.
It is already known that there are perfect codes for t = 1, t = 2 and ¢t = 3.
For t = 1, there is an infinite class of single error correcting perfect codes popularly
known as Hamming codes [12] whereas for t = 2 and ¢ = 3, there is one example each
of (11,6) ternary double error correcting and (23,12) triple error correcting code,
both due to Golay [11]. It has also been established that there is no other Hamming
metric perfect code except the repetition codes which are trivial (refer Tietavainen

and Perko [17], Tietdvéinen [18], and van Lint [19]).
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Many researchers have studied codes which are near to perfect codes. They
have been termed as quasi-perfect codes, optimal codes, close-packed codes etc.
There have also been some efforts to look for codes that meet the equality sign in
the corresponding bound according to the requirements. Such known codes have
been discussed in this paper, e.g. in second section, we deal with Adjacent Error
Correcting Binary Perfect Codes; in the third section, we discuss another kind of
such codes viz. Anti Perfect Codes. The fourth section discusses (1, 2)-optimal binary
codes. The last section viz. Section 5 deals with several (1,2) non-binary optimal
codes.

2. Adjacent error correcting binary perfect codes

In this section, we discuss a class of linear codes in the binary case which are called
“adjacent error correcting perfect codes” (see Sharma and Dass [15]). These codes
are called perfect in the sense that for a fixed positive integer b, these correct all b
adjacent errors and no others. To be precise, we put the definition as follows:

Definition 2.1. A b-adjacent error is a word with nonzero entries in some b con-
secutive positions and zeros elsewhere. A linear code is b-adjacent error correcting
perfect if it corrects all b-adjacent errors and no others i.e. if every coset of the
standard array (except itself) contains exactly one b-adjacent error.

Now considering the positive integers n (code length) and k& (number of informa-
tion digits) and for a given positive integer b, the total number of n-tuples which
have only b consecutive nonzero positions is clearly n — b+ 1. Thus the number of
correctable patterns including the one with all zeros becomes 1+ (n — b+ 1). Since
all these should belong to different cosets and the total number of cosets is 2%, a
code will be b-adjacent error correcting perfect if it corrects b-adjacent errors and no
others i.e. every coset of it (except itself) contains exactly one b-adjacent error i.e.
the number of cosets will be equal to the number of b-adjacent error patterns i.e.

2" F =14 (n—b+1)
(2.1) — 2" h=p_py2.
We shall consider examples for b = 1,2 and 3 only.

Example 2.1. When b = 1, i.e., when we wish to consider the correction of all
single errors, (2.1) gives

(2.2) 2k —p 41

which leads to an infinite class of single error correcting perfect codes due to Ham-
ming (1950).

Example 2.2. When b = 2, (2.1) reduces to
(2.3) 2nk —p

which shows that whenever n is a power of 2, we may get 2-adjacent error correcting
perfect code. To put more light on it, we discuss two examples.
Consider the parity-check matrix

01 10
1 0 1 1|°
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This matrix gives rise to a (4,2) linear code, the code being the null space of this

matrix. The syndromes of all 2-adjacent error patterns can be seen to be all different
(see Table 1).

Table 1. Error Vectors — Syndromes

Error patterns Syndromes
0000 00
1100 11
0110 01
0011 10

Therefore the code may be used for double adjacent error correction. Further, it
is perfect by Definition 2.1, since each nonzero 2-tuple is a syndrome of some double
adjacent error pattern.

From (2.3), the next higher admissible value of n is 8 (= 23), for which k = 5.
Consider the parity-check matrix

00101110
01011100
1001 01 11

The syndromes of double adjacent error patterns can be seen to be all distinct
and exhaustive as in Table 1, we conclude that the (8,5) code under discussion is a
2-adjacent error correcting perfect code.

Example 2.3. We now come to examples when b = 3. In this case (2.1) reduces to
(2.4) =k =n—1.

This shows that a 3-adjacent error correcting perfect code may be obtained if n is
one more than a power of 2.

A parity-check matrix for the first admissible set of values of n and k satisfying
(2.4) gives rise to a (5,3) code so as to be 3-adjacent error correcting perfect may
be given as

1 0 0 01
11 1 1 0|

Here also all the syndromes of 3-adjacent error patterns are distinct (see Table 2).
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Table 2. Error Vectors — Syndromes

Error patterns Syndromes
0000O00O0 00
11100 11
01110 01
00111 10

Another example for the next higher value of n is that of a (9,6) code whose
parity-check matrix may be taken as

0 01 01 11
01 01110
1001 01110

It can be verified that all the syndromes of all 3-adjacent error patterns constitute
an exhaustive set of all nonzero 3-tuples. Therefore the code under discussion is
3-adjacent error correcting perfect code.

0 0
0 1

Remark 2.1. An interesting point to be noted in this example is that if we drop
the last column from the parity-check matrix of the (9,6) code then the resulting
matrix coincides with the parity-check matrix of the (8,5) code which has been
considered as the 2-adjacent error correcting perfect code. Also if we delete the last
two columns, we obtain the parity-check matrix of a perfect 1-error correcting code.

