
BULLETIN of the
Malaysian Mathematical

Sciences Society
http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 32(3) (2009), 295–306

Existence of Solutions for a Class of Quasi-Linear Singular
Integro-Differential Equations in a Sobolev Space

1A. A. M. Hassan and 2S. M. Amer
1,2Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

1aam hassan@yahoo.com, 2amrsammer@hotmail.com

Abstract. An existence theorem is proved for a class of quasi-linear singular

integro-differential equation with Cauchy kernel in a Sobolev Space.

2000 Mathematics Subject Classification: 45F15, 45G10, 46B38

Key words and phrases: Quasi-linear singular integro-differential equations,

Schauder’s fixed point theorem, Sobolev space.

1. Introduction

Many classes of singular integral and integro-differential equations are currently
used in many fields of engineering mechanics with applied character, like, elasticity,
plasticity, viscoelasticity and fracture mechanics. The non-linear singular integro-
differential equations are further applied in other fields of engineering mechanics like
structural analysis. Such structural analysis problems are reduced to the solution
of a non-linear singular integro-differential equations connected with the behavior
of the stress fields. These types of singular integral equations and singular integro-
differential equations form the latest high technology in the solution of very impor-
tant problems of solid and fluid mechanics and, therefore, in recent years special
attention is given to it [1–3, 10, 11, 15]. We refer to Ladopoulos [8] for many ap-
plications of singular integral equations and singular integro-differential equations
in engineering and science. Also, we refer to [4, 5, 12, 15–18] for the methods of
solutions and many other applications.

The aim of this paper is to investigate the existence of solution of a class of
quasi-linear singular integro-differential equation with Cauchy kernel in the form:

(1.1) A(s, u(s))u′(s)−B(s, u(s))
1
πi

∫
Γ

u′(τ)
τ − s

dτ = g(s, u(s))

under the initial condition

(1.2) u(r) = 0,
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where Γ is a closed smooth contour and r is a fixed point on Γ. Our discussion is
based on the applicability of Schauder’s fixed point theorem [6, 7, 14, 15, 18] to our
problem. Throughout the paper Lp(Γ), (1 ≤ p < ∞), means the Banach space of
all measurable functions f on Γ, with the norm:

‖f(t)‖Lp
=
(∫

Γ

|f(t)|p dt

)p−1

,

and W 1
p (Γ), (1 < p < ∞), means the Sobolev space of all functions u ∈ Lp(Γ)

which possess u′ ∈ Lp(Γ), [9]. We shall seek the solution of equation (1.1) in the
Sobolev space W 1

p . It is worthwhile to notice that our problem (1.1) and (1.2) is a
generalization of the problem that was discussed by Wolfersdorf in [18].

We shall discuss our problem through two steps. The first step, in Section 2, we
find the function u′(s) in the form of an integral equation in the unknown function
u(s), and we discuss some properties of the kernel of a fixed point equation in u(s).
The second step, in Section 3, we prove an existence theorem for our problem (1.1)
and (1.2).

2. Reduction to fixed point equation

In this section, we seek the solution of the problem (1.1), (1.2) and an estimation of
the kernel of a fixed point equation.

Theorem 2.1. The quasi-linear singular integro-differential equation (1.1) with the
initial condition (1.2) has the following solution:

u′(s) =
A(s, u(s))g(s, u(s))

f2(s, u(s))

+
B(s, u(s)) exp(M(s))

πif (s, u(s))

∫
Γ

(
g(ν, u(υ))
µ(υ, u(υ))

)(
1

ν − s

)
dυ,(2.1)

where

µ(υ, u(υ)) = X+(υ)(A(υ, u(υ))−B(υ, u(υ))),

f(s, u(s)) =
√

A2(s, u(s))−B2(s, u(s)),(2.2)

where

X+(s) =
√

C(s) exp(M(s)),

C(s) =
A(s, u(s)) + B(s, u(s))
A(s, u(s))−B(s, u(s))

,

and

M(z) =
1

2πi

∫
Γ

lnC(τ)
τ − z

dτ,

together with the following conditions:
(i) The functions A(s, u(s)), B(s, u(s)) and g(s, u(s)) are continuous positive

functions defined on the region: D = {(s, u) : s ∈ Γ, |u| < ∞}. We assume

(2.3) A(s, u(s)) > B(s, u(s)),
∣∣A2(s, u(s))−B2(s, u(s))

∣∣ ≥ 1
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for each (s, u) belongs to D and

(2.4) ind
(

A(s, u(s)) + B(s, u(s))
A(s, u(s))−B(s, u(s))

)
= 0.

