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Abstract. The derivatives of the Gaussian function, G(x) = 1√
2π

e−x2/2, pro-

duce the Hermite polynomials by the relation, (−1)mG(m)(x) = Hm(x)G(x),
m = 0, 1, . . ., where Hm(x) are Hermite polynomials of degree m. The orthonor-

mal property of the Hermite polynomials, 1
m!

R ∞

−∞
Hm(x)Hn(x)G(x)dx = δmn,

can be considered as a biorthogonal relation between the derivatives of the

Gaussian, {(−1)nG(n) : n = 0, 1, . . .}, and the Hermite polynomials, {Hm

m!
:

m = 0, 1, . . .}. These relationships between the Gaussian and the Hermite poly-
nomials are useful in linear scale-space analysis and applications to human and
machine vision and image processing. The main objective of this paper is to
extend these properties to a family of scaling functions that approximate the
Gaussian function and to construct a family of Appell sequences of “scaling
biorthogonal polynomials” that approximate the Hermite polynomials.

2000 Mathematics Subject Classification: 41A15, 41A30, 42C05, 42C15

Key words and phrases: Gaussian function, Hermite polynomials, scale-space,
normal approximation, B-splines, scaling functions, variation diminishing, causal-
ity.

1. Introduction

The Gaussian function, G(x) = 1√
2π
e−x

2/2, has many interesting properties and was

the genesis of many branches of mathematics, science and engineering. As an icon of
statistics, it is the frequency function of the normal distribution. The approximation
of the normal distribution by the binomial distributions, an elementary statistical
technique that has been used for centuries, is still a motivation for the development
of new mathematics. The binomial distributions are defined by the binomial coeffi-

cients,
{

1
2n

(
n
j

)
: j = 0, . . . , n

}
. For each n the binomial coefficients also determine,

uniquely up to a constant multiple, the uniform B-spline, Bn, of order n, by the
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equation

(1.1) Bn(x) = 2

n∑

j=0

1

2n

(
n

j

)
Bn(2x− j), x ∈ R.

Equation (1.1) is known as a refinement equation, Bn is called a scaling function
and { 1

2n

(
n
j

)
: j = 0, . . . , n} is called its mask. Like the binomial distributions, the

uniform B-splines, when suitably standardized, approximate the Gaussian function
for large n, a process known as normal approximation by B-splines. The binomial
coefficients and the B-splines, which are related by the refinement equation (1.1),
share other properties besides normal approximation. In Physics and Signal Pro-
cessing, the Gaussian function is known to be optimal in time-frequency localization.
More precisely, it is the unique function that attains the uncertainty bound in the
Heisenberg’s Uncertainty Principle. It is well-known that the scaled Gaussian,

(1.2) Gt(x, y) :=
1

2t
G(x/

√
2t)G(y/

√
2t) =

1

4πt
e−(x2+y2)/4t,

is the convolution kernel for the solution of the heat equation, i.e. the convolution,
of Gt with a function f,

(1.3) u(x, y, t) := Gt ∗ f(x, y),

is the solution of the heat equation,

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, with initial condition, u(x, y, 0) = f(x, y).

This establishes a connection for the heat equation with linear scale-space analy-
sis, an image analysis technique in computer vision that employs the scale-space
operator, also known as multiscale operator, defined by

Mtf(x, y) := Gt2/2 ∗ f(x, y)

=
1

t2

∫
G

(
y − v

t

)
dv

∫
G

(
x− u

t

)
f(u, v)du, t > 0.(1.4)

In scale-space analysis,Mtf represents the object f, which can be an image, a surface
or a geometric object at scale t. In (1.4) the Gaussian function is the filter of the
scale-space process, which is known as Gaussian scale-space. This connection, which
was pointed out by Koenderink [23], has led to the development of modern non-
linear scale-space analysis (see [27], [22]). Linear scale-space analysis was introduced
earlier, independently, by Iijima [19] (see also [38]) and Witkin [39]. Since the
Gaussian function is separable, the Gaussian scale-space operator (1.4) is an iterated
application of the one-dimensional filtering,

(1.5) Ttf(x) =
1

t

∫
G

(
x− u

t

)
f(u)du.

The pervasiveness of the Gaussian function in mathematics, science and technol-
ogy has motivated the study of Gaussian approximation. The central limit theorem
is about Gaussian approximation. It is one of the fundamental theorems in probabil-
ity and statistics. The binomial approximation of normal distribution is an example
of the central limit theorem. The normal approximation of B-splines is another
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example. Since the B-splines approximate the Gaussian function G, they can also
be used as a filter in place of the Gaussian filter in (1.5) for linear scale-space.
Wang and Lee [37] introduced this idea and developed a linear scale-space using
B-splines. The B-spline scale-space approximates the Gaussian scale-space with fil-
tering at both dyadic and rational scales that provide fast parallel algorithms for
computations.

It is shown in [5] that a large class of scaling functions, φn, that satisfy refinement
equations of the form,

(1.6) φn(x) = 2

n∑

j=0

an(j)φn(2x− j), x ∈ R,

where an(j) ≥ 0,
∑n

j=0 an(j) = 1, as well as the distributions of their masks

{an(j)}nj=0 converge to G, and various forms of convergence are investigated. This
class of scaling functions includes the B-splines, which corresponds to the case when
the masks {an} are the binomial coefficients. The scaling functions not only approx-
imate the Gaussian but also inherit many of its properties. Very general conditions
on the locations of the roots of the polynomials An(z) :=

∑n
j=0 an(j)z

j are also
found for various forms of convergence. More precise conditions are also known for
different orders of convergence and a family of sequences of scaling functions are
identified that converge to the Gaussian faster than the B-splines [5]. Motivated
by the fact that the Gaussian is optimal in time-frequency localization, it is shown
in [8] and [15] that its approximate scaling functions are asymptotically optimal in
time-frequency localization. The Gaussian scale-space operator,