It may be pointed out that the parity-check matrices considered in the exam-
ples have been constructed by the following synthesis procedure according to which
nonzero columns are added in the matrices in such a way that the linear combina-
tions i.e. sums (since the case is binary) of any b consecutive columns are always
different and nonzero.

In fact, for a fixed positive integer b, after having selected n — 1 columns suitably
of the parity-check matrix where the first b — 1 columns may be chosen arbitrarily,
n* column may be chosen in such a way that it is not a sum of the immediately
preceding b— 1 columns together with any b consecutive columns among all the n—1
columns. This gives rise to a total of n —b+ 1 possible sums. In the worst case when
these sums are distinct and nonzero, the n*® column can be added if these (n—b+1)
possible sums do not exhaust all the 2"~* — 1 nonzero (n — k)-tuples, i.e. if

2" —1>n—b+1
— 2" Fsp-bt2.
However, the necessary bound for such a code (2.1) suggests that
ok —p—p42.

Therefore, if we could construct a matrix in which all possible sums are not distinct
or if any two possible sums coincide or even if any one sum becomes zero vector,
we shall be able to form a desired code. This can be done by a suitable choice of
columns and is not difficult.
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Thus, for a fixed positive integer b, such codes which correct all b-adjacent errors
and no other satisfying (2.1) can always be constructed. Therefore, for a fixed b,
these codes form an infinite class. If we vary b, these form a doubly infinite class.

Observation 2.1. It may be noted that the parity-check matrices given in the
examples discussed are not unique in general. For example, another parity check
matrix for 2-adjacent error correcting (8,5) perfect code may be given as

001 0O0O0T11
01001110
1001 1 0 01
Open Question 2.1. We suspect that it should be possible to evolve a procedure
for constructing these codes systematically. Further, it is not known if b-adjacent
error correcting perfect codes exist for values of b other than 1 in the non-binary
case.

3. Anti-perfect codes

The study of burst error correcting codes has been made with a view to correct er-
rors amongst a specific number of consecutive positions. There are many situations
where errors occurs, of course, in the form of a burst but not all the digits inside
the burst get disturbed. Such a situation can be studied by imposing a suitable
weight constraint over the detectable/correctable bursts. An attempt in this direc-
tion to find codes capable of detecting and correcting low-density bursts would find
references in papers by Sharma and Dass [14], and Dass [4, 5].

In this section, we deal with a related problem, i.e., the problem of correcting
bursts of length b or less that are of weight w or more (w < b). Such errors may be
called high-density bursts. In the following, a sufficient condition for the existence
of linear codes which are capable of correcting such errors has been given.

As a special case, by taking b = n, we have discussed linear codes which for
some t correct all ¢ and more errors and no others. Such codes have been termed
as ‘Anti perfect codes’, as the character of such codes is directly opposite to that
of perfect codes. Further, we have considered a special type of binary linear codes
which correct all n — 1 and n errors and no others. A relation between these codes
and the well known Hamming codes has also been discussed (see Sharma, Dass and
Gupta [16]).

3.1. A sufficient condition

We start by stating a lemma which is easy to prove:

Lemma 3.1. If B(n,b,w) denotes the number of bursts of length b or less with
weight w or more (w < b) over the space of all n-tuples over GF(q), then

(3.1) B(n,b,w) = p+ J(n,b,w)
where
b b—2

J(n,b,w) = Z (n—i+1) Z (ij2>(q1)j+2 :

1=c 7
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¢ = max{2,w}
and
1+n(g—1), if w=0

p=qnla=1), if w=1

0, if w>2.
The following theorem is any easy application of the above lemma.

Theorem 3.1. For an (n,k) linear code that corrects all bursts of length b or less
with weight w or more (w < b), we must have

(3.2) ¢"* > p+B(n,b,w)
where
0, if w=0
p pry
1, o w>0

and B(n,b,w) is given by Lemma 3.1.

In the next theorem, we give a sufficient condition for the existence of a high-
density-burst correcting linear code.

Theorem 3.2. Given non negative integers w and b (w < b); a sufficient condition
for the existence of an (n,k) linear code capable of correcting all single bursts of
length b or less that are of weight w or more, is

(3.3) "% > [M(q)+N(q)+B(n—>b,b*,@)B(b—1,b—1,w—1)]

where w = max{1l,w}, b* = max{n — b,b}, B(n,b,w) is given by Lemma 3.1 and
M(q) and N(q) are given as follows:

N(q)=i(b;1>+§<b;1>, if ¢=2

where p is the largest odd integer satisfying

[g}gb—w—L a=max{p+1,w—1}

and [x] denoting the integral part of x. Also

N(g)=¢"" if ¢>3.
Also if ¢ > 3, then

M) = H[bf (" f1‘2)<q—1>““]

X > (b_Z_Q) <k7—21> (q—1)r2+7s

72,73
ro+1r3 < w—2
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D>

k=0 |ri=w—1—(k+1)

|3 (k?)(q—l)“]

Lro=0

w2 b—k—2
™

)(q _

x bef (b_f_2> (q—1)"

| r3=w (k+1) 3

and if ¢ = 2, then the r; satisfy the additional constraints:
ifw—1—(k+1) <r <w-—2, then only those values of ro and rs are permissible
for which there exists a positive integer p (< r9) such that

rm+(k+1—re)+p>w-—1
and
rs+(k+1—ro)+(ra—p)>w—1.