(ii) The functions A(s, u(s)), B(s, u(s)) and g(s, u(s)) satisfy the following Holder-
Lipschtiz conditions:

(2.5) |A(s2, u2)−A(s1, u1)| ≤ γ1

(
|s1 − s2|δ + |u1 − u2|

)
,

(2.6) |B(s2, u2)−B(s1, u1)| ≤ γ2

(
|s1 − s2|δ + |u1 − u2|

)
and

(2.7) |g(s2, u2)− g(s1, u1)| ≤ γ3

(
|s1 − s2|δ + |u1 − u2|

)
,

where γi, (i = 1, 2, 3) are positive constants and 0 < δ < 1.

Proof. Let us consider the analytic function

(2.8) Φ(z) =
1

2πi

∫
Γ

u′(σ)
σ − z

dσ, Φ−(∞) = 0

which has the following Sokhotski formulae [5]:

(2.9) Φ±(s) = ±1
2
u′(s) +

1
2πi

∫
Γ

u′(τ)
τ − z

dτ.

From which, we have

(2.10) Φ+(s) + Φ−(s) =
1

2πi

∫
Γ

u′(τ)
τ − z

dτ, Φ+(s)− Φ−(s) = u′(s).

Substituting from equations (2.10) into (1.1), we get the following boundary value
problem (BVP):

(2.11) Φ+(s) =
(

A(s, u(s)) + B(s, u(s))
A(s, u(s))−B(s, u(s))

)
Φ−(s) +

g(s, u(s))
A(s, u(s))−B(s, u(s))

.

From the theory of linear singular integral equations, [5], and condition (2.4), we
can put:

(2.12) C(s)
A(s, u(s)) + B(s, u(s))
A(s, u(s))−B(s, u(s))

=
X+

X− .

Therefore

(2.13) X(z) = exp(M(z)) with M(z) =
1

2πi

∫
Γ

lnC(τ)
τ − z

dτ

where

(2.14) X+(s) =
√

C(s) exp(M(s) and X−(s) =
1√
C(s)

exp(M(s).
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Substituting from equations (2.12) into (2.11), we get

(2.15)
(

Φ+(s)
X+(s)

)
=
(

Φ−(s)
X−(s)

)
+

g(s, u(s))
(A(s, u(s))−B(s, u(s)))X+

.

From [5], the BVP (2.13) has the following solution:

Φ(z) = (X(z))
(

1
2πi

∫
Γ

(
g(τ, u(τ))

[A(τ, u(τ))−B(τ, u(τ))]X+(τ)

)(
1

τ − z

)
dτ

)
Since

Φ+(s) =
g(s, u(s))

2[A(s, u(s))−B(s, u(s))]

+
X+(s)

2πi

∫
Γ

(
g(ν, u(ν))

[A(ν, u(υ))−B(ν, u(ν))](ν − s)X+(ν)

)
dν(2.16)

and

Φ−(s) =
−X−(s)g(s, u(s))

2X+(s)[A(s, u(s))−B(s, u(s))]

+
X−(s)

2πi

∫
Γ

(
g(ν, u(ν))

[A(ν, u(υ))−B(ν, u(ν))](ν − s)X+(ν)

)
dν.(2.17)

Then

Φ+(s)− Φ−(s) =
g(s, u(s))

2[A(s, u(s))−B(s, u(s))]

(
1 +

X−(s)
X+(s)

)
+

(X+(s)−X−(s))
2πi

∫
Γ

(
g(ν, u(ν))

[A(ν, u(υ))−B(ν, u(ν))](ν − s)X+(ν)

)
dν.(2.18)

From (2.12) and (2.14), we have

(2.19) X+(s)−X−(s) =

(
2B(s, u(s))√

A2(s, u(s))−B2(s, u(s))

)
exp(M(s))

From (2.10), (2.12), (2.18) and (2.19), we obtain
(2.20)

u′(s) =
A(s, u(s))g(s, u(s))

f2(s, u(s))
+

B(s, u(s)) exp(M(s))
πif(s, u(s))

∫
Γ

(
g(ν, u(ν))
µ(ν, u(ν))

)(
1

ν − s

)
dν

where

µ(ν, u(ν)) = X+(ν)(A(ν, u(ν))−B(ν, u(ν))

(2.21)

f(s, u(s)) =
√

A2(s, u(s))−B2(s, u(s)).

