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Abstract. In this paper, we apply the concepts of fuzzy subsets to coalgebras

and define fuzzy subcoalgebras and fuzzy left (right) coideals. Considering the

applications of fuzzy subcoalgebras and fuzzy left (right) coideals, we discuss
their properties under homomorphisms of coalgebras and the relationship among

them. A fuzzy subcoalgebra and its duality as well as a fuzzy subalgebra and

its duality is also discussed.
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1. Introduction

Since Rosenfeld [10] introduced the fuzzy subsets in the realm of group theory, many
mathematicians have been involved in extending the concepts and results of abstract
algebra to the broader framework of the fuzzy setting. The concept of a fuzzy
subspace of a vector space was introduced by Katsaras and Liu in [5]. Abdukhalikov
[2] defined a fuzzy subalgebra of an algebra on the basis of fuzzy subspace and
classified fuzzy subalgebras of low-dimensional simple algebras. Moreover, Mordeson
and Malik gave an up to date version of fuzzy commutative algebra in their book
[9]. Recently, various new algebraic structures such as BCH/BCI/BCK-algebra,
QS-algebra in the fuzzy setting have also been considered by many authors [7, 11].
On the other hand, Abdukhalikov [1] defined the concept of the dual subspace of a
fuzzy subspace and investigated its properties. This work applied good idea for us.
We can discuss the dual of fuzzy subalgebras.

In this paper, we apply the concepts of fuzzy subsets to coalgebras. We proceed
as follows. In Section 2, we recall some basic definitions and notations which will be
used in the sequel. In Section 3, we give the definitions of fuzzy subcoalgebras and
fuzzy left (right) coideals, and characterize the sufficient and necessary condition that
a fuzzy subset µ becomes fuzzy subcoalgebra (resp. fuzzy left (right) coideal). In
Section 4, we study the images as well as preimages of fuzzy subcoalgebras and fuzzy
left (right) coideals under homomorphism. In Section 5, we discuss the relationship
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between a fuzzy subcoalgebra and its duality as well as between a fuzzy subalgebra
and its duality, and fuzzy maps are also discussed.

2. Preliminaries

In this section, some relevant definitions and notations are reproduced.

Definition 2.1. [3] A k-coalgebra is a triple (C,∆, ε), where C is a k-vector space,
∆ : C → C ⊗ C and ε : C → k are morphisms of k-vector spaces such that the
following diagrams are commutative:

C
∆−−−−→ C ⊗ C

∆

y I⊗∆

y
C ⊗ C

∆⊗I−−−−→ C ⊗ C ⊗ C

C
��	

∼

C ⊗ k

∼

@@I
?

C ⊗ CI ⊗ ε ε⊗ I

@@R
k ⊗ C∆

���

Remark 2.1. If we change the direction of the morphisms in the above diagrams,
we can get the definition of a k-algebra.

Remark 2.2. Let (C,∆, ε) be a coalgebra. For an element c ∈ C, we denote
∆(c) =

∑
c1 ⊗ c2. With the usual summation conventions we should have written

∆(c) =
∑

i=1,n

ci1 ⊗ ci2.

The sigma notation suppresses the index “i”. It is a way to emphasize the form of
∆(c), and it is very useful for writing long compositions involving the comultiplica-
tion in a compressed way. In this paper, we require that {ci1}, {ci2} are linearly
independent respectively. In this case, the decomposition of ∆(c) is unique.

Let (C,∆, ε) be a k-coalgebra. A mapping µ : C → [0, 1] is called fuzzy subset
of C.

Definition 2.2. Let C,C ′ be any two k-coalgebras and f : C → C ′ be a k-map. For
any fuzzy subset µ of C, we define the fuzzy subset µ′ of C ′ by

µ′(y) =

{
sup

x∈f−1(y)

{µ(x)} y ∈ f(C)

0 y /∈ f(C)

µ′ is called the image of µ under f and denoted by f(µ). For any fuzzy subset µ′ of
C ′, we define the fuzzy subset µ of C by µ(x) = µ′(f(x)) for all x ∈ C, µ is called
the preimage of µ′ under f and denoted by f−1(µ′).

Definition 2.3. [2] Let µ be a fuzzy subset of k-algebras A. For any x, y ∈ A and
α, β ∈ k, if it satisfies the following conditions:

(1) µ(αx+ βy) ≥ min{µ(x), µ(y)},
(2) µ(xy) ≥ min{µ(x), µ(y)},

then µ is called a fuzzy subalgebra of A.