Remark 3.1. This result turns out to be a generalization of the result obtained by
Camponiano given in Theorem 4.10 of Peterson and Weldon [13].

3.2. Anti-perfect codes

Whenever one obtains a bound, it is desirable to check the suitable values of the
parameter for which the bound is tight. In the binary case, for ¢t = n — 1, we show
that the bound obtained in Theorem 3.2 may be used to derive a class of anti-perfect
codes. As proposed earlier, by an anti-perfect code we mean a code which for some
t corrects all ¢ and more errors and no others.

An expression determining n, the code length, and k, the number of information
digits, may be obtained for such codes over GF(q) by putting w =n —1 and b=n
in (3.2) in the case of equality.

Therefore, an anti perfect code for t = n — 1 will exist if it corrects all n — 1 and
n errors and satisfies the equation

(3.4) 2"k =n 42

i.e. whenever n is 2 less than a power of 2, we may get (n— 1) and n error correcting
anti-perfect codes.

To illustrate the idea fully, we discuss two examples. Consider a (6, 3) code whose
parity-check matrix is given by

0001 11
H=|0 11 0 0 1
101 010

The table depicting Error patterns and their corresponding Syndromes is as follows:
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Table 3. Error Vectors — Syndromes

Error patterns Syndromes
011111 110
101111 101
110111 100
111011 011
111101 010
111110 001
111111 111

It is seen that the syndromes of all the error patterns of weight 5 and 6 are
distinct. Therefore, this code may be used for correcting these errors. Further, all
the 3-tuples have been accounted for as syndromes, so it gives an anti-perfect code
for t = 5.

The next higher admissible value of (n, k) satisfying (3.4) is (14, 10). Consider
the parity-check matrix H given by

1 1101110001000
H_llOllOOlOlOlOO
101 10011100010
0111010011000 1

This gives rise to a (14, 10) linear code. Also the syndromes of all patterns of weight
13 and 14 being different and exhaustive can be verified, so we conclude that this
code is also anti-perfect for t = 13.

In fact for every set of values of n and k satisfying (3.4) such a code exists. This
can be established with the help of the following relation between these codes and
the Hamming’s single error-correcting binary perfect codes.

=

3.3. Hamming codes and anti-perfect codes

It can be proved with a little effort that if we drop any column from the parity-check
matrix of a Hamming code, the resultant matrix gives rise to an anti-perfect code
with same number of information digits but with length one less than that of the
corresponding Hamming code.

The existence of Hamming codes for every set of values of n and k satisfying

(3.5) 2k —n 41
thus ensures the existence of anti-perfect codes for all values of n and k satisfying

=k —n 49,

3.4. A decoding process

It is interesting to note that if we choose the parity check matrix H of an anti-perfect
code in such a way that its columns are the binary representations of their column
numbers, then the syndrome of an error pattern of weight (n — 1) is same as that
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of an error pattern of weight one obtained from it by interchanging 0 and 1 and
reversing its order i.e. changing (aq,as,...,a,) to

1-ap,l—ap_1,...,1—as,1—aq).

By choosing the columns of the parity-check matrix H in the above-mentioned way,
the decoding process of anti-perfect codes becomes very simple. If the syndrome of
a received pattern coincides with the ith column of H, this means that all the digits
in the received pattern except the (n —¢)th digit, are in error. If the syndrome does
not coincide with any of the columns of H, this means that all the digits are in error.

3.5. An application

In a binary channel, suitable for tolerating single errors, if all the arrangements get
reversed and their restructuring becomes either cumbersome or expensive, then the
codes discussed above may be employed.

3.6. Open problem

It may be pointed out that the existence of such anti-perfect codes for other values
of t and ¢ is not yet known.