Ttf(x) =
1

t

∫
G

(
x− u

t

)
f(u)du,

which represents the evolution of the function f with scale t, enjoys the causality
property, i.e. no new “features” are introduced as the scale t increases. The Gaussian
function is the “unique” linear scale-space kernel that enjoys the causality property.
Causality is an important scientific and engineering concept, but there were no
rigorous mathematical formulation and understanding. In [14] we give a definition
of causality using the concept of variation diminishing, extend the definition, and
show that the scale-space operators defined by the approximate scaling functions, in
particular by the B-splines, also enjoy the causality property in the extended sense.
The Gaussian function and the Hermite polynomials are intimately related. Indeed,

(1.7) (−1)mG(m)(x) = Hm(x)G(x), m = 0, 1, . . . ,

where Hm(x) are Hermite polynomials of degree m, and

(1.8)

∫ ∞

−∞
Hn(x)Hm(x)G(x)dx = m!δmn.

These relationships between the Gaussian function and Hermite polynomials are
useful for scale-space computation and the main objective of this paper is to extend
these relationships to the class of scaling functions that approximate the Gaussian.
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Equations (1.7) and (1.8) show that the sequences {(−1)mG(m) : m = 0, 1, . . .}
and {Hm : m = 0, 1, . . .} are biorthogonal. We shall construct sequences of poly-
nomials, {Pn,m : m = 0, 1, . . .}, associated with the approximating scaling func-
tions , φn, for each arbitrary fixed n, in the same way as the Hermite polynomi-
als Hm are associated with the Gaussian function, and show that the sequences

{Pn,m : m = 0, 1, . . .} and {(−1)mφ
(m)
n : m = 0, 1, . . .} are biorthogonal and that

Pn,m(x) → Hm(x) locally uniformly as n → ∞. The derivatives, φ
(m)
n , are, in gen-

eral, taken in the sense of distribution. In the case when φn are uniform B-splines,
the polynomials, Pn,m,m = 0, 1, . . . , are Bernoulli polynomials of order n.

This investigation is an extension of that for the approximation of the Gaussian
function by a class of scaling functions studied in [5]. In Section 2 we give an ex-
pository account of the approximation of the Gaussian function by a sequence of
discrete distributions and their corresponding scaling functions. Section 3 extends
the biorthogonal relation between the derivatives of the Gaussian function and Her-
mite polynomials to scaling functions and a family of Appell sequences of polyno-
mials, which we call scaling biorthogonal polynomials because of their biorthogonal
relation, with the derivatives of their generating scaling functions. This family of
Appell sequences also includes the Bernoulli polynomials and the Kabaya-Iri poly-
nomials ([20], [21]) . A general algorithm for generating these polynomials is also
given in Section 3. In Section 4 we study the class of scaling biorthogonal polyno-
mials that are generated by compactly supported scaling functions that converge to
the Gaussian. We show that these scaling biorthogonal polynomials converge to the
Hermite polynomials locally uniformly.

2. Normal approximation by probability measures and their scaling func-

tions

2.1. Binomial distributions and uniform B-splines

The uniform B-spline, B1, of order 1 or degree 0, is the characteristic function of
the interval [0, 1), i.e.

B1(x) =

{
1, 0 ≤ x < 1,
0, otherwise .

The uniform B-splines, Bn, of order n or degree n − 1, is defined recursively for
n = 2, 3, . . . , by convolution:

(2.1) Bn(x) = Bn−1 ∗B1 :=

∫ ∞

−∞
Bn−1(x − t)B1(t)dt.

From the probabilistic point of view, B1 is the frequency function of a random
variableX that is uniformly distributed on the interval [0, 1) and Bn is the frequency
function of the sum of n independent copies of X. The function Bn is equal to a
polynomial on each interval between two consecutive integers and vanishes outside
the interval [0, n]. It has continuous derivatives up to order n− 2 and its (n− 1)-th
order derivative is not continuous at the knots, 0, 1, . . . , n. The uniform B-splines,
Bn, were introduced in 1946 by Schoenberg for smoothing and interpolation [29].
They were rediscovered in the early 1970s for computer aided design of free-form
curves and surfaces [3] and resurrected in the 1990s in conjunction with wavelets
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and digital signal processing ([6], [33]). Their discovery and rediscoveries at various
stages of technological development are testimonies to their usefulness.

Fourier transform plays an important role in working with B-splines. The Fourier
transform of B1 is

B̂1(u) =

(
1 − e−iu

iu

)
, u ∈ R,

and for n = 2, 3, . . . ,

(2.2) B̂n(u) =

(
1 − e−iu

iu

)n
, u ∈ R.

Expressing

B̂n(u) =

(
1 + e−iu/2

2

)n(
1 − e−iu/2

i u/2

)n

=

(
1 + e−iu/2

2

)n
B̂n(u/2),

and taking inverse Fourier transform leads to the refinement equation (1.1), which is
the basis for the construction of semi-orthogonal spline wavelets by Chui and Wang
[7]. The uniform B-splines Bn are solutions of the refinement equations of the form
(1.1) and their distribution functions

Fn(x) :=

∫ x

−∞
Bn(t)dt, x ∈ R

satisfy the refinement equations

(2.3) Fn(x) =

n∑

j=0

1

2n

(
n

j

)
Fn(2x− j), x ∈ R,

which is slightly different from (1.1). One can work with refinement equations of the
form (2.3), but in this paper we work only with (1.1).