Integrating the expression (2.20), and applying the initial condition (1.2), we can
see that our original problem turns to a fixed point equation for u(s) as follows:

u(s) =
∫ s

r

{
A(σ, u(σ))g(σ, u(σ))

f2(σ, u(σ))
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+
B(σ, u(σ)) exp(M(σ))

πif(σ, u(σ))

∫
Γ

(
g(ν, u(ν))
µ(ν, u(ν))

)(
1

ν − σ

)
dν

}
dσ.

The above integral equation can be written in the operator form:

(2.22) Su = u,

where the operator S is defined as follows:

(2.23) (Su)(s) =
∫ s

r

T (σ, u(σ))dσ,

with the kernel function

T (s, u(s)) =
A(s, u(s))g(s, u(s))

f2(s, u(s))

+
B(s, u(s)) exp(M(s))

πif(s, u(s))

∫
Γ

(
g(ν, u(ν))
µ(ν, u(ν))

)(
1

ν − s

)
dν(2.24)

where s ∈ Γ.

Lemma 2.1. The kernel function given by (2.24) is bounded for p > 1 under the
following conditions:

(i) A2(s, u(s))−B2(s, u(s)) ≥ 1 for each (s, u(s)) ∈ D,
(ii) The functions A(s, u(s)), B(s, u(s)) and g(s, u(s)) satisfy Hölder–Lipischiz

conditions stated in (2.5)–(2.7),
where M(s) and µ(s, u(s)) are defined by (2.2) and (2.13), respectively.

Proof. We shall estimate the kernel T (s, u(s)) for p > 1, as follows:

(2.25) ‖T (s, u(s))‖p ≤ ‖N1(s)‖p + ‖N2(s)‖p

where

(2.26) N1(s) =
A(s, u(s))g(s, u(s))

f2(s, u(s))

and

(2.27) N2(s) =
B(s, u(s)) exp(M(s))

πif(s, u(s))

∫
Γ

(
g(ν, u(ν))
µ(ν, u(ν))

)(
1

ν − s

)
dν.

By using condition (2.3) and from [7, 13], we have

(2.28) ‖N1(s)‖p ≤ ‖A(s, u(s))‖P1
‖g(s, u(s))‖p2

,

where
p−1
1 + p−1

2 = p−1,

(2.29) ‖A(s, u(s))‖P1
=
(∫

Γ

|A(s, u(s))|p1 ds

)p−1
1

and

(2.30) ‖g(s, u(s))‖p2
=
(∫

Γ

|g(s, u(s))|p2 ds

)p−1
2

,
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By using the conditions (2.5) and (2.7), we obtain

(2.31) |A(s, u(s))| ≤ η1 with η1 = γ1R + σ1, σ1 = max
s∈Γ

|A(s, 0)| .

Therefore, from (2.29) and (2.31), we have

(2.32) ‖A(s, u(s))‖P1
≤ η1L

p−1
1 ,

where L = |Γ| =
∫
Γ

ds, is the length of Γ. Similarly,

(2.33) |g(s, u(s))| ≤ η2 with η2 = γ3R + σ2, σ2 = max
s∈Γ

|g(s, 0)| .

Therefore, from (2.30) and (2.33), we have

(2.34) ‖g(s, u(s))‖p2
≤ η2L

p−1
2 .

Substituting from (2.32) and (2.34) into (2.28), we have

(2.35) ‖N1(s)‖p ≤ Q1 ≡ const

where
Q1 = η1η2L

p−1
.