Definition 2.4. Let µ be a fuzzy subset of k-algebra A. For any x, y ∈ A and
α, β ∈ k, if it satisfies the following conditions:
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(1) µ(αx+ βy) ≥ min{µ(x), µ(y)},
(2) µ(xy) ≥ max{µ(x), µ(y)},

then µ is called a fuzzy ideal of A.

3. Fuzzy subcoalgebras and fuzzy left (right) coideals

In this section, we define the fuzzy subcoalgebra and fuzzy left (right) coideal of a
coalgebra. Here, we don’t suppress the index ”i” in the decomposition of ∆(c).

Definition 3.1. [3] Let (C,∆, ε) be a coalgebra. A k-subspace D of C is called a
subcoalgebra if ∆(D) ⊆ D ⊗D.

Definition 3.2. Let µ be a fuzzy subset of C. For any x ∈ C,

∆(x) =
∑

i=1,n

xi1 ⊗ xi2.

Then µ is called a fuzzy subcoalgebra of C, if it satisfies the following conditions:
(1) µ(αx+ βy) ≥ min{µ(x), µ(y)}, for any x, y ∈ C and α, β ∈ k,
(2) µ(x) ≤ min{µ(xi1), µ(xi2)}, for any x ∈ C and all i.

Example 3.1. Let C be a vector space with basis {gi, di|i ∈ N∗}. We define
∆ : C → C ⊗ C and ε : C → k by

∆(gi) = gi ⊗ gi, ∆(di) = gi ⊗ di + di ⊗ gi+1,(3.1)

ε(gi) = 1, ε(di) = 0.(3.2)

Then (C,∆, ε) is a coalgebra [3].
Let x 6= 0. Then

x =
∑

aigi +
∑

bidi

where ai, bi 6= 0. We define µ(x) = (∧µ(gi)) ∧ (∧µ(di)) and define

µ(gi) =
i

i+ 1
, µ(di) =

1
i+ 1

.

If x = 0, we define µ(0) = 1. Then µ is a fuzzy subcoalgebra of C. Indeed, let
x =

∑
aigi +

∑
bidi and y =

∑
kigi + lidi, where ai, bi, ki, li 6= 0. Then for α, β ∈ k,

αx+ βy =
∑

(αai + βki)gi +
∑

(αbi + βli)di,

we have
µ(αx+ βy) = (∧µ(gi)) ∧ (∧µ(di)) ≥ min{µ(x), µ(y)}.

Since

∆(x) =
∑

ai∆(gi) +
∑

bi∆(di)

=
∑

ai(gi ⊗ gi) +
∑

bi(gi ⊗ di + di ⊗ gi+1),

we have

µ(x) = (∧µ(gi)) ∧ (∧µ(di)) ≤ min{µ(gi), µ(gi)},
µ(x) = (∧µ(gi)) ∧ (∧µ(di)) ≤ min{µ(gi), µ(di)},
µ(x) = (∧µ(gi)) ∧ (∧µ(di)) ≤ min{µ(di), µ(gi+1)}.

So µ(x) ≤ min{µ(xi1), µ(xi2)}. Hence µ is a fuzzy subcoalgebra of C.
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Theorem 3.1. Let µ be a fuzzy subset of k-coalgebra C with its attained upper bound
δ > 0. Then the following statements are equivalent:

(1) µ is a fuzzy subcoalgebra of C,
(2) µt = {x ∈ C|µ(x) ≥ t} is a subcoalgebra of C, for every t ∈ [0, δ],
(3) µt = {x ∈ C|µ(x) ≥ t} is a subcoalgebra of C, for every t ∈ Im µ,
(4) µt̂ = {x ∈ C|µ(x) > t} is a subcoalgebra of C, for every t ∈ [0, δ).

Proof.
(1) =⇒(2) Let µ be a fuzzy subcoalgebra of C. We know that µ(0) ≥ µ(x) for any
x ∈ C. In this case, δ = µ(0). Let x, y ∈ µt and α, β ∈ k. Then µ(x) ≥ t, µ(y) ≥ t
and µ(αx + βy) ≥ min{µ(x), µ(y)} ≥ t. Therefore, αx + βy ∈ µt. Let x ∈ µt.
Because min{µ(xi1), µ(xi2)} ≥ µ(x) ≥ t, we have µ(xi1) ≥ t and µ(xi2) ≥ t. Hence,
∆(µt) ⊆ µt ⊗ µt.
(2)=⇒(3) Obviously.
(3)=⇒(4) Let 0 ≤ t < δ. Then µt̂ =