4. Binary (1,2)-optimal codes

Dass and Tyagi [9] obtained a lower bound over the necessary number of parity-check
digits for an (n = nj+ne, k) linear code that corrects bursts of length b; (fixed) in the
first block of length n; and bursts of length bo(fixed) in the second block of length
na. A burst of length b(fized) has been considered as an n-tuple whose only nonzero
components are confined to b consecutive positions, the first of which is nonzero
and the number of its starting positions is the first (n — b + 1) components. This
definition is a modification due to Dass [6] over the definition of a burst considered
by Chien and Tang [3] and has been found useful in error analysis experiments on
telephone lines (Alexander et al. [1]) and in some space channel models in which an
amplitude modulated carrier is generated aboard a satellite and transmitted to an
earth antenna. The result proved by Dass and Tyagi [9] is as follows:

Theorem 4.1. The number of parity-check digits in an (n,k) linear code correcting
all bursts of length by (fixzed) in the first block of length ny and all bursts of length
ba(fized) in the second block of length ny (n =mnq + ng) is at least

(4.1) log, [14+{(n1=b1+1)¢" " +(na—by+1)¢" '} (g—1)] -

The purpose of this section is to show that if we fix up by = 1 and by = 2, we can
obtain optimal codes. The codes are optimal in the sense that these can be used to
correct all single errors in the first block of length n; and all bursts of length 2(fixed)
in the second block of length ny and no more. It is shown that for ny + ne < 50,
such codes exist for all possible values of the parameters (refer Dass and Tyagi [10]).
Such codes have been termed as (1,2)-optimal codes.
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4.1. Optimal codes

Consider the inequality in (4.1) for the binary case with equality for b, = 1 and
by = 2. We get

(4.2) 2mtna=k — 9ny 4 ny — 1.

We now examine the possibilities of the existence of codes for the values of ni,no
and k satisfying (4.2) such that nq +no < 50. For this, we first note that the values
of n; satisfying (4.2) should always be odd. We shall find out all possible values of
ng and k by assigning values to nq as 1, 3, 5, successively.

Let n; = 1. The values of ny and k satisfying (4.2) such that ny + ne < 50 are
(n2, k) = (2,1),(4,2),(8,5),(16,12) and (32,27) which shows the possibility of the
existence of (142,1), (1+4,2), (1+8,5), (1+16,12), (14 32,27) codes which may
be (1,2)-optimal. Consider the matrices in the following examples :

Example 4.1. [1 0 1}

0 10

0 0010
Example 4.2. |1 0101
1001

00010101
00101111
01001101
10001011

Example 4.3.

=

1000100100101101
0001001101010100
0010011110101001
0100011001011100
1000010010010110

Example 4.4.

_ =0 OO

10010001000100000100101010101101
00010010001100101001110101011000
10000100011101010111010000101001
00001000111010101110100010011110
00110000110001011001001011101010
01100000100010010010010101010101

Example 4.5.

OO R = =

These matrices [Examples (4.1) to (4.5)] considered as parity-check matrices for
a code give rise to (1+2,1), (1+4,2), (1+8,5), (1+16,12) and (1 + 32,27) codes.
Moreover, these codes can correct all bursts of length 1 in the first block of length
1 and all bursts of length 2(fixed) in the second block of lengths 2, 4, 8, 16 and
32 respectively and no other error pattern. For the sake of illustration, we list in
Table 4 the error patterns and their syndromes for the (1 4 8,5) code which is the
null space of the matrix given in example (4.3). The syndromes being altogether
different mean that the code under discussion is an (1, 2)-optimal code.
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Table 4. Error Vectors — Syndromes

Error patterns Syndromes
100000000 1101
011000000 0011
010000000 0001
001100000 0110
001000000 0010
000110000 1100
000100000 0100
000011000 1111
000010000 1000
000001100 1001
000001000 0111
000000110 1011
000000100 1110
000000011 1010
000000010 0101

197

Let n; = 3. We see that the values of ny and k such that ny + ny < 50 and
satisfying (4.2) may give rise to (3+3,3), (3+7,6), (3+15,13) and (3431, 28) codes.
We give below the parity-check matrix for the (3 4 31,28) code as Example 4.6 and
the matrices for the remaining three cases can be written down by a procedure to

be given later.

110
100
110
111
011
010

Example 4.6.

1001000100010000010010101010110
0001001000110010100111010101100
1000010001110101011101000010100
0000100011101010111010001001111
0011000011000101100100101110101
0110000010001001001001010101010

As before, one can easily verify that the codes which are null spaces of these
matrices correct all bursts of length 1 in the first block of length 3 and all bursts
of length 2(fixed) in the second block of length 3, 7, 15 and 31 respectively and no

other error pattern.

Again for ny = 5, the corresponding values of ny and k are given in Table 5.

Table 5
no k
2 4
6 7
14 14
30 29
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We give below the parity-check matrix for the (54 30,29) code. The matrices for
the remaining three cases can be constructed by the procedure to be given later.

Example 4.7. For ny = 5, no = 30 and k£ = 29, the requisite code is (5 + 30, 29)
whose parity-check matrix may be considered as

11011 100100010001000001001010101011
10000 000100100011001010011101010110
11000 100001000111010101110100001010
11101 000010001110101011101000100111
01110 001100001100010110010010111010
01011 011000001000100100100101010101

and as pointed out earlier, one can easily verify that the codes which are null spaces
of these matrices correct all bursts of length 1 in the first block and all bursts of
length 2(fixed) in the second block.