It is well-known that the binomial distributions converge to the normal distribu-
tion, in the sense that

(2.4) lim
n→∞

[xn]∑

k=0

1

2n

(
n

k

)
=

1√
2π

∫ x

−∞
e−t

2/2 dt,

where xn =
√
nx/2 + n/2. The convergence in (2.4) is known as convergence in

distribution. By the central limit theorem, the uniform B-splines also converges in
distribution to the normal distribution, i.e.

(2.5) lim
n→∞

∫ x′

n

−∞
Bn(t)dt =

1√
2π

∫ x

−∞
e−t

2/2 dt,

where x′n :=
√
nx/2

√
3 + n/2. Further, the standardized B-splines,

B̃n(x) :=
1

2

√
n

3
Bn

(
1

2

√
n

3
x+

n

2

)
.

converge uniformly on R to the Gaussian function (see [4] and [35]). In fact Curry
and Schoenberg [4] considered the more general class of Polya frequency functions
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as limits of non-uniform B-splines with arbitrary knots. On the other hand, Unser,

Aldroubi and Eden [35] proved Lp-convergence of B̃n to G for 1 ≤ p ≤ ∞.
The scaling relations (1.1) that Bn enjoy pass over in the limit to the Gaussian

function in the integral form:

(2.6) G(x) =

∫

R

αG(αx − y)dg(y), x ∈ R,

where α > 1 is a scale or scaling constant and g is the absolutely continuous measure
given by

dg(y) =
1√

2π(α2 − 1)
e−y

2/2(α2−1)dy.

We shall call (2.6) a continuous refinement equation. The Gaussian function and its
derivatives and the modulated Gaussian have been used extensively in many appli-
cations such as scale-space analysis, computer vision and image processing ([1], [24]).
The normal approximations of the binomial distributions and the uniform B-splines
enable the binomial coefficients and B-splines to replace the Gaussian function in
the scale-space representation and vice versa ([24], [36], [37]). The Gaussian func-
tion is optimal in time-frequency localization, amenable to statistical analysis, and
provides an accurate model of human vision ([13], [40]). This motivates the study
of approximation of the Gaussian function by scaling functions that satisfy both the
discrete and continuous refinement equations.

2.2. Sequences of refinement equations

In order to integrate the continuous refinement equations with the discrete ones
(1.6), we consider a sequence of refinement equations,

(2.7) φn(x) =

∫

R

αφn(αx − y)dmn(y), x ∈ R, n = 1, 2, . . . ,

where α > 1 and {mn} is a sequence of probability measures with finite first and
second moments. Equivalently, (2.7) can be expressed in terms of Fourier transforms
in the frequency domain in the form:

(2.8) φ̂n(u) = m̂n

(u
α

)
φ̂n

(u
α

)
, u ∈ R.

It is known [5] that if mn has finite mean µ(mn) and variance σ(mn)2 for each n,
then (2.8) has a unique solution,

(2.9) φ̂n(u) :=
∞∏

j=1

m̂n(u/αj), u ∈ R,

and φn is also a probability measure with finite mean µ(φn) = (α − 1)−1µ(mn)
and variance σ(φn)2 = (α2 − 1)−1σ(mn)2. The infinite product in (2.9) converges
uniformly on compact sets. We shall call φn the mn-scaling function, and mn its
mask. Note that although φn is called a function, it is, in general, a probability
measure. The problem of determining the nature of φn for arbitrary scale is a
difficult one (see [25]).
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If mn is a discrete measure concentrated on the integers Z with mass an(j) at
j ∈ Z, then (2.7) becomes the discrete scaling equation,

(2.10) φn(x) =
∑

j∈Z

αan(j)φn(αx− j), x ∈ R.

In particular, if mn is the discrete measure concentrated on the set {0, 1, . . . , n} with
mass 1

2n

(
n
j

)
at j = 0, 1, . . . , n, and scale α = 2, then (2.10) reduces to the refinement

equation (1.1) for the B-spline of order n.
Suppose that {mn} is a sequence of probability measures on R with finite mean

µ(mn) = µn and standard deviation σ(mn) = σn. The standardized measure, m̃n,
of mn is defined by

m̃n(S) := mn(σnS + µn), for measurable S ⊂ R,

or equivalently,

(2.11) ̂̃mn(u) = eiuµn/σnm̂n(u/σn), u ∈ R.

The sequence {mn} is said to be asymptotically normal if for all x ∈ R,

(2.12) lim
n→∞

∫ x

−∞
dm̃n(t) =

∫ x

−∞
G(t)dt.

If mn is absolutely continuous and dmn(t) = fn(t)dt with probability density func-

tion fn, we define f̃n by dm̃n(t) = f̃n(t)dt, so that

f̃n(t) = σnfn(σnt+ µn).

It is known (see [11], p 249) that asymptotic normality of {mn} is equivalent to

(2.13) ̂̃mn(u) → e−u
2/2 locally uniformly on R.

The probability measures, mn, and the corresponding mn-scaling functions have
many properties in common. Here is an example to illustrate their common be-
haviour.

Theorem 2.1. [5] Let {mn} be a sequence of probability measures on R with finite

first and second moments and { d
du
̂̃mn(u)} be uniformly bounded in a neighbourhood

of the origin. Then {mn} is asymptotically normal if and only if the corresponding
sequence of mn-scaling functions, {φn}, is asymptotically normal.

Theorem 2.1 can be proved using (2.8) and (2.9) and the fact that asymptotic nor-
mality of a sequence of probability measures is equivalent to the uniform convergence
on compact sets of their Fourier transforms.