⋃
{µs : t < s ≤ δ, s ∈ Im µ}, which is a

subcoalgebra of C.
(4)=⇒(1) For any x, y ∈ C and α, β ∈ k, we want to show µ(αx+βy) ≥ min{µ(x),µ(y)}.
If not, there exist x, y such that t = µ(αx + βy) < min{µ(x), µ(y)}, Then 0 ≤
t < δ and x, y ∈ µt̂. Since µt̂ is a subspace of C, αx + βy ∈ µt̂, which implies
that t = µ(αx + βy) > t. This is a contradiction. Next, it remains to prove
µ(x) ≤ min{µ(xi1), µ(xi2)}, for x ∈ C. Suppose that there exist x, xi1, xi2 such
that µ(x) > min{µ(xi1), µ(xi2)} = t. Then x ∈ µt̂. Since µt̂ is subcoalgebra of C,
we have ∆(µt̂) ⊆ µt̂⊗µt̂, then µ(xi1) > t and µ(xi2) > t. This is a contradiction.

Example 3.2. In Example 3.1, we may assume that the basis is {g1, g2, d1}. Fol-
lowing from that definition, we know that µ(0) = 1, µ(g1) = 1/2, µ(g2) = 2/3,
µ(d1) = 1/2. So we can find the upper bound µ(0) of the fuzzy subset µ. Since
µ is a fuzzy subcoalgebra of C, we can make use of the Theorem 3.1 to get some
subcoalgebras of C. Here, µ 1

2
, µ 2

3
, µ

b1
2
, µ

b2
3

are subcoalgebras of C. On the other

hand, we define µ : C → [0, 1] by

µ(x) =

{
1 if x ∈ 〈g1〉,
0 otherwise.

Because µ1 = 〈g1〉 is a subcoalgebra of C, by Theorem 3.1, we know that µ is a
fuzzy subcoalgebra of C.

Definition 3.3. [3] Let (C,∆, ε) be a coalgebra. A k-subspace I of C is called a left
(right) coideal if ∆(I) ⊆ C ⊗ I (respectively ∆(I) ⊆ I ⊗ C).

Definition 3.4. Let µ be a fuzzy subset of C. For any x ∈ C,

∆(x) =
∑

i=1,n

xi1 ⊗ xi2.

If it satisfies the following conditions:
(1) µ(αx+ βy) ≥ min{µ(x), µ(y)} for any x, y ∈ C and α, β ∈ k,
(2) µ(x) ≤ µ(xi2) (µ(x) ≤ µ(xi1)) for any x ∈ C and all i,

then µ is called a fuzzy left (right) coideal of C.
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Remark 3.1.
(1) A fuzzy subcoalgebra is fuzzy left (right) coideal.
(2) If µ is a fuzzy left and right coideal, by the definition, we have µ(x) ≤

µ(xi2) and µ(x) ≤ µ(xi1), so µ(x) ≤ min{µ(xi1), µ(xi2)}. Hence µ is a fuzzy
subcoalgebra.

Example 3.3. By Remark 3.1, we know that the fuzzy subcoalgebras µ in Example
3.1 and 3.2 are fuzzy left (right) coideals.

Example 3.4. The field k is a k-coalgebra with comultiplication ∆ : k → k⊗ k the
canonical isomorphism, ∆(x) = 1⊗ x and counit ε : k → k the identity map [3].

We define

µ(x) =


0.7 if x ∈ k \ {0, 1}
0.5 if x = 1
1 if x = 0.

Then µ is a fuzzy left coideal of C. However, if x ∈ k \{1}, for µ(x) > µ(1), we have
that µ is not a fuzzy right coideal of C.

Theorem 3.2. A fuzzy subset µ of C is fuzzy left (right) coideal if and only if the
level sets µt = {x ∈ C : µ(x) ≥ t for 0 ≤ t ≤ µ(0)} are left (right) coideals of C.

Proof. (=⇒) Let 0 ≤ t ≤ µ(0). Then µt 6= ∅. Let x, y ∈ µt and α, β ∈ k. We
have µ(αx + βy) ≥ min{µ(x), µ(y)} ≥ t, so αx + βy ∈ µt. Let x ∈ µt ⊆ C. Since
µ(xi2) ≥ µ(x) ≥ t, we have ∆(µt) ⊆ C ⊗ µt. Thus µt are left coideals of C.

(⇐=) We only prove µ(x) ≤ µ(xi2). Let x ∈ C. We may assume that µ(x) = t,
then x ∈ µt. Since ∆(µt) ⊆ C ⊗ µt, we have xi2 ∈ µt. So µ(xi2) ≥ t = µ(x).