We now give in Table 6 all possible suitable values of ny and k for fixed value of
niy.

The parity-check matrices of (7+ 29,30), (9+28,31), (11+ 27,32), (13 + 26, 33),
(15 + 25,34), (174 24,35), (19 + 23,36), (21 + 22,37) and (23 4 21,38) codes are
given below as these do not follow the procedure to be given later.

For (7 + 29, 30) code, the parity-check matrix is

1001011 00100010001000100100101010101
0010101 00100100011001001001110101011
1011101 00001000111010110111010000101
0111011 00010001110101001110100010011
0111101 01100001100010011001001011101
1011110 11000001000100010010010101010
For (9 + 28,31) code, the parity-check matrix is
100101110 0010001000100010010010101010
001010101 0010010001100100100111010101
101110110 0000100011101011011101000010
011101101 0001000111010100111010001001
011110110 0110000110001001100100101110
101111011 1100000100010001001001010101
For (11 4 27,32) code, the parity-check matrix is
10010111011 001000100010001001001010101
00101010101 001001000110010010011101010
10111011011 000010001110101101110100001
01110110101 000100011101010011101000100
01111011011 011000011000100110010010111
10111101101 110000010001000100100101010
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For (13 + 26, 33) code, the parity-check matrix is

0111111110011 00000100010001001001010101
1000111101110 00001000110010010011101010
1011000111011 00010001110101101110100001
0101001101110 00100011101010011101000100
1001011111011 01000011000100110010010111
1111100011110 10000010001000100100101010
Table 6

n1 n9 k

7 5 8

13 15

29 30

9 4 9

12 16

28 31

11 3 10

11 17

27 32

13 2 11

10 18

26 33

15 9 19

25 34

17 8 20

24 35

19 7 21

23 36

21 6 22

22 37

23 ) 23

21 38

25 4 24

20 39

27 3 25

19 40

29 2 26

18 41

31 17 42

33 16 43

35 15 44

199
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For (15 + 25,34) code, the parity-check matrix is

011111011101101 0000010001000100100101010
100011111011011 0000100011001001001110101
101100001111101 0001000111010110111010000
010100111011000 0010001110101001000100010
100101011111110 0100001100010011001001011
111110100111011 1000001000100010010010101

For (17 + 24, 35) code, the parity-check matrix is

01111111101100111
10001111011011110
10110001111100100
01010011011010011
10010111111101001
11111000111011110

000001000100010010010101
000010001100100100111010
000100011101011011101000
001000111010100111010001
010000110001001100100101
100000100010001001001010

For (19 + 23, 36) code, the parity-check matrix is

01111111100111011101
10001111011101110111
10110001110111000001
01010011011100011101
10010111110110101101
11111000111101110111

00000100010001001001010 |

00001000110010010011101
00010001110101101110100
00100011101010011101000
01000011000100110010010

For (21 + 22, 37) code, the parity-check matrix is

011111111001110111011
100011110111011101101
101100011101110000000
010100110111000111000
100101111101101011011
111110001111011101111

10000010001000100100101 |

0000010001000100100101 |

0000100011001001001110
0001000111010110111010
0010001110101001110100
0100001100010011001001
1000001000100010010010

For (23 + 21, 38) code, the parity-check matrix is

01111111100111011101111
10011111011101110110111
10110001110111000000011
01010011011100011100000
10010111110110101101110
11111000111101110110111

000001000100010010010
000010001100100100111
000100011101011011101
001000111010100111010
010000110001001100100
100000100010001001001

4.2. Construction of (1,2)-optimal codes

In the previous section, we have considered codes for all possible values of ny, no
and k for which nq +no < 50 and we have seen that these codes correct all bursts of
length 1 in the first block of length n; and all bursts of length 2(fixed) in the second
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block of length ny and no more and therefore, are called (1, 2)-optimal (n; + ns, k)
linear codes.

For the construction of the parity-check matrices of these codes, it is sufficient to
construct the 2nd block because of the following reason:

Suppose the second block of length ny that corrects all bursts of length 2(fixed) is
constructed. This means that the syndromes of the first no — 1 single error patterns
and all double adjacent error pattern are different. (The last and the first component
is not taken as an adjacent error pattern). If the number of all such syndromes is
deleted from the total nonzero (n — k)-tuples, we remain with exactly ny (n — k)-
tuples. Since we are correcting only single errors in the first block, the remaining
(n — k)-tuples can be taken as the columns of the first block irrespective of their
order. The construction of the second block is as follows:

Select any nonzero (n — k)-tuple as the first column of the parity-check matrix H.
Subsequent columns are added to H such that after having selected no — 1 columns
hi, ha,..., hy, — 1, a column h,, is added provided that

Py # tUng—1hn,—1 + vihi + Vig1hig

where either both v; and v;41 are zero or if v (s = @ or ¢ + 1) is the last nonzero
coefficient, then 2 < s < ny — 2, and u,,—1 € GF(2).