Because of Theorem 2.1, to study the asymptotic normality of scaling functions,
we only need to study the asymptotic normality of their masks. We first consider
masks that are discrete probability measures. We remark that if {mn} is a sequence
of discrete probability measures on Z with finite first and second moments, then

the condition that { d
dx
̂̃mn(u)} is uniformly bounded in a neighbourhood of 0 is

automatically satisfied. Therefore, {mn} is asymptotically normal if and only if
the corresponding sequence of mn-scaling functions, {φn} for any scale α > 1, is
asymptotically normal.
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We want to focus on probability measures with finite support. For each n =
1, 2, . . . , let mn be a discrete probability measure supported on {0, 1, . . . , n}, defined
by mn({k}) = an,k, k = 0, 1, . . . , n. Let

(2.14) An(z) :=

n∑

k=0

an,kz
k =

n∏

j=1

(z + rn,j)/(1 + rn,j),

be the Z-transform of {an,k : k = 0, 1, . . . , n} or mn. Note that the roots of An(z)
are −rn,j and An(1) = 1 for all n. Taking logarithms of the expressions on the left
and right of (2.14) and then differentiating, gives

A′
n(z)

An(z)
=

n∑

j=1

1

z + rn,j

and
A′′
n(z)An(z) −A′

n(z)
2

An(z)2
= −

n∑

j=1

1

(z + rn,j)2
,

from which we have
n∑

k=0

kan,k = A′
n(1) =

n∑

j=1

1

1 + rn,j

and
n∑

k=0

k(k − 1)an,k = A′′
n(1) = A′

n(1)2 −
n∑

j=1

1

(1 + rn,j)2
.

Therefore, the mean of mn is

µn = A′
n(1) =

n∑

j=1

1

1 + rn,j
.

Its variance,

σ2
n =

n∑

k=0

(k − µn)2an,k

=

n∑

k=0

k2an,k − µ2
n

=

n∑

k=0

k(k − 1)an,k + µn − µ2
n

=

n∑

j=1

1

1 + rn,j
−

n∑

j=1

1

(1 + rn,j)2

=
n∑

j=1

rn,j
(1 + rn,j)2

.

The objective here is to find the distribution of the roots, −rn,j, j = 1, 2, . . . , n,
of An(z) for {mn} to be asymptotically normal. This problem is not new. A brief
history is given in the next subsection.
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2.3. A brief history of asymptotic normality of sequences of combinatorial

numbers

The asymptotic normality of sequences of well-known combinatorial numbers, such
as Stirling numbers and Eulerian nunbers, have been studied by many authors. A
short historical development and descriptions are given below.

(1) Binomial distributions: mn(k) = 1
2n

(
n
k

)
, k = 0, 1, . . . , n, is well-known to

be asymptotically normal. Its Z-transform, An(z) =
(
z+1
2

)n
and its roots,

rn,j = −1 for all j = 1, 2, . . . , n.
(2) Stirling numbers of the first kind: s(n, k) is defined by s(0, 0) = 1 and for

n = 1, 2, . . . ,

(2.15) s(n, k) = s(n− 1, k − 1) + ns(n− 1, k) , k = 0, 1, . . . , n.

Let sn =
∑n

k=0 s(n, k) and define mn(k) = s(n, k)/sn, k = 0, 1, . . . , n.
Harper [17] proved that {mn} is asymptotically normal. It follows from
(2.15) that

n∑

k=0

s(n, k)zk = (z + n)

n−1∑

k=0

s(n− 1, k)zk,

so that the Z-transform of mn,

An(z) = (z + n)(z + n− 1) · · · (z + 1)/(n+ 1)!

and its roots are −1,−2, . . . ,−n.
(3) Stirling numbers of the second kind: S(n, k) is defined by S(0, 0) = 1 and

for n = 1, 2, . . . ,

(2.16) S(n, k) = S(n− 1, k − 1) + (k + 1)S(n− 1, k) , k = 0, 1, . . . , n.

Again, mn(k) := S(n, k)/
∑n
j=0 S(n, j), k = 0, 1, . . . , n, is asymptotically

normal. If we let Pn(z) :=
∑n
k=0 S(n, k)zk, then the Z-transform of {mn}

is An(z) = Pn(z)/Pn(1). It follows from (2.16) that

(2.17) Pn(z) = (1 + z)Pn−1(z) + zP ′
n−1(z).

Using (2.17) and induction, it is easy to prove that all the roots of Pn(z)
are real and negative and they interlace with the roots of Pn−1(z) for n =
1, 2, . . . .

(4) Eulerian numbers: A(n, k) is defined by A(0, 0) = 1 and for n = 1, 2, . . . ,

A(n, k) = (n− k + 1)A(n− 1, k − 1) + (k + 1)A(n− 1, k),(2.18)

k = 0, 1, . . . , n.

These numbers have interesting properties. They are probably as old as the
binomial coefficients and they feature prominently in the study of cardinal
spline functions [30] and the construction of semi-orthogonal spline wavelets
[7] because of their connection with the uniform B-splines, Bn. Indeed, the
Eulerian numbers are the values of the uniform B-splines at the integers:

A(n, k)

n!
= Bn+1(k), k ∈ Z.
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It was shown by Carlitz, Kurtz, Scoville and Stackelberg [2] that the se-
quence {mn}, where mn(k) := A(n, k)/

∑n
j=0 A(n, j), k = 0, 1, . . . , n, is

asymptotically normal. A similar argument as in the case of Stirling num-
bers of the second kind shows that the Z-transform, An(z), of {mn} satisfies
the relation:

(2.19) (n+ 1)An(z) = (1 + nz)An−1(z) + z(1 − z)A′
n−1(z).

The polynomials, An(z), are known as the Euler-Frobenius polynomials. Us-
ing (2.18), it is easy to show by induction that A(n, n− k) = A(n, k) for all
n = 1, 2, . . . , and k = 0, 1, . . . , n, from which we conclude that An(z) are
reciprocal polynomials, i.e. they satisfy the relation An(z) = znAn(1/z),
z 6= 0. In particular its roots occur in reciprocal pairs, r and 1

r . Again using
(2.19) and induction, it is easy to see that all the roots of An(z) are real
and negative and they interlace with the roots of An−1(z) for n = 1, 2, . . . .
Therefore −1 is a root if and only if n is odd.