Example 3.5. In Example 3.3, the fuzzy subsets µ are fuzzy left codieals, by The-
orem 3.2, we know that µ 1

2
, µ 2

3
are left coideals of C and define µ : C → [0, 1]

by

µ(x) =

{
1 if x ∈ 〈g1〉
0 otherwise.

Because µ1 = 〈g1〉 is a left coideal of C, we can obtain that µ is a fuzzy left coideal
of C using Theorem 3.2.

Example 3.6. In Example 3.4, the fuzzy subset µ is a fuzzy left coideal of C. So
we obtain that µ0.5, µ0.7, µ1 are left coideals of C.

Proposition 3.1. Let (µi)i∈N be a family of fuzzy subcoalgebras (fuzzy left/right
coideals) of C. Then

⋂
i∈N

µi is a fuzzy subcoalgebra (fuzzy left/right coideal).

Proof. The result follows from (
⋂

i∈N

µi)(x) =
∧

i∈N

(µi(x)), for x ∈ C.

However, the union of two fuzzy subcoalgebras (fuzzy left (right) coideals) can not
be fuzzified. Let µ and λ be fuzzy subcoalgebras (fuzzy left (right) coideals) of C.
Then µ∪ λ can not be a fuzzy subcoalgebra (fuzzy left (right) coideal) of C. In fact
fuzzy subcoalgebras and fuzzy left (right) coideal are fuzzy subspaces of coalgebra
C, whereas the union of fuzzy subspaces is not a fuzzy subspace in general. The
counterexample is Example 3.7.
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Example 3.7. Here, we also use the coalgebra in Example 3.1 and assume the
basis is {g1, g2, d1}. Let x 6= 0. Then x =

∑
aigi + b1d1 where ai, b1 6= 0. We define

µ(x) = (∧µ(gi)) ∧ µ(d1) where µ(g1) = 1, µ(g2) = 1
3 , µ(d1) = 1

4 . We also define
λ(x) = (∧λ(gi)) ∧ λ(d1) where λ(g1) = 1

2 , λ(g2) = 1, λ(d1) = 1
5 . If x = 0, we define

µ(0) = 1 and λ(0) = 1. Then µ, λ are fuzzy subcoalgebras of C. We have

(µ ∪ λ)(g1 + g2) = µ(g1 + g2) ∨ λ(g1 + g2)

= min{µ(g1), µ(g2)} ∨min{λ(g1), λ(g2)}

=
1
3
∨ 1

2
=

1
2
,

however

min{(µ ∪ λ)(g1), (µ ∪ λ)(g2)} = min{µ(g1) ∨ λ(g1), µ(g2) ∨ λ(g2)}
= min{1, 1} = 1,

so
(µ ∪ λ)(g1 + g2) < min{(µ ∪ λ)(g1), (µ ∪ λ)(g2)},

this shows that µ∪ λ is not a fuzzy subcoalgebra of C. By Remark 3.1, the cases of
fuzzy left (right) coideals can easily get.

4. The homomorphisms of coalgebras

In this section, some fundamental concepts of fuzzy subcoalgebras and fuzzy left
(right) coideals under homomorphisms are discussed.

Definition 4.1. [3] Let C and D be two coalgebras. The k-linear map f : C → D
is a morphism of coalgebra, if the following diagrams are commutative:

C
f−−−−→ D

∆C

y ∆D

y
C ⊗ C

f⊗f−−−−→ D ⊗D

C
f //

εC
��?

??
??

??
D

εD
����

��
��

��

k

Proposition 4.1. Let µ be a fuzzy subcoalgebra (resp. fuzzy left/right coideal) of
D and f : C → D be a morphism of coalgebra. Then f−1(µ) is a fuzzy subcoalgebra
(resp. fuzzy left /right coideal) of C.

Proof. Let x, y ∈ C and α, β ∈ k. Then

f−1(µ)(αx+ βy) = µ(f(αx+ βy))

= µ(αf(x) + βf(y)) ≥ min{µ(f(x)), µ(f(y))}
= min{f−1(µ)(x), f−1(µ)(y)}.

And
∆D(f(x)) =

∑
i=1,n

f(x)i1 ⊗ f(x)i2 =
∑

j=1,n

f(xj1)⊗ f(xj2),

so

f−1(µ)(x) = µ(f(x)) ≤ min{µ(f(x)i1), µ(f(x)i2)}
= min{µ(f(xj1)), µ(f(xj2))}
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= min{f−1(µ)(xj1), f−1(µ)(xj2)}.

So f−1(µ) is a fuzzy subcoalgebra of C. The case of fuzzy left (right) coideal can be
proved by the similar method.