Also, by using condition (2.3) and [13], we obtain

‖N2(s)‖p ≤
∥∥∥∥B(s, u(s)) exp(M(s))

(
1
πi

∫
Γ

(
g(ν, u(ν))
µ(ν, u(ν))

)(
1

ν − s

)
dν

)∥∥∥∥
p

≤ ‖B(s, u(s))‖q1
‖exp(M(s))‖q2

∥∥∥∥ 1
πi

∫
Γ

(
g(ν, u(ν))
µ(ν, u(ν))

)(
1

ν − s

)
dν

∥∥∥∥
q3

(2.36)

where q−1
1 + q−1

2 + q−1
3 = p−1. To estimate a bound for the norm given in (2.36), we

carry out the investigation in many steps:
(a) Estimation of ‖B(s, u(s))‖q1

. As in (2.31) it is easy to see that

(2.37) |B(s, u(s))| ≤ η3, with η3 = γ2R + σ3, σ3 = max
s∈Γ

|B(s, 0)| .

Therefore,

(2.38) ‖B(s, u(s))‖q1
≤ η3L

q−1
1 .

(b) Estimation of ‖exp(M(s))‖q2
. Since [4],

‖exp(M(s))‖q2
≤
(
1 + ‖M(s)‖q2

)
exp(‖M(s)‖q2

),

where from (2.13) and [5],

(2.39) ‖M(s)‖q2
=
∥∥∥∥ 1

2πi

∫
Γ

lnC(τ)
τ − z

dτ

∥∥∥∥
q2

≤ ρ1 ‖C(τ)‖q2
≤ ρ1(η1 + η3)2Lq−1

2 .

Therefore

(2.40) ‖exp(M(s))‖q2
≤
(
1 + ρ1ΛLq−1

2

)
exp(ρ1ΛLq−1

2 )

where
Λ = (η1 + η3)2.
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(c) Estimation of ∥∥∥∥ 1
πi

∫
Γ

(
g(ν, u(ν))
µ(ν, u(ν))

)(
1

ν − s

)
dν

∥∥∥∥
q3

.

By using equations (2.14), (2.21) and condition (2.3), we get∥∥∥∥ 1
πi

∫
Γ

(
g(ν, u(ν))
µ(ν, u(ν))

)(
1

ν − s

)
dν

∥∥∥∥
q3

≤ ρ2

‖g(s, u(s))‖q3

‖exp(M(s))‖q3

≤ ρ2η2L
q−1
3

(
1

‖exp(M(s))‖q3

)
≤ ρ2η2L

q−1
3 .(2.41)

From (2.38), (2.40) and (2.41) into (2.36), we obtain

(2.42) ‖N2(s)‖p ≤ ΩLp−1
= Q2,

where

Ω =
[
ρ2η2η3

(
L−q−1

2 + ρ1 Λ
)

exp
(
ρ1 ΛLq−1

2

)]
Finally, substituting from (2.35) and (2.42) into (2.25), we have

(2.43) ‖T (s, u(s))‖p ≤ Q,

where Q = Q1 + Q2 ≡ const.

3. Existence theorem

For non-negative constants R and αu, let us define the following compact set:

(3.1) K0,δ
R,αu

= {u ∈ C0(Γ), |u| ≤ R, |u(s2)− u(s1)| ≤ αu |s2 − s1|δ , s1, s2 ∈ Γ},

where C0(Γ) is the space of all continuous functions u(s) that are defined on Γ such
that u(r) = 0. We are going to prove some assertions about the set K0,δ

R,αu
, its image

under the operator S, i.e., S
(
K0,δ

R,αu

)
and the continuity of the operator S defined

in (2.23).
It is easy to see that the set K0,δ

R,αu
is a convex set. In fact, we are willing to

show that the operator S defined by (2.23) transforms the function u to a function
belongs to the class K0,δ

R,αu
. Therefore, for each u ∈ K0,δ

R,αu
, let us have

(3.2) (Su)(s) = v(s), v(s) ∈ C0(Γ)

where

(Su)(s) =
∫ s

r

T (σ, u(σ))dσ.

Then, for any s ∈ Γ, we have from (2.23) and (2.43) that

(3.3) |v(s)| ≤
∫

Γ

|T (σ, u(σ))| dσ ≤ ‖T (s, u(s))‖p Lk−1
≤ R
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where R = Q, Lk−1
and p−1 + k−1 = 1. Now, we evaluate |v(s2)− v(s1)| for p > 1,

p−1 + k−1 = 1, k < δ−1, s1, s2 ∈ Γ, we have

|v(s2)− v(s1)| ≤
∣∣∣∣∫ s1

r

T (σ, u(σ))dσ −
∫ s2

r

T (σ, u(σ))dσ

∣∣∣∣
≤
∣∣∣∣∫ s2

s1

T (σ, u(σ))dσ

∣∣∣∣ ≤ ‖T (s, u)‖p |s2 − s1|k
−1

.