(5) Note that in all the examples above the roots of the Z-transforms of {mn}
are all real and negative. This observation has led Szekely [32] to prove a
more general result that {mn} is indeed asymptotically normal if all the
roots of the Z-transforms of {mn} are real and negative for all n.

(6) We now give an example of a sequence of asymptotically normal finitely
supported discrete probability measures whose Z-transforms do not have all
negative roots. Let us look at the uniform B-splines again for inspiration.
Now, we take an arbitrary fixed integer scale α > 1 and express

B̂n(u) =

(
1 − e−iu

iu

)n

=

(
1 + e−iu/α + · · · + e−i(α−1)u/α

α

)n(
1 − e−iu/α

i u/α

)n

=

(
1 + e−iu/α + · · · + e−i(α−1)u/α

α

)n
B̂n(u/α).

This shows that the uniform B-splines, Bn, are also scaling functions with
masks, {bn,k : k = 0, 1, . . . , n(α−1)}, defined by the multinomial expansion:

(2.20)

(
1 + z + · · · + zα−1

α

)n
=

n(α−1)∑

k=0

bn,kz
k,

for any integer scale α > 1. Since the uniform B-splines are asymptotically
normal, it follows from Theorem 2.1 that the sequence of probability mea-
sures {mn} defined by mn(k) = bn,k, k = 0, 1, . . . , n(α− 1), is also asymtot-
ically normal. In this case the Z-transforms of {mn} are the polynomials on
the left of (2.20). Note that the roots of these polynomials are the complex
α-th roots of unity that are not equal to 1.

2.4. A brief survey of convergence of scaling functions to the Gaussian

The above examples show asymptotically normal sequences of finitely supported
discrete probability measures whose Z-transforms have all negative roots or roots
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that lie on the unit circle and bounded away from 1. The next theorem gives the
general result on the distribution of the roots of the Z-transforms for a sequence
of finitely supported probability measures to be asymptotically normal. For any
γ ∈ [0, π/2), we define a region Dγ in the complex plane C, which comprises all
z ∈ C that satisfy the inequality

(2.21)

∣∣∣∣Im
{

z

(1 + z)2

}∣∣∣∣ ≤ tan γ Re

{
z

(1 + z)2

}
.

Note that for any γ, Dγ contains the positive x-axis and the unit circle except the
point (−1, 0). Figure 1 shows the plots of Dγ for tan γ = 1, 2 and 8.

Figure 1. Region Dγ , tan γ = 1, 2, 8.

Theorem 2.2. [5] If for some γ ∈ [0, π/2), rn,j ∈ Dγ for n = 1, 2, . . . , j =
1, 2, . . . , n, and are bounded away from −1, and further

(2.22) σ2
n =

n∑

j=1

rn,j/(1 + rn,j)
2 → ∞ as n→ ∞ ,

then {mn} is asymptotically normal.
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The proof of Theorem 2.2 in [5] is accomplished by showing the local uniform
convergence of the Fourier transforms of mn. The proof in fact gives estimates of the

rate of convergence of m̂n(u) to e−u
2/2 on compact sets. Because of the relationship

(2.9), it also provides estimates on the rates of convergence of the Fourier transforms
of the corresponding mn-scaling functions for any scale α > 0. The results are
summarized in the following

Theorem 2.3. [5] Assume the conditions of Theorem 2.2.

(a) Then

‖̂̃φn − e−(·)2/2‖∞ = O(σ−1
n ).

(b) If
∑n
k=0 an,kz

k is a reciprocal polynomial, i.e. an,0 6= 0 and an,k = an,n−k,
k = 0, 1, . . . , n, then

‖̂̃φn − e−(·)2/2‖∞ = O(σ−2
n ).

(c) If in addition to the condition in (b),

(2.23) σ−1
n

n∑

j=1

rn,j(r
2
n,j − 4rn,j + 1)/(1 + rn,j)

4 is bounded,

then

‖̂̃φn − e−(·)2/2‖∞ = O(σ−3
n ).

Note that the mn-scaling functions φn for any scale α > 0 are, in general, proba-
bility measures. Now, we are interested in the case where φn are L1-functions. The
problem of determining whether they are L1-functions is a difficult problem (see
[25] and the references therein). For the case with scale 2, the conditions for φn
to be an integrable function is known (see [16]). A further restriction that rn,j lie
in right half plane, not only ensures that φn is a sequence of integrable functions,
but also provides estimates for the rate of convergence to the Gaussian function in
conjunction with Theorem 2.3.

Theorem 2.4. [5] Assume the conditions of Theorem 2.2, that rn,j include 1 and
all Re(rn,j) ≥ 0. For n = 1, 2, ..., let φn denote the scaling function corresponding to
the measure mn(k) = an,k, k = 0, 1, ..., n, with scale 2, and define

φ̃n(x) = σ(φn)φn(σ(φn)x+ µ(φn)), x ∈ R.

(a) Then

‖φ̃n −G‖∞ = O(σ
− 1

2

n ).

(b) If
∑n

k=0 an,kz
k is reciprocal for large enough n, then

‖φ̃n −G‖∞ = O(σ−1
n ).

(c) If, in addition, (2.23) is satisfied, then

‖φ̃n −G‖∞ = O(σ
− 3

2

n ).