Proposition 4.2. Let µ be a fuzzy subcoalgebra (fuzzy left/right coideal) of C and
suppose that f : C → D is a morphism of coalgebra. Then f(µ) is a fuzzy subcoal-
gebra (fuzzy left/right coideal) of D.

Proof. Let x, y ∈ D. We want to show that f(µ)(x + y) ≥ min{f(µ)(x), f(µ)(y)}.
There exist m,n such that f(m) = x, f(n) = y which implies f(m+ n) = x+ y, so
m+ n ∈ f−1(x+ y). We get

f(µ)(x+ y) = sup
z∈f−1(x+y)

{µ(z)} ≥ sup
m+n∈f−1(x+y)

{µ(m+ n)}

≥ sup
m+n∈f−1(x+y)

{min{µ(m), µ(n)}}

= sup
m∈f−1(x)

{µ(m)} ∧ sup
n∈f−1(y)

{µ(n)}

= min{f(µ)(x), f(µ)(y)}.

Let x ∈ D and α ∈ k. It is easy to get f(µ)(αx) ≥ f(µ)(x).
Let x ∈ D. There exists m ∈ C, such that f(m) = x. We have∑

i=1,n

xi1 ⊗ xi2 = ∆D(x) = ∆D(f(m))

= (f ⊗ f)∆C(m)

=
∑

j=1,n

f(mj1)⊗ f(mj2),

So mj1 ∈ f−1(xi1),mj2 ∈ f−1(xi2). Also

f(µ)(x) = sup
m∈f−1(x)

{µ(m)}

≤ sup
m(j1)∈f−1(x(i1)),m(j2)∈f−1(x(i2))

{min{µ(mj1), µ(mj2)}}

= min{ sup
mj1∈f−1(xi1)

{µ(mj1)}, sup
mj2∈f−1(xi2)

{µ(mj2)}}

= min{f(µ)(xi1), f(µ)(xi2)}.

Hence f(µ) is a fuzzy subcoalgebra of D. The case of fuzzy left (right) coideal is
similar to prove.

5. The duality between fuzzy subalgebras and fuzzy subcoalgebras

In this section, we investigate the relationship between a fuzzy subcoalgebra and
its dual fuzzy subalgebra as well as between a fuzzy subalgebra and its dual fuzzy
subcoalgebra.
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Definition 5.1. [1] Let µ be a fuzzy k-vector subspace of V. Define: µ∗ : V ∗ −→ [0, 1]
by

µ∗(f) =

{
1− sup{µ(x)|x ∈ V, f(x) 6= 0} if f 6= 0,
1− inf{µ(x)|x ∈ V } if f = 0.

.

Obviously, µ∗ is the fuzzy subset of V ∗, in which V ∗ denotes the dual space of V,
that is, the vector space of all linear maps from V to k.

Lemma 5.1. [1] The fuzzy subset µ∗ is a fuzzy subspace of V ∗.

Let (C,∆, ε) be a k-coalgebra. We define the maps M : C∗⊗C∗ → C∗,M = ∆∗ρ,
where ρ is defined as ρ : C∗ ⊗ C∗ → (C ⊗ C)∗ by ρ(f ⊗ g)(m⊗ n) = f(m)g(n) and
u : k → C∗ by u = ε∗φ, where φ : k → k∗ is the canonical isomorphism. By
Proposition 1.3.6 of [3], we have that (C∗,M, u) is an algebra.

Proposition 5.1.
(1) Let µ be a fuzzy subcoalgebra of C. Then µ∗ is a fuzzy ideal of C∗.
(2) Let µ be a fuzzy left (right) coideal of C. Then µ∗ is a fuzzy left (right) ideal

of C∗.

Proof. (1) By Lemma 5.1, we know that µ∗ is a fuzzy subspace of C∗. It remains to
show µ∗(f ∗ g) ≥ max{µ∗(f), µ∗(g)}, for any f, g ∈ C∗.

Let f 6= 0 and g 6= 0. We have

µ∗(f ∗ g) = 1− sup{µ(x)|x ∈ C, (f ∗ g)(x) 6= 0}

≥ 1− sup{µ(x1) ∧ µ(x2)|x1, x2 ∈ C,
∑

f(x1)g(x2) 6= 0}
= 1− sup{µ(x1) ∧ µ(x2)|x1, x2 ∈ C, f(x1)g(x2) 6= 0}
= 1− sup{µ(x1) ∧ µ(x2)|x1, x2 ∈ C, f(x1) 6= 0 and g(x2) 6= 0}
= 1− sup{µ(x1)|x1 ∈ C, f(x1) 6= 0} ∧ sup{µ(x2)|x2 ∈ C, g(x2) 6= 0}
≥ 1− sup{µ(y)|y ∈ C, f(y) 6= 0} ∧ sup{µ(z)|z ∈ C, g(z) 6= 0}.