If ‖T (s, u)‖p ≤ Q ≤ α, then all the transformed functions v(s) belong to the set
K0,δ

R,αu
. Hence, the following lemma is valid.

Lemma 3.1. Let the functions A(s, u(s)), B(s, u(s)) and g(s, u(s)) satisfy the con-
ditions (2.3)–(2.7). Then, for arbitrary u ∈ K0,δ

R,αu
and Q ≤ α, the transformed

points (Su)(s) = v(s) belong to the set K0,δ
R,αu

.

In the following we will prove the continuity of the operator S over K0,δ
R,αu

.

Lemma 3.2. The operator S, defined in (3.2), which transforms the set K0,δ
R,αu

into
itself is continuous.

Proof. Let {un}∞n=1 be a sequence of elements of the set K0,δ
R,αu

converges uniformly
to the element u ∈ K0,δ

R,αu
. Let us assume that

Cn(s) = C(s, un(s)) =
A(s, un(s)) + B(s, un(s))
A(s, un(s))−B(s, un(s))

,

Mn(s) = M(s, un(s)) =
1

2πi

∫
Γ

lnC(τ, un(τ))
τ − s

dτ,

X±
n (s) = X±(s, un(s)), µ(ν, un(ν)) = X+

n (ν)[A(ν, un(ν))−B(ν, un(ν))]

and

f(s, un(s)) =
√

A2(s, un(s))−B2(s, un(s)).

We consider the following difference:

|vn(s)− v(s)| ≤
∫ s

r

|T (σ, un(σ))− T (σ, u(σ))| dσ,

where
|T (s, un(s))− T (s, u(s))| ≤

∣∣(N1
n)(s)

∣∣+ ∣∣(N2
n)(s)

∣∣ ,
such that

(N1
n)(s) =

A(s, un(s))g(s, un(s))
f2(s, un(s))

− A(s, u(s))g(s, u(s))
f2(s, u(s))

and

(N2
n)(s) =

B(s, un(s)) exp(Mn(s))
πif(s, un(s))

∫
Γ

(
g(ν, un(ν))
µ(ν, un(ν))

)(
1

ν − s

)
dν

− B(s, u(s)) exp(M(s))
πif(s, u(s))

∫
Γ

(
g(ν, u(ν))
µ(ν, u(ν))

)(
1

ν − s

)
dν.
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Now, we show that limn→∞ |vn(s)− v(s)| = 0. Since ‖un‖is uniformly bounded,
using the conditions (2.3)–(2.7), we have

lim
n→∞

|A(s, un(s))−A(s, u(s))| = 0,

lim
n→∞

|B(s, un(s))−B(s, u(s))| = 0,

and
lim

n→∞
|g(s, un(s))− g(s, u(s))| = 0.

Therefore

(3.4) lim
n→∞

∣∣(N1
n)(s)

∣∣ = 0.

In the following, we estimate (N2
n)(s), to carry out our investigation we consider

|In| = |M(s, un(s))−M(s, u(s))| ,

|In| ≤
1
2
|lnC(s, un(s))− lnC(s, u(s))|

+
∣∣∣∣ 1
2πi

∫
Γ

(
lnC(τ, un(τ))− lnC(s, un(s))

τ − s

− lnC(τ, u(τ))− lnC(s, u(s))
τ − s

)
dτ

∣∣∣∣ .(3.5)

Since A(s, u(s)) and B(s, u(s)) are uniformly continuous, then

lim
n→∞

|C(s, un(s))− C(s, u(s))| = 0.

Therefore,

(3.6) lim
n→∞

∣∣∣√C(s, un(s))−
√

C(s, u(s))
∣∣∣ = 0,

(3.7) lim
n→∞

|lnC(s, un(s))− lnC(s, u(s))| = 0,

and
lim

n→∞
|f(s, un(s))− f(s, u(s))| = 0.

The difference in the right hand side of the inequality (3.5) tends uniformly to zero
as n tends to ∞.