Remark 2.1. The uniform B-splines, Bn, satisfy the condition of (b) but not
condition (2.23) of (c), because in this case, rn,j = 1 for all j = 1, 2, . . . , n and

σn =
√
n/12. Therefore, sequences of scaling functions that satisfy condition (2.23)

converge faster to the Gaussian than the uniform B-splines.
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3. Scaling functions and biorthogonal polynomials

3.1. Appell sequences of biorthogonal polynomials generated by scaling

functions

Recall that the Gaussian function G is a refinable function that satisfies the con-
tinuous refinement equation (2.6) and its m-th order derivative is related to the
Hermite polynomial Hm of degree m by the relation (−1)mG(m)(x) = Hm(x)G(x).
Further, the orthogonality of the Hermite polynomials with respect to weight G, can
be written in the form:

(3.1) 〈(−1)mG(m), Hn(x)/n!〉 = δmn,

where 〈·, ·〉 denotes inner product in L2(R). We refer to (3.1) by saying that the se-
quences {(−1)mG(m) : m = 0, 1, . . .} and {Hm/m! : m = 0, 1, . . .} are biorthogonal.
We want to extend this relationship to scaling functions with compact support that
approximate the Gaussian and construct a family of Appell sequences of polynomi-
als that approximate the Hermite polynomials. To do this we need to consider dis-
tributions with compact support (see [41]). These are continuous linear functionals
defined on the space, C∞(R), of infinitely differentiable functions. If φ : C∞(R) → R

is a linear functional we shall write 〈φ, v〉 = φ(v), v ∈ C∞(R). The linear functional
φ is continuous if and only if there is a compact subset K of R, a constant C > 0
and an integer k ≥ 0 such that

|〈φ, v〉| ≤ Cmax
j≤k

sup
x∈K

∣∣∣v(j)(x)
∣∣∣ .

We denote the space of distributions with compact support by E ′(R). Integrable
functions and measures with compact supports belong to E ′(R). If f is a compactly
supported integrable function then it is associated with the distribution, which we
still denote by f, defined by

〈f, v〉 :=

∫

R

v(x)f(x)dx, v ∈ C∞(R).

If m is a compactly supported measure on R, then it is associated with the distri-
bution, which we still denote by m, defined by

〈m, v〉 :=

∫

R

v(x)dm(x), v ∈ C∞(R).

Any φ ∈ E ′(R) has derivatives φ(n) of any order n and they are defined by

〈φ(n), v〉 = (−1)n〈φ, v(n)〉, n = 0, 1, . . . .

Take a compactly supported distribution φ ∈ E ′(R), not necessarily a scaling
function. Then for any integer n ≥ 0,

〈φ(n), e(·)z〉 = (−1)n〈φ, zne(·)z〉 = (−1)nznφ̂(iz).

If φ̂(0) 6= 0,

(3.2)

〈
(−1)nφ(n),

e(·)z

φ̂(iz)

〉
= zn
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in a neighbourhood of 0. Since φ is compactly supported, φ̂ is analytic. So we can
define a sequence of polynomials, Pm, by the generating function

(3.3)
exz

φ̂(iz)
=

∞∑

m=0

Pm(x)

m!
zm .

It follows from (3.2) and (3.3) that for any integer n ≥ 0,

zn =

∞∑

m=0

〈
(−1)nφ(n),

Pm(x)

m!

〉
zm ,

which gives the biorthogonal relation

(3.4)

〈
(−1)nφ(n),

Pm(x)

m!

〉
= δm,n .

Now, let φ be the compactly supported solution (a probability measure) of the
refinement equation,

(3.5) φ(x) =

∫

R

αφ(αx − y)dψ(y)

where ψ is a compactly supported probability measure on R and α > 1 a fixed
number. Since φ and ψ are compactly supported, they have finite moments of any
order. Equation (3.5) can be equivalently expressed in terms of Fourier transforms
in the form:

(3.6) φ̂(u) = ψ̂(u/2)φ̂(u/2), u ∈ R.

Then φ is the unique (up to a multiple) fixed point of the scaling operator,

(3.7) (Tψ,αf)(x) :=

∫

R

αf(αx− t)dψ(t), f ∈ E ′(R).

The Fourier transform of φ is given by

(3.8) φ̂(u) =

∞∏

j=1

ψ̂(u/αj),

where the infinite product converges locally uniformly (see [5], [6] or [9]). Taking
derivatives (in the sense of distribution) on both sides of (3.5) gives

(3.9) Tψ,αφ
(n) = α−nφ(n), n = 0, 1, 2, . . . ,

which shows that the derivatives φ(n) are eigenfunctions of Tψ,α with eigenvalues
α−n.

The scaling operator Tψ,α is defined on the space of compactly supported distri-
butions. Its adjoint, T ∗

ψ,α, is defined on the space of test functions C∞(R) by

(3.10) (T ∗
ψ,αg)(x) =

∫

R

g

(
x+ t

α

)
dψ(t).

The adjoint relationship is realized by the usual action of a distribution on a test
function, i.e. 〈Tψ,αf, g〉 = 〈f, T ∗

ψ,αg〉. The polynomials Pm that satisfy the biorthog-

onal relation (3.4) are eigenfunctions of T ∗
ψ,α with eigenvalues α−m. Some stochastic

properties of the biorthogonal sequences are given in [12].



Scaling Functions and Biorthogonal Scaling Polynomials 275

Proposition 3.1. Let ψ be a compactly supported probability measure on R, φ the
scaling function with mask ψ and scale α > 1, Pm the sequence of polynomials
generated by (3.3) and

ψ̂(iz) =:

∞∑

k=0

bkz
k.

Then

(3.11) Pm(αx) = m!

m∑

k=0

bm−kα
kPk(x)

k!
, m = 0, 1, . . . ,

and

(3.12) Pm(x) =

m∑

k=0

Pm−k(0)

(
m

k

)
xk, m = 0, 1, . . . ,

where Pm(0) are generated recursively by

(3.13) Pm(0) =
m!

1 − αm

m−1∑

k=0

bm−kα
kPk(0)

k!
, m = 1, 2 . . . ,

with P0(0) = 1.