If
sup{µ(y)|y ∈ C, f(y) 6= 0} ≥ sup{µ(z)|z ∈ C, g(z) 6= 0},

then µ∗(f) ≤ µ∗(g), so µ∗(f ∗ g) ≥ µ∗(g). If

sup{µ(y)|y ∈ C, f(y) 6= 0} ≤ sup{µ(z)|z ∈ C, g(z) 6= 0},
then µ∗(f) ≥ µ∗(g), so µ∗(f ∗ g) ≥ µ∗(f). Hence, µ∗(f ∗ g) ≥ max{µ∗(f), µ∗(g)}.

Let f = 0 and g 6= 0. Then for any x ∈ C, we have

(f ∗ g)(x) =
∑

f(x1)g(x2) = 0.

So

µ∗(f ∗ g) = µ∗(0) = µ∗(f)

= 1− inf{µ(x)|x ∈ C}
≥ 1− inf{µ(x)|x ∈ C, g(x) 6= 0}
≥ 1− sup{µ(x)|x ∈ C, g(x) 6= 0} = µ∗(g).

We get µ∗(f ∗ g) ≥ max{µ∗(f), µ∗(g)}.
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Let g = 0 and f 6= 0. We also have µ∗(f ∗ g) ≥ max{µ∗(f), µ∗(g)}. If f = 0 and
g = 0, the result is obvious.

(2) We imitate (1) to prove.
Let k-algebra (A,M, u) be finite dimension. We define the maps ∆ : A∗ → A∗⊗A∗

and ε : A∗ → k by ∆ = ρ−1M∗ and ε = ψu∗, where ρ : A∗ ⊗ A∗ → (A ⊗ A)∗,
ρ(f⊗g)(m⊗n) = f(m)g(n) is bijective and ψ : k∗ → k is the canonical isomorphism,
ψ(f) = f(1) for f ∈ k∗. Then (A∗,∆, ε) is a coalgebra.

Proposition 5.2. (1) Let µ be a fuzzy ideal of finite dimensional algebra A. Then
µ∗ is a fuzzy subcoalgebra of A∗.
(2) Let µ be a fuzzy left (right) ideal of finite dimensional algebra A. Then µ∗ is a
fuzzy left (right) coideal of A∗.

Proof. (1) By Lemma 5.1, we know that µ∗ is a fuzzy subspace of A∗. For any
f ∈ A∗, we want to show µ∗(f) ≤ min{µ∗(fi), µ∗(gi)}.

Let f 6= 0. We have

µ∗(f) = 1− sup{µ(x)|x ∈ A, f(x) 6= 0}
≤ 1− sup{µ(ab)|ab ∈ A, f(ab) 6= 0}

≤ 1− sup{µ(a) ∨ µ(b)|a, b ∈ A,
∑

fi(a)gi(b) 6= 0}
= 1− sup{µ(a) ∨ µ(b)|a, b ∈ A, fi(a)gi(b) 6= 0}
= 1− sup{µ(a)|a ∈ A, fi(a) 6= 0} ∨ sup{µ(b)|b ∈ A, gi(b) 6= 0}.

If
sup{µ(a)|a ∈ A, fi(a) 6= 0} ≥ sup{µ(b)|b ∈ A, gi(b) 6= 0},

then µ∗(fi) ≤ µ∗(gi), so µ∗(f) ≤ µ∗(fi). If

sup{µ(a)|a ∈ A, fi(a) 6= 0} ≤ sup{µ(b)|b ∈ A, gi(b) 6= 0},

then µ∗(fi) ≥ µ∗(gi), so µ∗(f) ≤ µ∗(gi). Hence µ∗(f) ≤ min{µ∗(fi), µ∗(gi)}.
Let f = 0. Note that fi = gi = 0, so µ∗(f) ≤ min{µ∗(fi), µ∗(gi)}.
(2) We can imitate (1) to prove.
Let V be a finite dimensional vector space. Then the map θV : V → V ∗∗,

θV (υ)(υ∗) = υ∗(υ) for any υ ∈ V, υ∗ ∈ V ∗ is an isomorphism of vector spaces.
Let A be a finite dimensional algebra and C a finite dimensional coalgebra. Then
(1) θA : A→ A∗∗ is an isomorphism of algebras.
(2) θC : C → C∗∗ is an isomorphism of coalgebras.