‘We now propose a technique of constructing parity-check matrices for such codes
in some special cases: If we choose the first ny —1 columns of the second block of the
parity-check matrix H as the binary representation of the numbers 1,2, 4, 8,16, 32, .. ;
7,14,28,...; 5,10,20,...; 11,22,44,...; 13,26,52,..., successively (whenever the
lesser columns are required, we shall stop there at; then the last column can be
chosen such that its linear combination with (ng — 1)-th column is different from
syndromes of all single and double error patterns of the preceding columns. It is by
this technique that we can write down the parity-check matrices of the codes for the
cases other than those whose parity-check matrices are given in the previous section.
In fact we notice that this technique is applicable when

(i) the number of parity checks is 3,

(ii) the number of parity checks is 4,
(iii) the number of parity checks is 5 except in the examples 4.4 and 4.5,
(iv) the number of parity checks is 6 except when nq < no.

‘We now propose some open problems:

4.3. Open problems

Open Problem 4.3.1. The existence of such codes has been shown only when the
code length does not exceed 50. We conjecture that such codes exists for all possible
values of the parameters satisfying (4.2).

Open Problem 4.3.2. Can there be a systematic way of constructing these codes
for which the above mentioned rule is not applicable?

Remark 4.1. It may be remarked that if we interchange the two blocks i.e. if we
consider (ng + n1, k) linear codes, these will form a class of (2, 1)-optimal codes.
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5. Non-binary (1,2)-optimal codes
5.1. Ternary (1,2)-optimal linear codes
In this section, we explore the possibility of the existence of (1, 2)-optimal codes in

the ternary case i.e. over GF(3) (see Buccimazza, Dass and Jain [2]).
Let us take ¢ = 3 and by = 1, by = 2 in (4.1). We get

(5.1) 3mtna=k —on, 4+ 6ny — 5.
We now examine the values of nq, ne and k satisfying (5.1). For this, we shall assign
values to ny as 1,2,3,... successively and find out the corresponding values of nq
and k.
(i) Let n; =1

Then (5.1) reduces to
(5.2) 327k = 2ny — 1

The various values of ny and k satisfying (5.2) with ng > 2 (because b = 2)

are
(no, k) = {(2,1),(5,3),(14,11), (41, 37),(122,177),

(365,359),... and so on}.
These values show the possibility of the existence of (1 +2,1), (1+5,3), (1+
14,11), (1441,37), (14+122,117), (14365, 359) ... ternary (1, 2)-optimal codes.
In the following, we show that corresponding to the first set of values, such a code
exists i.e. (14 2,1) ternary (1,2)-optimal code exists.

Example 5.1. Consider the following parity-check matrix for (1+2, 1) ternary code:
1 0 2

0 2 0|°

The code which is the null space of H can correct all bursts of length 1 in the first
sub block of length 1 and all bursts of length 2(fix) in the second block of length 2

and no others. We list below all the error vectors and their corresponding syndromes
which can be seen to be distinct altogether and exhaustive.

|

Table 7
Error vectors Syndromes
First sub block
1 0 0 1 0
2 0 0 2 0
Second sub block
01 0 0 2
01 1 2 2
01 2 1 2
0 2 0 0 1
0 2 1 2 1
0 2 2 1 1
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(i) Let ny = 2.
Then (5.1) reduces to
n2=kt2 — Gpy, — 1.

It is clear that the right hand side of above equation is never a power of 3.
Therefore, this equation has no integer solution for ny and k£ and hence such a
(1,2)-optimal code cannot exist in this case.

(iii) Let ny = 3.
Then (5.1) reduces to
3m2 M8 = 6ny 4 1.

Once again, it is evident that this equation has no integer solution for ny, and
k and thus such a (1,2)-optimal code can not exist in this case as well.

(iv) Let ny = 4.
Then (5.1) reduces to

(5.3) 3m2 k48 — ony 1.
The following are the values of ng and k& satisfying (5.3) with ny > 2:
(na k) = {(4,5),(13,13), (40,39), (121,119),

(364,361) ... and so on}

This shows the possibility of the existence of (4+4,5), (4+13,13), (4440, 39),
(4+121,119), (4 + 364,361),. .. ternary (1,2)-optimal codes.

(v) Let ny =5.
Then the equation (5.1) becomes
3712—k+5 — 6’!?,2 + 5 .

This equation clearly has no integer solution for ny and k and thus no (1, 2)-
optimal code exists in this case.

(vi) Let ny = 6.
Then the equation (5.1) becomes
372 7RH0 — Gny + 7.
Once again the case of no integer solution and hence of no (1, 2)-optimal code

in this case.

(vii) Let ny = 7.
Then equation (5.1) reduces to

(5.4) 3n2=k+6 —op, + 3.
The values of ny and k satisfying (5.4) with ng > 2 are as follows:
(na,k) = {(3,7),(12,15),(39,41), (120, 121),

(363,363),...and so on}.