Proof. By (3.3) and (3.6), we have

exz

ψ̂(iz/α)φ̂(iz/α)
=

∞∑

m=0

Pm(x)

m!
zm .

Then
∞∑

m=0

Pm(αx)

m!

zm

αm
=

exz

φ̂(iz/α)

= ψ̂(iz/α)

∞∑

m=0

Pm(x)

m!
zm

=

( ∞∑

k=0

bk
zk

αk

)( ∞∑

m=0

Pm(x)

m!
zm

)

=

∞∑

m=0

{
m∑

k=0

bk
αk

Pm−k(x)

(m− k)!

}
zm .

Hence,

Pm(αx)

αmm!
=

m∑

k=0

bk
αk

Pm−k(x)

(m− k)!
, m = 0, 1, . . . ,

which gives (3.11).
Differentiating (3.3) with respect to x and equating coefficients of zm in the

resulting equation gives

(3.14) P ′
m(x) = mPm−1(x), m = 1, 2, . . . ,
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and hence

Pm(x) = m

∫ x

0

Pm−1(t)dt + Pm(0),

which leads to (3.12) by induction. The relation (3.13) follows from (3.11) .

Remark 3.1. The relation (3.11) corresponds to the refinement equation (3.5) for
the scaling function. We shall call the sequence of biorthogonal polynomials Pm that
satisfy (3.11) scaling biorthogonal polynomials.

Remark 3.2. The relation (3.14) is referred to by saying that the sequence Pm/m!,
m = 0, 1, . . . , is an Appell sequence.

Remark 3.3. The generating function (3.3) cannot be used directly to generate the

polynomials Pm when φ̂(iz) does not have a closed form, which is generally the case.
The relations (3.12) and (3.13) provide an algorithm for generating Pm.

3.2. Examples of Appell sequences of biorthogonal polynomials

We use the algorithm defined by (3.12) and (3.13) to compute the biorthogonal
polynomials for some simple scaling functions.

Example 3.1. Let ψp be the discrete probability measure supported on {0, 1} with

weights q at 0 and p at 1, where 0 < p < 1 and p+ q = 1. Then ψ̂p(u) = q + pe−iu

and the Fourier transform of the refinable function φp with mask ψp and scale 2,

φ̂p(u) =

∞∏

j=1

(q + pe−iu/2
j

),

which does not have a close form except when p = q = 1/2. The scaling function φp
generates an Appell sequence {Pp,m : m = 0, 1, . . .} by (3.3). Since

ψ(iz) = q + pez = 1 +

∞∑

k=1

p

k!
zk,

b0 = 1 and bk = p
k! , k = 1, 2, . . . , so that

(3.15) Pp,m(x) =

m∑

k=0

Pp,m−k(0)

(
m

k

)
xk, m = 0, 1, . . . ,

where

(3.16) Pp,m(0) =
p

1 − 2m

m−1∑

k=0

(
m

k

)
2kPp,k(0), m = 1, 2 . . . ,

with Pp,0(0) = 1.
When p = q = 1/2,

φ̂1/2(u) =

∞∏

j=1

1 + e−iu/2
j

2

= lim
n→∞

n∏

j=1

1 + e−iu/2
j

2
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= lim
n→∞

n∏

j=1

1 − e−iu/2
j−1

2(1 − e−iu/2j )

= lim
n→∞

1 − e−iu

2n(1 − e−iu/2n)

=
1 − e−iu

iu
,

which shows that φ1/2 = B1, the uniform B-spline of order 1. Since φ̂1/2(iz) = ez−1
z ,

(3.3) becomes

(3.17)
zexz

ez − 1
=

∞∑

m=0

P1/2,m(x)

m!
zm ,

which shows that when p = 1/2, P1/2,m are Bernoulli polynomials.

Example 3.2. Up-function and Kabaya-Iri polynomials.
Let ψ be the probability measure for the probability distribution with density func-
tion B1, the uniform B-spline of order 1. The refinable function φ with mask ψ and
scale 2 is called the up-function by its discoverer, Rvachev [28]. It was indepen-
dently discovered by Kabaya and Iri ([20], [21]), who also studied the corresponding
biorthogonal polynomials. The up-function is infinitely differentiable with compact
support. It is the solution of a continuous refinement equation and so is the Gauss-
ian. The up-function and the Gaussian belong to a large class of refinable functions
studied in [18].

We shall compute the Kabaya-Iri scaling polynomials that are biorthogonal to
the derivatives of the up-function, using the algorithm in (3.12) and (3.13). Now,

ψ̂(u) = 1−e−iu

iu gives

ψ̂(iz) =
ez − 1

z
=

∞∑

k=0

zk

(k + 1)!
,

so that

bk =
1

(k + 1)!
, k = 0, 1, . . .

and Pm(x) are given in (3.12), where

(3.18) Pm(0) =
1

(1 − 2m)(m+ 1)

m−1∑

k=0

(
m+ 1

k

)
2kPk(0), m = 1, 2 . . . ,

with P0(0) = 1.
The first 6 polynomials are

P0(x) ≡ 1

P1(x) = −1

2
+ x

P2(x) =
2

9
− x+ x2

P3(x) = − 1

12
+

2

3
x− 3

2
x2 + x3



278 S. L. Lee

P4(x) =
16

675
− 1

3
x+

4

3
x2 − 2 x3 + x4

P5(x) = − 1

270
+

16

135
x− 5

6
x2 +

20

9
x3 − 5

2
x4 + x5.