Definition 5.2. Let f be a morphism from coalgebra C to coalgebra D, µ a fuzzy
subset of C, ν a fuzzy subset of D. If f satisfies ν(f(x)) ≥ µ(x), then f is called
a fuzzy morphism of coalgebras, denotes f̃ . If f is epimorphism and ν(f(x)) =
µ(x), then µ is homomorphic to ν and we write µ ∼ ν. In particular, if f is an
isomorphism and ν(f(x)) = µ(x), then µ is isomorphic to ν and we write µ ∼= ν.

Example 5.1. Let C be a coalgebra, I be a coideal and p : C → C/I be a canonical
projection of k-vector spaces. We know that there exists a unique coalgebra structure
on C/I such that p is a morphism of coalgebra [3].
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We define µ : C → [0, 1] by µ(x) =
{

1 x = 0
0.3 x 6= 0 and define ν : C/I → [0, 1]

by ν(x) =
{

1 x = 0
0.5 x 6= 0 . Then µ, ν are fuzzy subsets of coalgebras C and C/I,

respectively. Let x ∈ C. If x = 0, then p(x) = 0, so ν(p(x)) = 1 = µ(x), if
0 6= x ∈ I, then p(x) = 0, we have ν(p(x)) = 1 > 0.3 = µ(x), if 0 6= x ∈ C \ I, we
also have ν(p(x)) = 0.5 > 0.3 = µ(x). Hence for any x ∈ C, we have ν(p(x)) ≥ µ(x),
which implies that p is a fuzzy morphism of coalgebras.

Corollary 5.1. Let µ be a fuzzy subcoalgebra of finite dimensional coalgebra C and
µ(0) = sup{µ(C \ {0})}. Then µ ∼= µ∗∗ as fuzzy subcoalgebras.

Proof. Let θ : C → C∗∗ be the morphism of coalgebras. By Proposition 5.1 and
Proposition 5.2, we know that µ∗∗ is a fuzzy subcoalgebra of C∗∗. Then we get
µ ∼= µ∗∗ by [1, Theorem 4.3].

Any algebra A, we can associate in a natural way a coalgegra, where is not defined
on the entire dual space A∗, but on a certain subspace of it.

Let (A,M, ε) be an algebra. Consider the set A◦ = {f ∈ A∗| ker(f) contains an
ideal of finite codimension }. We know that A◦ is a coalgebra, whose structure maps
are ∆ : A◦ → A◦⊗A◦,∆ = ψ−1M∗, where ψ : A∗⊗A∗ → (A⊗A)∗ is the canonical
injection. ε : A◦ → k, ε(a∗) = a∗(1). Remark

A◦ = {f ∈ A∗|∃fi, gi ∈ A∗ : f(xy) =
∑

fi(x)gi(y) ∀x, y ∈ A}.

For more details, see [3].

Definition 5.3. Let µ be a fuzzy subspace of A. Define:

µ◦(x) =
{

µ∗(x) x ∈ A◦,
0 x /∈ A◦.

Following from Lemma 5.1, we know that µ∗ is a fuzzy subspace of A∗. Obviously,
µ◦ ⊆ µ∗. Indeed, µ◦ is a fuzzy subspace of A◦, for any x, y ∈ A◦ and α, β ∈ k, we
have µ◦(αx+ βy) = µ∗(αx+ βy) ≥ min{µ∗(x), µ∗(y)} = min{µ◦(x), µ◦(y)}.

Example 5.2. Let H = k[x], polynomials in x, where we assume x is primitive.
Then H∗ ∼= k[[f ]], the formal power series in f , and H◦ = {

∑
aijf

jφλi
|aij , λi ∈ k},

where φλi =
∑

n≥0 λ
n
i f

(n) ∈ Alg(H, k) (See [8]).
Let f(x) ∈ H. We denote the degree of f(x) by deg f(x) and define the fuzzy

subset of H by

µ(f(x)) =
{

1 f(x) = 0
1

deg f(x)+1 f(x) 6= 0 .

Then notice that for f(x), g(x) ∈ H and α, β ∈ k,

deg(αf(x) + βg(x)) ≤ max{deg f(x),deg g(x)},

so µ is a fuzzy subspace of H. Let ϕ ∈ H◦. If ϕ = 0, we define µ◦(ϕ) = 1 −
inf{µ(f(x))}, if ϕ 6= 0, we define µ◦(ϕ) = 1 − sup{µ(f(x))|ϕ(f(x)) 6= 0}. Then µ◦

is a fuzzy subspace of H◦.