204 B. K. Dass and P. K. Das

This show the possibility of the existence of (7+3,7), (7+12,15), (7+ 39,41),
(7+120,121), (7 + 363,363), ... ternary (1,2)-optimal codes.

(viii) Let nq = 8.
Then the equation (5.1) gives
3127k 8 = 6ny 4 11.
This equation has no integer solution for ny and &k and thus no (1, 2)-optimal
code exists in this case.
(ix) Let ny = 9.
Then equation (5.1) gives
3"k = 6ny 4+ 13
which is again a case of no integer solution and no (1,2)-optimal code.
(x) Let ny = 10.
Then equation (5.1) gives
(5.5) 3m27F Y — ony +5.
The values of ny and k satisfying (5.5) with ny > 2 are:

(na, k) = {(2,9),(11,17),(38,43), (119,123),
(362,365) ... and so on},

which once again shows the possibility of the existence of
(10 + 2,9), (10 + 11,17), (10 + 38,43), (10 + 119,123), (10 + 362,365), ...
ternary (1,2)-optimal codes.

5.1.1. Conclusions and open problem

Solutions of equation (5.1) for ny = 1,2,...,10 have been investigated. It is seen
that equation (5.1) has solutions for n; = 1,4, 7 and 10. It is clear that the equation
(5.1) has integer solutions for n; = 13,16,19,... and no integer solutions for n; =

11,12,14,15,17,18, .. ..

The authors viz. Buccimazza, Dass and Jain [2] have been able to obtain code
corresponding to one of the solutions only. This justifies that such a (1,2)-optimal
ternary code exists. However in view of the existence of other solutions of equation
(5.1), the existence of corresponding codes is an open problem.

5.2. (1,2)-optimal codes over GF(5)

In this section, the possibility of existence of (1,2)-optimal codes in the 5-ary case
i.e. over GF(5) have been explored (see Dass, Iembo and Jain [7]).
Let us take ¢ = 5, and by =1, by = 2 in (4.1). We get

(5.6) 5mtnz=k — 4ny 4 20ny — 19.
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We now examine the values of ny, ns and k satisfying (5.6). For this, we shall assign
values to n; as 1,2,3,... successively and find out the corresponding values of ng
and k.

(i)

(5.7)

(iii)

(iv)

Let ny = 1.
Then (5.6) reduces to

5“2_k = 4712 -3.

The various values of ny and k satisfying (5.11) with ng > 2 (because by = 2)
are

(no, k) = {(2,1),(7,5),(32,39), (157,153),
(782,777) and so on} .

These values show the possibility of the existence of (1+2,1), (1+7,5), (1+
32,29), (14 157,153), (1 + 782,777), ..., (1,2)-optimal codes over GF(5).

In the following, we show that corresponding to the first set of values, such
a code exists i.e. (1+2,1) 5-ary (1, 2)-optimal code exists.

Example 5.2. Consider the following parity-check matrix for (14 2,1) 5-ary
code:
3 0 4
=[5 i)
The code which is the null space of H can correct all bursts of length 1 in the
first sub block of length 1 and all bursts of length 2(fix) in the second block
of length 2 and no others. As shown in Table 7, it can be shown that the
syndromes of all the error vectors are distinct altogether and exhaustive.

Let nqy = 2.
Then (5.6) reduces to

5m2=k+2 — 90n, — 11.

It is clear that R.H.S. of above equation is never power of 5. Therefore, this
equation has no integer solution for ns and k and hence such a (1,2)-optimal
code can not exist in this case.

Let n, = 3.
Then (5.6) reduces to
527k = 20ny — 7.

Once again, it is evident that this equation has no integer solution for ny, and
k and thus such a (1,2)-optimal code cannot exist in this case as well.

Let ny = 4.
Then (5.6) reduces to

sr2—ktd — 90p, — 3.
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This equation clearly has no integer solution for ns and k and thus no (1,2)-
optimal code exists in this case.

(v) Let ny = 5.
Then the equation (5.6) reduced to
52 7F5 = 20ny 4 1.

Once again the case of no integer solution and hence of no (1, 2)-optimal code
in this case.

(vi) Let n; =6.
Then (5.6) reduces to
(5.8) 52 7kES —dpy 1.
The following are the values of ng and k satisfying (5.8) with ny > 2:
(n2, k) = {(31,34), (156, 158), (781, 782), ... and so on}.

This shows the possibility of the existence of (6 + 31,34), (6 + 156, 158),
(6 + 781,782),... 5-ary (1,2)-optimal codes.

(vii) Let ny = 7.
Then the equation (5.6) reduces to
52 7R = 20ny 4 9.

This equation has no integer solution for ny and k and thus no (1, 2)-optimal
code exists in this case.