4. Hermite polynomials as limits of scaling biorthogonal polynomials

In this section we consider a family of sequences of polynomials {PN,m : m =
0, 1, . . . , }, N = 1, 2, . . . , that are generated by a sequence of scaling functions, φN ,
which converges to the Gaussian function G. We assume that the scaling functions
satisfy the sequence of refinement equations,

(4.1) φN (x) =

N∑

k=0

aN,kφN (αx − k)

with mask {aN,k : k = 0, 1, . . . , N} whose Z-transforms, AN (z) :=
∑N

k=0 aN,kz
k,

satisfy the conditions of Theorem 2.3 so that the standardized scaling functions
converge to the standard Gaussian. Let PN,m, m = 0, 1, . . . , be the sequence of
scaling biorthogonal polynomials generated by φN as in (3.3), i.e.

(4.2)
exz

φ̂N (iz)
=

∞∑

m=0

PN,m(x)

m!
zm .

Let φ̃N be the standardized form of φN , i.e.

φ̃N (x) = σNφN (σNx+ µN ),

where µN and σ2
N are the mean and variance of φN . Define the standardized form

of the scaling biorthonormal polynomials, P̃N,m, of PN,m, m = 0, 1, . . . , by

(4.3) P̃N,m(x) = σ−m
N PN,m(σNx+ µN ).

Then the following biorthogonal relations for the standardized scaling functions and
the scaling biorthogonal polynomials follow from (3.4):

〈(−1)nφ̃
(n)
N , P̃N,m〉 = δm,n ∀ m,n ≥ 0.

Further, the generating functions of P̃N,m are given by

Lemma 4.1.

(4.4)
exz

̂̃
φN (iz)

=

∞∑

m=0

P̃N,m(x)

m!
zm.

Proof. By (4.3),
∞∑

m=0

P̃N,m(x)

m!
zm =

∞∑

m=0

PN,m(σNx+ µN )

m!

(
z

σN

)m

=
e

z
σN

(σNx+µN )

φ̂N (iz/σN)
.(4.5)

Noting that
̂̃
φN (iz) = e

−z µN
σN φ̂N (iz/σN),
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we see that (4.5) gives (4.4) .

The Hermite polynomials, Hm, are generated by

(4.6)
exz

ez2/2
=

∞∑

m=0

Hm(x)

m!
zm.

If the conditions of Theorem 2.3 are satisfied, the estimates (a), (b), (c) in the
Theorem can be extended to the complex plane. In particular, there are constants,
r > 0 and A > 0, such that for all sufficiently large N,

(4.7)

∣∣∣∣
̂̃
φN (iz) − ez

2/2

∣∣∣∣ ≤
A

σN
, |z| < r.

We shall prove the following

Theorem 4.1. Let φN be the scaling functions with masks {aN,k : k = 0, 1, . . . , N},
N = 1, 2, . . . , which satisfy the conditions of Theorem 2.3 and let {P̃N,m : m =
0, 1, . . .} be the scaling biorthogonal polynomials generated by the standardized scaling

functions, φ̃N , as in (4.4). Then for each m = 0, 1, . . . , P̃N,m(x) converges locally
uniformly to the Hermite polynomial Hm(x) as N → ∞.

Proof. By (4.4) and (4.6),

(4.8)
exz

̂̃
φN (iz)

− exz

ez2/2
=

∞∑

m=0

(P̃N,m(x) −Hm(x))

m!
zm.

Since
̂̃
φN (0) = 1, we can choose a neighbourhood U of the origin so that |̂̃φN(iz)| ≥

1/2 and |ez2/2| ≥ 1/2 for all z ∈ U. Take a circle C inside U with centre at 0 and
radius r so that (4.7) is satisfied. The coefficients of the Taylor series (4.8) are
represented by the Cauchy’s formula:

P̃N,m(x) −Hm(x) =
m!

2πi

∮

C

exz(ez
2/2 − ̂̃φN (iz))

zm+1̂̃φN (iz)ez2/2
dz.

Therefore,

∣∣∣P̃N,m(x) −Hm(x)
∣∣∣ ≤ m!

2π

∮

C

|exz||ez2/2 − ̂̃φN (iz)|
rm+1|̂̃φN (iz)||ez2/2|

|dz|

≤ m!

2π

∮

C

exRe(z)A/σN

rm+1|̂̃φN (iz)||ez2/2|
|dz| by (4.7)

≤ 4(m!)Aerx

rmσN
.

Since σN → ∞ as N → ∞, it follows that for each m, P̃N,m(x) → Hm(x) uniformly
on compact sets.
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4.1. Uniform B-splines and Bernoulli polynomials

Recall that the uniform B-spline, BN , of order N, is the refinable function with
mask {aN,k : k = 0, 1, . . . , N}, where aN,k =

(
N
k

)
, k = 0, 1, . . . , N, and scale 2. The

Z-transform of its mask, A(z) =
(

1+z
2

)N
, and from the Fourier transform of BN we

have

B̂N (iz) =

(
ez − 1

z

)N
.

The scaling biorthogonal polynomials, BN,m, m = 0, 1, . . . , that are biorthogonal to

the derivatives, B
(n)
N , of the B-splines are generated by

(4.9)
zNexz

(ez − 1)N
=

∞∑

n=0

BN,m(x)

m!
zm ,

which shows that BN,m, m = 0, 1, . . . , are Bernoulli polynomials of order N (see
[10] ,[26]).

The standardized B-splines,

B̃N (x) = σNBN (σNx+N/2),

where σN =
√
N/12, converges uniformly to the Gaussian function G and an es-

timate of the rate of convergence is given in Theorem 2.4. By Theorem 4.1, the
standardized Bernoulli polynomials,

B̃N,m(x) := σ−m
N BN,m(σNx+N/2), m = 0, 1, . . . ,

converges locally uniformly to the Hermite polynomial Hm(x) for each m.
The standardized Bernoulli polynomials of order N are generated by

exz

̂̃
BN (iz)

=
∞∑

m=0

B̃N,m(x)

m!
zm.
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