Let A be algebra and A◦ be finite dual.
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Proposition 5.3.
(1) Let µ be a fuzzy ideal of A. Then µ◦ is a fuzzy subcoalgebra of A◦.
(2) Let µ be a fuzzy left (right) ideal of A. Then µ◦ is a fuzzy left (right) coideal

of A◦.

Proof. (1) We know that µ◦ is a fuzzy subspace of A◦. It remains to show µ◦(f) ≥
min {µ◦(fi), µ◦(gi)}, for any f ∈ A◦.

Let f 6= 0. We have

µ◦(f) = 1− sup{µ(x)|x ∈ A, f(x) 6= 0}
≤ 1− sup{µ(ab)|ab ∈ A, f(ab) 6= 0}

≤ 1− sup{µ(a) ∨ µ(b)|a, b ∈ A,
∑

fi(a)gi(b) 6= 0}
= 1− sup{µ(a) ∨ µ(b)|a, b ∈ A, fi(a)gi(b) 6= 0}
= 1− sup{µ(a)|a ∈ A, fi(a) 6= 0} ∨ sup{µ(b)|b ∈ A, gi(b) 6= 0}

If
sup{µ(a)| a ∈ A, fi(a) 6= 0} ≥ sup{µ(b)|b ∈ A, gi(b) 6= 0},

then µ◦(fi) ≤ µ◦(gi), so µ◦(f) ≤ µ◦(fi). If

sup{µ(a)| a ∈ A, fi(a) 6= 0} ≤ sup{µ(b)|b ∈ A, gi(b) 6= 0},

then µ◦(fi) ≥ µ◦(gi), so µ◦(f) ≤ µ◦(gi). Hence µ◦(f) ≤ min{µ◦(fi), µ◦(gi)}.
Let f = 0. We note that fi = gi = 0, so µ◦(f) ≤ min{µ◦(fi), µ◦(gi)}.
(2) We can imitate (1) to prove it.

Definition 5.4. [3] A coalgebra C is called coreflexive if φC : C → C∗◦ is an
isomorphism.

Corollary 5.2. Let µ be a fuzzy subcoalgebra of coreflexive coalgebra C and µ(0) =
sup{µ(C \ {0})}. Then µ ∼= µ∗◦ as fuzzy subcoalgebras.

Proof. The method is similar to Corollary 5.1.

Proposition 5.4.
(1) Let ϕ̃ : µC → νD be a fuzzy morphism of coalgebras and inf{ν(D)} ≥

inf{µ(C)}. Then ϕ̃∗ : ν∗D∗ → µ∗C∗ is a fuzzy morphism of algebras.
(2) Let ϕ̃ : µA → νB be a fuzzy morphism of finite dimensional algebras and

inf{ν(B)} ≥ inf{µ(A)}. Then ϕ̃∗ : ν∗B∗ → µ∗A∗ is a fuzzy morphism of
coalgebras.

Proof. (1) Let ϕ : C → D be a morphism of coalgebras. Then ϕ∗ : D∗ → C∗ is a
morphism of algebras by [3]. For f ∈ D∗, it remains to show µ∗(ϕ∗(f)) ≥ ν∗(f).
For any x ∈ C, we have ν(ϕ(x)) ≥ µ(x). So if ϕ∗(f) 6= 0,

µ∗(ϕ∗(f)) = 1− sup{µ(x)|x ∈ C,ϕ∗(f(x)) = f(ϕ(x)) 6= 0}
≥ 1− sup{ν(ϕ(x))|x ∈ C, f(ϕ(x)) 6= 0}
= 1− sup{ν(y)|ϕ(x) = y, f(y) 6= 0}
≥ 1− sup{ν(z)|z ∈ D, f(z) 6= 0} = ν∗(f)



294 W. J. Chen

If ϕ∗(f) = 0, then

µ∗(ϕ∗(f)) = µ∗(0) = 1− inf
x∈C

{µ(x)} ≥ 1− inf
y∈D

{ν(y)} = ν∗(0) ≥ ν∗(f).

(2) Note that if ϕ : A → B is a morphism of finite dimensional algebras, then
ϕ∗ : B∗ → A∗ is a morphism of coalgebras. The proof of remainder is similar
to (1).

Proposition 5.5. Let ϕ̃ : µA → νB be a fuzzy morphism of algebras and inf{ν(B)} ≥
inf{µ(A)}. Then ϕ̃◦ : ν◦B◦ → µ◦A◦ is a fuzzy morphism of coalgebras.

Proof. From [3, Proposition 1.5.4], if ϕ : A→ B is a morphism of algebras, then the
induced map ϕ◦ : B◦ → A◦ is a morphism of coalgebras. The method is similar to
Proposition 5.4.
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