(viii) Let ny = 8.
Then the equation (5.6) gives
572 7RF8 = 200, + 13,
which is again a case of no integer solution and no (1,2)-optimal code.
(ix) Let ny = 9.
Then the equation (5.6) gives
52 =k+9 — 90n, + 17,
a case of no integer solution and no (1, 2)-optimal code.
(x) Let ny = 10.
Then equation (5.6) reduces to
5m2=k+10 — 90p, + 21,

again a case of no integer solution and no optimal code.
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(xi) Let ny = 11.
Then the equation (5.6) gives

(5.9) 5m2=kH10 — ypy 45,
The values of ny and k satisfying (5.9) with ny > 2 are :
(ne, k) = {(5,13),(30,37), (155,161), (780, 785), and so on},

which once again shows the possibility of the existence of (11 + 5,13), (11 +
30,37), (11 + 155,101), (11 + 78,785), ... 5-ary (1, 2)-optimal codes.

5.2.1. Conclusions and open problem

In this section, we have investigated solutions of equation (5.6) forny =1,2,...,11.
It is seen that equation (5.6) has solutions for n; = 1,6 and 11. It is clear that
equation (5.6) has integer solutions for nq = 16,21, ... and no integer solutions for
ny = 12,13,14,15,17,18,19,20,.... It is seen that it has been possible to obtain
code corresponding to one of the solutions only. This justifies that such a (1,2)-
optimal 5-ary code exists. However, in view of the existence of other solutions of
equation (5.6), the existence of corresponding code is an open problem.

5.3. (1,2)-optimal codes over GF(7)

In this section, we explore the possibility of existence of such codes in the 7-ary case
i.e. over GF(7) (see Dass, Iembo and Jain [8]).
Let us take ¢ =7 and by = 1, by = 2 in (4.1). We get

(5.10) 7=k — Gny 4420y — 41,
We now examine the values of nq, no and k satisfying (5.10). For this, we shall
assign values to ny as 1,2, 3, ... successively and find out the corresponding values
of ny and k.
(i) Let ny =1.
Then (5.10) reduces to
(5.11) 727k = 6ny — 5.

Various values of ny and k satisfying (5.11) with ny > 2 (because by = 2) are:
(no, k) ={(2,1),(9,7),(58,55), (401,397),... and so on}.
These values show the possibility of the existence of (1 + 2,1), (1 +9,7),
(1+58,55), (14 401,397), ..., 7-ary optimal codes.
In the following, we show that corresponding to the first set of values, such
a code exists i.e. (1+2,1) 7-ary (1, 2)-optimal code exists.

Example 5.3. Counsider the following parity-check matrix for (1+2,1) 7-ary code:
5 0 6
H = {0 6 O} '

The code which is the null space of H can correct all bursts of length 1 in the first
sub block of length 1 and all bursts of length 2(fixed) in the second block of length
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2 and no others. It can be verified from the error vectors and their corresponding
syndromes.

(i)

(iii)

(vi)

(vii)

Let nqy = 2.
Then (5.10) reduces to

T2k E2 — on, — 29

It is clear that the right hand side of above equation is never a power of 7.
Therefore, this equation has no integer solution for ny and k£ and hence such a
(1,2)-optimal code can not exist in this case.

Let nqy = 3.
Then (5.10) reduces to

72 =kE3 — 4o, — 23

Once again, it is evident that this equation has no integer solution for ny, and
k and thus such a (1,2)-optimal code can not exist in this case as well.

Let nqy = 4.
Then (5.10) becomes

ekt — on, — 17.

This equation clearly has no integer solution for ny and k and thus no (1, 2)-
optimal code exists in this case.

Let nqy = 5.
Then the equation (5.10) reduces to

2=kt — on, — 11.

Once again the case of no integer solution and hence of no (1, 2)-optimal code
in this case.

Let ny = 6.
Then equation (5.10) gives

772 7R6 — on, — 5.

This equation has no integer solution for ny and k and thus no (1,2)-optimal
code exists in this case.

Let ny = 7.
Then equation (5.10) reduces to

7R = 42ny 4+ 1

which is again a case of no integer solution and no (1,2)-optimal code.
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(viii) Let ny = 8.
Then the equation (5.10) gives
(5.12) 72T — 6py 4 1.
The values of ny and k satisfying (5.12) with ny > 2 are as follows:
(na, k) = {(8,13),(57,61), (400,403) and so on}.

This shows the possibility of the existence of (8 + 8,13), (8 + 57,61), (8 +
400,403), ..., T-ary (1,2)-optimal codes.

5.3.1. Conclusions and open problem

In this section, solutions of equation (5.10) for n; = 1,2,...,8 have been investi-
gated . It is seen that equation (5.10) has solutions for n; = 1 and 8. It is clear that
equation (5.10) has integer solutions for n; = 15,22,... and no integer solution for

ny = 9,10, 11,12,13,14,16,17,18,19,20, 21, . ... Dass, lembo and Jain [7] have been
able to obtain code corresponding to one of the solutions only. This justifies that
such a (1,2)-optimal 7-ary code exists. However, in view of the existence of other
solutions of equation (5.10), the existence of corresponding codes is an open problem.
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