To determine the integral in the same inequality (3.5), we draw a circle of center
z and radius ω, so small that inside the circle lies the single arc of the curve Γ.

We decompose this integral into two parts I`
n(s) + IΓ−`

n (s) where ` is the part of
Γ inside the circle and Γ− ` is the remaining part.

By using equation (2.12) and condition (2.3), we have

|C(s, u(s))| =
∣∣∣∣ [A(s, u(s)) + B(s, u(s))]2

A2(s, u(s))−B2(s, u(s))

∣∣∣∣ ≤ [A(s, u(s)) + B(s, u(s))]2

Due to the continuity of the functions A(s, u(s)), B(s, u(s)) and from the inequal-
ities (2.5), (2.6), we obtain

|C(τ, un(τ))− C(s, un(s))| ≤ γ̃(1 + αu) |τ − s|δ

where γ̃ = 2(η1 + η2)(γ1 + γ2).
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Therefore, we get the following inequality∣∣∣∣ 1
2πi

∫
`

(
lnC(τ, un(τ))− lnC(s, un(s))

τ − s

)
dτ

∣∣∣∣ ≤ γ̃(1 + αu)
∫

`

|τ − s|δ−1 |dτ |

≤ 2γ̃m(1 + αu)
∫ ω

0

tδ−1dt <
ε

3
,

where ε is a small positive number, t = |τ − s|, |dτ | = mdt, m is a positive constant
(see [5]), and ω ≤ (δε/6γ̃m(1 + αu))δ−1

. Consequently,∣∣∣∣ 1
2πi

∫
`

(
lnC(τ, u(τ))− lnC(s, u(s))

τ − s

)
dτ

∣∣∣∣ < ε

3
.

Then ∣∣I`
n(s)

∣∣ < 2ε

3
.

Since the point s ∈ ` lies outside the arc of integration Γ − ` and IΓ−`
n (s) are

continuous, then we can select a positive integer n such that the inequality∣∣IΓ−`
n (s)

∣∣ < ε

3
holds for each n > Jε. Hence it follows that

|In| < ε for n > Jε

and
lim

n→∞
|M(s, un(s))−M(s, u(s))| = 0.

Therefore,

(3.8) lim
n→∞

|expM(s, un(s))− expM(s, u(s))| = 0.

From (2.14), (3.6) and (3.8), we obtain

(3.9) lim
n→∞

∣∣X+
n (s)−X+(s)

∣∣ = 0.

Therefore,

(3.10) lim
n→∞

|µ(s, un(s))− µ(s, u(s))| = 0.

By using the properties of the convergent sequence, we have

(3.11) lim
n→∞

∣∣(N2
n(s)

∣∣ = 0.

Hence, by using (3.4) and (3.11), we obtain

lim
n→∞

|vn(s)− v(s)| = 0.

Then, the operator S is continuous.

From the preceding lemmas and Arzela-Ascoli theorem [9], the image of K0,δ
R,αu

is compact, therefore we can use Schauder’s fixed point theorem to show that the
operator S has at least one fixed point. Thus, we can state the main theorem as
follows:
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Theorem 3.1. The quasi-linear singular integro-differential equation with Cauchy
kernel

A(s, u(s))u′(s)−B(s, u(s))
1
πi

∫
Γ

u′(τ)
τ − s

dτ = g(s, u(s))

under the initial condition u(r) = 0 where Γ is a closed smooth contour and r is a
fixed point on Γ, has at least one solution u in the space W 1

p , under the following
conditions:

(a) Assume that the functions A(s, u(s)), B(s, u(s)) and g(s, u(s)) are continu-
ous and positive on the region: D = {(s, u) : s ∈ Γ, |u| < ∞}.

(b) A2(s, u(s))−B2(s, u(s)) ≥ 1 for each (s, u(s)) ∈ D.
(c) (i) |A(s2, u2)−A(s1, u1)| ≤ γ1

(
|s1 − s2|δ + |u1 − u2|

)
,

(ii) |B(s2, u2)−B(s1, u1)| ≤ γ2

(
|s1 − s2|δ + |u1 − u2|

)
(iii) |g(s2, u2)− g(s1, u1)| ≤ γ3

(
|s1 − s2|δ + |u1 − u2|

)
where γi, (i = 1, 2, 3)

are positive constants and 0 < δ < 1.
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